1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
McGlinchey RP, Ramos S, Dimitriadis EK, Wilson CB, Lee JC. Defining essential charged residues in fibril formation of a lysosomal derived N-terminal α-synuclein truncation. Nat Commun 2025; 16:3825. [PMID: 40268916 PMCID: PMC12019160 DOI: 10.1038/s41467-025-58899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
N- and C-terminal α-synuclein (α-syn) truncations are prevalent in Parkinson's disease. Effects of the N- and C-terminal residues on α-syn aggregation and fibril propagation are distinct, where the N-terminus dictates fibril structure. Here, the majority of α-syn truncations are assigned by intact mass spectrometry to lysosomal activity. To delineate essential charged residues in fibril formation, we selected an N-terminal truncation (66-140) that is generated solely from soluble α-syn by asparagine endopeptidase. Ala-substitutions at K80 and E83 impact aggregation kinetics, revealing their vital roles in defining fibril polymorphism. K80, E83, and K97 are identified to be critical for fibril elongation. Based on solid-state NMR, mutational and Raman studies, and molecular dynamics simulations, a E83-K97 salt bridge is proposed. Finally, participation of C-terminal Lys residues in the full-length α-syn fibril assembly process is also shown, highlighting that individual residues can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan P McGlinchey
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sashary Ramos
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Biomedical Engineering and Physical Science Shared Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Li X, Bi L, Zhang S, Xu Q, Xia W, Tao Y, Wu S, Li Y, Le W, Kang W, Li D, Sun B, Liu C. Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416721. [PMID: 39951335 PMCID: PMC11984887 DOI: 10.1002/advs.202416721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 04/12/2025]
Abstract
α-Syn fibrils, a key pathological hallmark of Parkinson's disease, is closely associated with disease initiation and progression. Several small molecules are found to bind or dissolve α-syn fibrils, offering potential therapeutic applications. Here, an innovative optical tweezers-based, fluorescence-combined approach is developed to probe the mechanical characteristics of α-syn fibrils at the single-molecule level. When subjected to axial stretching, local deformation within α-syn fibrils appeared at forces above 50 pN. These structural alternations occurred stepwise and are irreversible, suggesting unfolding of individual α-syn molecules or subdomains. Additionally, α-syn fibrils exhibits high heterogeneity in lateral disruption, with rupture force ranging from 50 to 500 pN. The impact of different compounds on the structure and mechanical features of α-syn fibrils is further examined. Notably, epigallocatechin gallate (EGCG) generally attenuates the rupture force of fibrils by wedging into the N-terminal polar groove and induces fibril dissociation. Conversely, copper chlorophyllin A (CCA) attaches to four different sites wrapping around the fibril core, reinforcing the stability of the fibril against rupture forces. The work offers an effective method for characterizing single-fibril properties and bridges compound-induced structural alternations with mechanical response. These insights are valuable for understanding amyloid fibril mechanics and their regulation by small molecules.
Collapse
Affiliation(s)
- Xiang Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shenqing Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Youqi Tao
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Shaojuan Wu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Weidong Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghai201318China
| | - Wenyan Kang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dan Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
- Shanghai Academy of Natural Sciences (SANS)Fudan UniversityShanghai200433China
| |
Collapse
|
4
|
Monistrol J, Beton JG, Johnston EC, Dang TL, Bukau B, Saibil HR. Stepwise recruitment of chaperone Hsc70 by DNAJB1 produces ordered arrays primed for bursts of amyloid fibril disassembly. Commun Biol 2025; 8:522. [PMID: 40159506 PMCID: PMC11955550 DOI: 10.1038/s42003-025-07906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
The Hsp70 chaperone system is capable of disassembling pathological aggregates such as amyloid fibres associated with serious degenerative diseases. Here we examine the role of the J-domain protein co-factor in amyloid disaggregation by the Hsc70 system. We used cryo-EM and tomography to compare the assemblies with wild-type DNAJB1 or inactive mutants. We show that DNAJB1 binds regularly along α-synuclein amyloid fibrils and acts in a 2-step recruitment of Hsc70, releasing DNAJB1 auto-inhibition before activating Hsc70 ATPase. The wild-type DNAJB1:Hsc70:Apg2 complex forms dense arrays of chaperones on the fibrils, with Hsc70 on the outer surface. When the auto-inhibition is removed by mutating DNAJB1 (ΔH5 DNAJB1), Hsc70 is recruited to the fibrils at a similar level, but the ΔH5 DNAJB1:Ηsc70:Apg2 complex is inactive, binds less regularly to the fibrils and lacks the ordered clusters. Therefore, we propose that 2-step activation of DNAJB1 regulates the ordered assembly of Hsc70 on the fibril. The localised, dense packing of chaperones could trigger a cascade of recruitment and activation to give coordinated, sequential binding and disaggregation from an exposed fibril end, as previously observed in AFM videos. This mechanism is likely to be important in maintaining a healthy cellular proteome into old age.
Collapse
Affiliation(s)
- Jim Monistrol
- Institute of Structural and Molecular Biology, Birkbeck University of London, Malet St, London, WC1E 7HX, UK
- Deutsches Elektronen-Synchrotron (DESY), Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Joseph G Beton
- Institute of Structural and Molecular Biology, Birkbeck University of London, Malet St, London, WC1E 7HX, UK
- Leibniz Institute of Virology (LIV) and Universitätsklinikum Hamburg Eppendorf (UKE), Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
| | - Erin C Johnston
- Institute of Structural and Molecular Biology, Birkbeck University of London, Malet St, London, WC1E 7HX, UK
- Department of Chemistry, Kings College London, London, SE1 1DB, UK
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck University of London, Malet St, London, WC1E 7HX, UK.
| |
Collapse
|
5
|
Xu Y, Li D, Zhang Y, Zhao Q, Sun B, Liu C, Li D, Dai B. β-Lactoglobulin Forms a Conserved Fibril Core That Assembles into Diverse Fibril Polymorphs. NANO LETTERS 2025; 25:3653-3661. [PMID: 39992798 DOI: 10.1021/acs.nanolett.5c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The β-lactoglobulin (β-LG) protein, sourced from dietary products, is notable for forming amyloid fibrils, which are increasingly recognized as valuable protein-based nanomaterials due to their superior cytocompatibility, chemical resilience, and mechanical characteristics. However, the precise atomic details of β-LG's fibril assembly are not understood. In this study, we utilized cryo-electron microscopy to elucidate the composition and architecture of β-LG fibrils. We discovered that the β-LG fibril was rapidly assembled after a short time incubation. Remarkably, these fibril cores were composed of the first 32 residues, forming four β-strands that adopted a serpentine arrangement into a single protofilament. This protofilament core's stability was reinforced by hydrophobic interactions. Two identical protofilaments then align to form four distinct structural polymorphs through unique interfacial configurations, which were stabilized by hydrophilic interactions, hydrogen bonding, and electrostatic forces. Our findings provide a structural framework for understanding β-LG fibril formation and pave the way for designing innovative β-LG-based nanomaterials.
Collapse
Affiliation(s)
- Yongyi Xu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danni Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiling Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200433, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Akhtar A, Singh P, Admane N, Grover A. Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein. Biophys Chem 2025; 318:107379. [PMID: 39693815 DOI: 10.1016/j.bpc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD. Computational and experimental approaches demonstrated Sal-B effectively prevents the amyloid fibrillation of A53T Syn by interacting with the N-terminal region and NAC domain. Sal-B particularly associates with the KTKEGV motif and NACore segment of A53T Syn by hydrophobic and hydrogen bonding interactions. Replica exchange molecular dynamics (REMD) simulations indicated that Sal-B reduces intramolecular hydrogen bonding and structural transitions into β-sheet rich conformations, thereby lowering the aggregation propensity of A53T Syn. Systematic analysis conducted using biophysical techniques and high-end microscopy has demonstrated significant inhibition in the amyloid transformation of A53T Syn corroborated by a 92 % decrease in ThT maxima at 100 μM Sal-B concentration and microscopic techniques validated the absence of mature fibrillar amyloids. DLS data revealed heterogeneous particle sizes, supporting the formation of smaller unstructured aggregates. These findings underscore Sal-B as a promising therapeutic candidate for PD and related synucleinopathies, warranting further investigation in cellular and animal models to advance potential treatments and early intervention strategies.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Al-Azzani M, Weber S, Ramalingam N, Ramón M, Shvachiy L, Mestre G, Zech M, Sicking K, de Opakua AI, Jayanthi V, Amaral L, Agarwal A, Chandran A, Chaves SR, Winkelmann J, Trenkwalder C, Schwager M, Pauli S, Dettmer U, Fernández CO, Lautenschläger J, Zweckstetter M, Busnadiego RF, Mollenhauer B, Outeiro TF. A novel alpha-synuclein K58N missense variant in a patient with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.07.25321793. [PMID: 39990587 PMCID: PMC11844588 DOI: 10.1101/2025.02.07.25321793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mutations and multiplications in the SNCA gene, encoding alpha-synuclein (aSyn), are associated with familial forms of Parkinson's disease (PD). We report the identification of a novel SNCA missense mutation (NM_000345.4, cDNA 174G>C; protein K58N) in a PD patient using whole exome sequencing, and describe comprehensive molecular and cellular analysss of the effects of this novel mutation. The patient exhibited typical sporadic PD with early onset and a benign disease course. Biophysical studies revealed that the K58N substitution causes local structural effects, disrupts binding to membranes, and enhances aSyn in vitro aggregation. K58N aSyn produces fewer inclusions per cell, and fails to undergo condensate formation. The mutation increases the cytoplasmic distribution of the protein, and has minimal effect on the dynamic reversibility of serine-129 phosphorylation. In total, the identification of this novel mutation advances our understanding of aSyn biology and pathobiology.
Collapse
Affiliation(s)
- Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Gonçalo Mestre
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Vidyashree Jayanthi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich-Augsburg, Munich-Augsburg, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Centre Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Maike Schwager
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Brücke C, Al-Azzani M, Ramalingam N, Ramón M, Sousa RL, Buratti F, Zech M, Sicking K, Amaral L, Gelpi E, Chandran A, Agarwal A, Chaves SR, Fernández CO, Dettmer U, Lautenschläger J, Zweckstetter M, Busnadiego RF, Zimprich A, Outeiro TF. A novel alpha-synuclein G14R missense variant is associated with atypical neuropathological features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.23.24313864. [PMID: 39399048 PMCID: PMC11469355 DOI: 10.1101/2024.09.23.24313864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Parkinson's disease (PD) affects millions of people worldwide, but only 5-10% of patients suffer from a monogenic form of the disease with Mendelian inheritance. SNCA, the gene encoding for the protein alpha-synuclein (aSyn), was the first to be associated with familial forms of PD and, since then, several missense variants and multiplications of the SNCA gene have been established as rare causes of autosomal dominant forms of PD. Aim and methods A patient carrying aSyn missense mutation and his family members were studied. We present the clinical features, genetic testing - whole exome sequencing (WES), and neuropathological findings. The functional consequences of this aSyn variant were extensively investigated using biochemical, biophysical, and cellular assays. Results The patient exhibited a complex neurodegenerative disease that included generalized myocloni, bradykinesia, dystonia of the left arm and apraxia. WES identified a novel heterozygous SNCA variant (cDNA 40G>A; protein G14R). Neuropathological examination showed extensive atypical aSyn pathology with frontotemporal lobar degeneration (FTLD) and nigral degeneration pattern with abundant ring-like neuronal inclusions, and few oligodendroglial inclusions. Sanger sequencing confirmed the SNCA variant in the healthy, elderly parent of the patient patient suggesting incomplete penetrance. NMR studies suggest that the G14R mutation induces a local structural alteration in aSyn, and lower thioflavin T binding in in vitro fibrillization assays. Interestingly, the G14R aSyn fibers display different fibrillar morphologies as revealed by cryo-electron microscopy. Cellular studies of the G14R variant revealed increased inclusion formation, enhanced membrane association, and impaired dynamic reversibility of serine-129 phosphorylation. Summary The atypical neuropathological features observed, which are reminiscent of those observed for the G51D aSyn variant, suggest a causal role of the SNCA variant with a distinct clinical and pathological phenotype, which is further supported by the properties of the mutant aSyn, compatible with the strain hypothesis of proteinopathies.
Collapse
Affiliation(s)
- Christof Brücke
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Rita L. Sousa
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fiamma Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University Vienna, Austria
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Alexander Zimprich
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Shimogawa M, Li MH, Park GSH, Ramirez J, Lee H, Watson PR, Sharma S, Lin Z, Peng C, Garcia BA, Christianson DW, Rhoades E, Eliezer D, Petersson EJ. Investigation of All Disease-Relevant Lysine Acetylation Sites in α-Synuclein Enabled by Non-canonical Amino Acid Mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634178. [PMID: 39896484 PMCID: PMC11785115 DOI: 10.1101/2025.01.21.634178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aggregates of α-synuclein (αS) are hallmarks of synucleinopathies, including Parkinson's Disease (PD) and Multiple System Atrophy (MSA). We have recently shown that αS lysine acetylation in the soluble monomer pool varies between healthy controls, PD, and MSA patients. To study the effects of lysine acetylation at all disease-relevant sites of αS, we first compared production of acetylated αS through either native chemical ligation or non-canonical amino acid (ncAA) mutagenesis. Since yields were comparable, ncAA mutagenesis was deemed superior for scanning many acetylation sites. We expressed and purified 12 disease-relevant variants and studied their binding to membranes as well as their aggregation propensities, and found that acetylation of lysine 12, 43, and 80 had particularly strong effects. To understand the implications for acetylation of monomeric αS found in healthy cells, we performed NMR experiments to study protein conformation and fluorescence correlation spectroscopy experiments to quantify lipid binding. We also investigated the effects of acetylation at lysine 12, 43, and 80 on fibril seeding in neurons. Collectively, our biochemical and cell biological investigations indicated that acetylation of K80 could inhibit aggregation without conferring negative effects on monomer function in healthy cells. Therefore, we studied the structures of fibrils with K80 acetylation through cryo-electron microscopy to uncover the structural basis for these effects. Finally, we identified inhibition of HDAC8 as a way of potentially increasing acetylation at K80 and other inhibitory sites for therapeutic benefit.
Collapse
Affiliation(s)
- Marie Shimogawa
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ming-Hao Li
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Grace Shin Hye Park
- Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, 206 Anatomy-Chemistry Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, 206 Anatomy-Chemistry Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Paris R. Watson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Swati Sharma
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 4523 Clayton Ave, St Louis, MO 63130, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, 710 Westwood Plaza, Room C-224, Los Angeles, CA 90095, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 4523 Clayton Ave, St Louis, MO 63130, USA
| | - David W. Christianson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - E. James Petersson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Egorov VV, Grudinina NA, Polyakov DS, Zabrodskaya YA, Gavrilova NV, Shavlovsky MM. Spontaneous formation of different forms of alpha-synuclein fibrils from a recombinant protein. Biochem Biophys Res Commun 2024; 741:151068. [PMID: 39612643 DOI: 10.1016/j.bbrc.2024.151068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alpha-synuclein is a protein, the conformational changes of which lead to the development of such socially significant diseases as Parkinson's disease and amyotrophic lateral sclerosis. The methods for differential diagnostics of these diseases based on the use of alpha-synuclein in a non-native conformation obtained from patients as a seed for inducing fibrillogenesis and studying the morphology of the resulting amyloid-like fibrils were described in a number of studies. The authors associate such properties of the seed with the presence of post-translational modifications in the protein obtained from patients. At the same time, the production of fibrils differing in morphology from recombinant alpha-synuclein under various conditions of fibrillogenesis is also described. In this work, we show that the formation of morphologically distinct fibril types from recombinant alpha-synuclein lacking post-translational modifications is possible under the same conditions, and that spontaneously arising different fibril types, when used as a seed for fibrillogenesis, lead to the formation of recombinant protein fibrils morphological similar to the parental seed. The results of the work can be used both in studying the fundamental mechanisms of conformation transfer and in developing test systems for synucleinopathies.
Collapse
Affiliation(s)
- V V Egorov
- Federal State Budgetary Scientific Institution 'Institute of Experimental Medicine', 197022, Akademika Pavlova Street 12, St. Petersburg, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov St. 15/17, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 194064, Politekhnicheskaya 29, St. Petersburg, Russia; Federal State Budgetary Educational Institution of Higher Professional Education "Saint-Petersburg State University", 199034, Universitetskaya Embankment, 7-9, St. Petersburg, Russia.
| | - N A Grudinina
- Federal State Budgetary Scientific Institution 'Institute of Experimental Medicine', 197022, Akademika Pavlova Street 12, St. Petersburg, Russia
| | - D S Polyakov
- Federal State Budgetary Scientific Institution 'Institute of Experimental Medicine', 197022, Akademika Pavlova Street 12, St. Petersburg, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov St. 15/17, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 194064, Politekhnicheskaya 29, St. Petersburg, Russia
| | - N V Gavrilova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376, Prof. Popov St. 15/17, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 194064, Politekhnicheskaya 29, St. Petersburg, Russia
| | - M M Shavlovsky
- Federal State Budgetary Scientific Institution 'Institute of Experimental Medicine', 197022, Akademika Pavlova Street 12, St. Petersburg, Russia
| |
Collapse
|
11
|
Holec SAM, Khedmatgozar CR, Schure SJ, Pham T, Woerman AL. A-synuclein prion strains differentially adapt after passage in mice. PLoS Pathog 2024; 20:e1012746. [PMID: 39642110 PMCID: PMC11623799 DOI: 10.1371/journal.ppat.1012746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
In patients with synucleinopathies, the protein α-synuclein misfolds into multiple conformations, each of which determines whether a patient develops multiple system atrophy (MSA) or one of three Lewy body diseases (LBDs). However, patients may also first present with pure autonomic failure, which strictly impacts autonomic nerves in the periphery, which can then phenoconvert into MSA or a LBD. When neuroinvasion happens, it remains unknown if strain properties are retained or if strain adaptation occurs, even though neuroinvasion of some prion protein (PrP) strains is known to result in the emergence of novel PrP strain variants. To investigate this question in synucleinopathies, we inoculated TgM83+/- mice, which express human α-synuclein with the A53T mutation, with a mouse-passaged MSA patient sample either intracranially (i.c.) or into the sciatic nerve (sc.n.), and compared the biochemical and biological properties of α-synuclein prions in the brains of terminal mice. Importantly, while i.c. and sc.n. transmission studies generated pathogenic α-synuclein with similar properties, both the primary and secondary passaged MSA samples had different infectivity profiles in a panel of α-syn140-YFP cells than the starting MSA patient sample, indicating that MSA prions adapt during initial passage in TgM83+/- mice. Similarly, using i.c. inoculation of A53T preformed fibrils to study strain selection, we found both biochemical and biological evidence that mouse passage exerts a selective pressure on α-synuclein prions in which a sub-population of starting conformations emerges in terminal animals. Together, these findings demonstrate that similar conformational selective pressures known to impact PrP prion replication also impact replication of α-synuclein prions.
Collapse
Affiliation(s)
- Sara A. M. Holec
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Chase R. Khedmatgozar
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Shelbe J. Schure
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tiffany Pham
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Amanda L. Woerman
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
12
|
Ahlawat S, Mehra S, Gowda CM, Maji SK, Agarwal V. Solid-state NMR assignment of α-synuclein polymorph prepared from helical intermediate. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:193-200. [PMID: 38963588 PMCID: PMC11511750 DOI: 10.1007/s12104-024-10188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Chandrakala M Gowda
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India.
| |
Collapse
|
13
|
Lee SS, Civitelli L, Parkkinen L. Brain-derived and in vitro-seeded alpha-synuclein fibrils exhibit distinct biophysical profiles. eLife 2024; 13:RP92775. [PMID: 39584804 PMCID: PMC11588339 DOI: 10.7554/elife.92775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson's disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the 'model' SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of 'straight' and 'twisted' microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a 'straight' structure, whereas MSA SAA fibrils showed a 'twisted' structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.
Collapse
Affiliation(s)
- Selene Seoyun Lee
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Center, University of OxfordOxfordUnited Kingdom
| | - Livia Civitelli
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Center, University of OxfordOxfordUnited Kingdom
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Center, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
Ghosh D, Torres F, Schneider MM, Ashkinadze D, Kadavath H, Fleischmann Y, Mergenthal S, Güntert P, Krainer G, Andrzejewska EA, Lin L, Wei J, Klotzsch E, Knowles T, Riek R. The inhibitory action of the chaperone BRICHOS against the α-Synuclein secondary nucleation pathway. Nat Commun 2024; 15:10038. [PMID: 39567476 PMCID: PMC11579453 DOI: 10.1038/s41467-024-54212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
The complex kinetics of disease-related amyloid aggregation of proteins such as α-Synuclein (α-Syn) in Parkinson's disease and Aβ42 in Alzheimer's disease include primary nucleation, amyloid fibril elongation and secondary nucleation. The latter can be a key accelerator of the aggregation process. It has been demonstrated that the chaperone domain BRICHOS can interfere with the secondary nucleation process of Aβ42. Here, we explore the mechanism of secondary nucleation inhibition of the BRICHOS domain of the lung surfactant protein (proSP-C) against α-Syn aggregation and amyloid formation. We determine the 3D NMR structure of an inactive trimer of proSP-C BRICHOS and its active monomer using a designed mutant. Furthermore, the interaction between the proSP-C BRICHOS chaperone and a substrate peptide has been studied. NMR-based interaction studies of proSP-C BRICHOS with α-Syn fibrils show that proSP-C BRICHOS binds to the C-terminal flexible fuzzy coat of the fibrils, which is the secondary nucleation site on the fibrils. Super-resolution fluorescence microscopy demonstrates that proSP-C BRICHOS runs along the fibrillar axis diffusion-dependently sweeping off monomeric α-Syn from the fibrils. The observed mechanism explains how a weakly binding chaperone can inhibit the α-Syn secondary nucleation pathway via avidity where a single proSP-C BRICHOS molecule is sufficient against up to ~7-40 α-Syn molecules embedded within the fibrils.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Felix Torres
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Matthias M Schneider
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dzmitry Ashkinadze
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Harindranath Kadavath
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanick Fleischmann
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics / Mechanobiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Peter Güntert
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Georg Krainer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ewa A Andrzejewska
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lily Lin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jiapeng Wei
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics / Mechanobiology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Tuomas Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Roland Riek
- Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland.
| |
Collapse
|
15
|
Ho HH, Wing SS. α-Synuclein ubiquitination - functions in proteostasis and development of Lewy bodies. Front Mol Neurosci 2024; 17:1498459. [PMID: 39600913 PMCID: PMC11588729 DOI: 10.3389/fnmol.2024.1498459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the accumulation of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational modification, has been recognized as a pivotal regulator of α-synuclein's cellular dynamics, influencing its degradation, aggregation, and associated neurotoxicity. This review examines comprehensively the current understanding of α-synuclein ubiquitination and its role in the pathogenesis of synucleinopathies, particularly in the context of Parkinson's disease. We explore the molecular mechanisms responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases and deubiquitinases implicated in the degradation process which occurs primarily through the endosomal lysosomal pathway. The review further discusses how the dysregulation of these mechanisms contributes to α-synuclein aggregation and LB formation and offers suggestions for future investigations into the role of α-synuclein ubiquitination. Understanding these processes may shed light on potential therapeutic avenues that can modulate α-synuclein ubiquitination to alleviate its pathological impact in synucleinopathies.
Collapse
Affiliation(s)
- Hung-Hsiang Ho
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
de Bruyn E, Dorn AE, Rossetti G, Fernandez C, Outeiro TF, Schulz JB, Carloni P. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. J Chem Inf Model 2024; 64:8215-8226. [PMID: 39462994 PMCID: PMC11558680 DOI: 10.1021/acs.jcim.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Giulia Rossetti
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Claudio Fernandez
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute
for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tiago F. Outeiro
- Department
of Experimental Neurodegeneration, Center for Biostructural Imaging
of Neurodegeneration, University Medical
Center Göttingen, 37075 Göttingen, Germany
- Max
Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE1 7RU, United
Kingdom
| | - Jörg B. Schulz
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA
Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo Carloni
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
17
|
Sokratian A, Zhou Y, Tatli M, Burbidge KJ, Xu E, Viverette E, Donzelli S, Duda AM, Yuan Y, Li H, Strader S, Patel N, Shiell L, Malankhanova T, Chen O, Mazzulli JR, Perera L, Stahlberg H, Borgnia M, Bartesaghi A, Lashuel HA, West AB. Mouse α-synuclein fibrils are structurally and functionally distinct from human fibrils associated with Lewy body diseases. SCIENCE ADVANCES 2024; 10:eadq3539. [PMID: 39485845 PMCID: PMC11800946 DOI: 10.1126/sciadv.adq3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The intricate process of α-synuclein aggregation and fibrillization holds pivotal roles in Parkinson's disease (PD) and multiple system atrophy (MSA). While mouse α-synuclein can fibrillize in vitro, whether these fibrils commonly used in research to induce this process or form can reproduce structures in the human brain remains unknown. Here, we report the first atomic structure of mouse α-synuclein fibrils, which was solved in parallel by two independent teams. The structure shows striking similarity to MSA-amplified and PD-associated E46K fibrils. However, mouse α-synuclein fibrils display altered packing arrangements, reduced hydrophobicity, and heightened fragmentation sensitivity and evoke only weak immunological responses. Furthermore, mouse α-synuclein fibrils exhibit exacerbated pathological spread in neurons and humanized α-synuclein mice. These findings provide critical insights into the structural underpinnings of α-synuclein pathogenicity and emphasize a need to reassess the role of mouse α-synuclein fibrils in the development of related diagnostic probes and therapeutic interventions.
Collapse
Affiliation(s)
- Arpine Sokratian
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Meltem Tatli
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kevin J. Burbidge
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Enquan Xu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Viverette
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Addison M. Duda
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Yuan Yuan
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nirali Patel
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lauren Shiell
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Tuyana Malankhanova
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Olivia Chen
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Joseph R. Mazzulli
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lalith Perera
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mario Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Qatar Foundation ND BioSciences, Qatar Foundation Headquarters, PO Box 3400, Al Rayyan, Qatar
| | - Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Reis PM, Holec SA, Ezeiruaku C, Frost MP, Brown CK, Liu SL, Olson SH, Woerman AL. Structurally targeted mutagenesis identifies key residues supporting α-synuclein misfolding in multiple system atrophy. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1543-1558. [PMID: 39957201 PMCID: PMC11924605 DOI: 10.3233/jpd-240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α-synuclein spreading throughout the central nervous system. While familial PD is linked to several α-synuclein mutations, no mutations are associated with MSA. We previously showed that the familial PD mutation E46K inhibits replication of MSA prions both in vitro and in vivo, providing key evidence to support the hypothesis that α-synuclein adopts unique strains in patients. OBJECTIVE Here we sought to further interrogate α-synuclein misfolding to identify the structural determinants that contribute to MSA strain biology. METHODS We engineered a panel of cell lines harbouring both PD-linked and novel mutations designed to identify key residues that facilitate α-synuclein misfolding in MSA. We also used Maestro in silico analyses to predict the effect of each mutation on α-synuclein misfolding into one of the reported MSA cryo-electron microscopy conformations. RESULTS In many cases, our modelling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α-synuclein misfolding. CONCLUSIONS Our studies used a structure-based approach to investigate α-synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
Collapse
Affiliation(s)
- Patricia M Reis
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sara Am Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Chimere Ezeiruaku
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew P Frost
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Neuroscience Department, UConn Health, Farmington, CT, USA
| | - Christine K Brown
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L Liu
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Biochemistry and Cell Biology, Dartmouth College, Hanover, NH, USA
| | - Steven H Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Amanda L Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Ruiz-Ortega ED, Wilkaniec A, Adamczyk A. Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Front Mol Neurosci 2024; 17:1494218. [PMID: 39507104 PMCID: PMC11537881 DOI: 10.3389/fnmol.2024.1494218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by the aggregation and deposition of alpha-synuclein (α-syn) in brain cells, forming insoluble inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs). The aggregation of α-syn is a complex process involving the structural conversion from its native random coil to well-defined secondary structures rich in β-sheets, forming amyloid-like fibrils. Evidence suggests that intermediate species of α-syn aggregates formed during this conversion are responsible for cell death. However, the molecular events involved in α-syn aggregation and its relationship with disease onset and progression remain not fully elucidated. Additionally, the clinical and pathological heterogeneity observed in various synucleinopathies has been highlighted. Liquid-liquid phase separation (LLPS) and condensate formation have been proposed as alternative mechanisms that could underpin α-syn pathology and contribute to the heterogeneity seen in synucleinopathies. This review focuses on the role of the cellular environment in α-syn conformational rearrangement, which may lead to pathology and the existence of different α-syn conformational strains with varying toxicity patterns. The discussion will include cellular stress, abnormal LLPS formation, and the potential role of LLPS in α-syn pathology.
Collapse
Affiliation(s)
| | | | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Longhena F, Boujebene R, Brembati V, Sandre M, Bubacco L, Abbate S, Longhi G, Bellucci A. Nanorod-associated plasmonic circular dichroism monitors the handedness and composition of α-synuclein fibrils from Parkinson's disease models and post-mortem brain. NANOSCALE 2024; 16:18882-18898. [PMID: 39318230 DOI: 10.1039/d4nr03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human full-length (fl) αSyn fibrils, key neuropathological hallmarks of Parkinson's disease (PD), generate intense optical activity corresponding to the surface plasmon resonance of interacting gold nanorods. Herein, we analysed fibril-enriched protein extracts from mouse and human brain samples as well as from SK-N-SH cell lines with or without human fl and C-terminally truncated (Ctt) αSyn overexpression and exposed them to αSyn monomers, recombinant fl αSyn fibrils or Ctt αSyn fibrils. In vitro-generated human recombinant fl and Ctt αSyn fibrils and fibrils purified from SK-N-SH cells with fl or Ctt αSyn overexpression were also analysed using transmission electron microscopy (TEM) to gain insights into the nanorod-fibril complexes. We found that under the same experimental conditions, bisignate circular dichroism (CD) spectra of Ctt αSyn fibrils exhibited a blue-wavelength shift compared to that of fl αSyn fibrils. TEM results supported that this could be attributed to the different properties of nanorods. In our experimental conditions, fibril-enriched PD brain extract broadened the longitudinal surface plasmonic band with a bisignate CD couplet centred corresponding to the absorption band maximum. Plasmonic CD (PCD) couplets of in vivo- and in vitro-generated fibrils displayed sign reversal, suggesting their opposite handedness. Moreover, the incubation of in vitro-generated human recombinant fl αSyn fibrils in mouse brain extracts from αSyn null mice resulted in PCD couplet inversion, indicating that the biological environment may shape the handedness of αSyn fibrils. These findings support that nanorod-based PCD can provide useful information on the composition and features of αSyn fibrils from biological materials.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Department of Clinical Neurosciences-Clifford Allbutt Building, University of Cambridge, Hills Road CB2 0AH, Cambridge, UK
| | - Rihab Boujebene
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Michele Sandre
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Sergio Abbate
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Arianna Bellucci
- Department of molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
21
|
Sternke‐Hoffmann R, Sun X, Menzel A, Pinto MDS, Venclovaite U, Wördehoff M, Hoyer W, Zheng W, Luo J. Phase Separation and Aggregation of α-Synuclein Diverge at Different Salt Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308279. [PMID: 38973194 PMCID: PMC11425899 DOI: 10.1002/advs.202308279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/27/2024] [Indexed: 07/09/2024]
Abstract
The coacervation of alpha-synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is central to amyloid diseases, liquid-liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work shows that factors promoting or inhibiting aggregation have similar effects on LLPS. This study provides a detailed scanning of a wide range of parameters, including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and LLPS. The influence of salt on aggregation under crowding conditions follows a non-monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting-out effects on the intramolecular interactions between the N-terminal and C-terminal regions of αSyn. By contrast, this study finds a monotonic salt dependence of LLPS due to intermolecular interactions. Furthermore, it observes time evolution of the two distinct assembly states, with macroscopic fibrillar-like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving aggregates through heterotypic interactions, thus preventing αSyn from its dynamically arrested state.
Collapse
Affiliation(s)
| | - Xun Sun
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | - Andreas Menzel
- Center for Photon SciencePaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | | | - Urte Venclovaite
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | - Michael Wördehoff
- Institut für Physikalische BiologieHeinrich‐Heine University Düsseldorf40225DüsseldorfGermany
| | - Wolfgang Hoyer
- Institut für Physikalische BiologieHeinrich‐Heine University Düsseldorf40225DüsseldorfGermany
| | - Wenwei Zheng
- College of Integrative Sciences and ArtsArizona State UniversityMesaAZ85212USA
| | - Jinghui Luo
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| |
Collapse
|
22
|
Frey L, Ghosh D, Qureshi BM, Rhyner D, Guerrero-Ferreira R, Pokharna A, Kwiatkowski W, Serdiuk T, Picotti P, Riek R, Greenwald J. On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation. eLife 2024; 12:RP93562. [PMID: 39196271 PMCID: PMC11357353 DOI: 10.7554/elife.93562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection, we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8-7.4, a pH-dependent selection between Type 1, 2, and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the non-polymorph-specific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril that highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also suggest the possibility of producing disease-relevant structure in vitro.
Collapse
Affiliation(s)
- Lukas Frey
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Dhiman Ghosh
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Bilal M Qureshi
- Scientific Center for Optical and Electron MicroscopyZürichSwitzerland
| | - David Rhyner
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | | | | | | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Roland Riek
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | |
Collapse
|
23
|
Bouvier-Müller A, Fourmy D, Fenyi A, Bousset L, Melki R, Ducongé F. Aptamer binding footprints discriminate α-synuclein fibrillar polymorphs from different synucleinopathies. Nucleic Acids Res 2024; 52:8072-8085. [PMID: 38917326 PMCID: PMC11317169 DOI: 10.1093/nar/gkae544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Synucleinopathies, including dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple system atrophy (MSA), are characterized by the presence of α-synuclein (α-syn) aggregates in the central nervous system. Recent evidence suggests that the heterogeneity of synucleinopathies may be partly explained by the fact that patients may have different α-syn fibrillar polymorphs with structural differences. In this study, we identify nuclease resistant 2'fluoro-pyrimidine RNA aptamers that can differentially bind to structurally distinct α-syn fibrillar polymorphs. Moreover, we introduce a method, AptaFOOT-Seq, designed to rapidly assess the affinity of a mixture of these aptamers for different α-SYN fibrillar polymorphs using next-generation sequencing. Our findings reveal that the binding behavior of aptamers can be very different when they are tested separately or in the presence of other aptamers. In this case, competition and cooperation can occur, providing a higher level of information, which can be exploited to obtain specific 'footprints' for different α-Syn fibrillar polymorphs. Notably, these footprints can distinguish polymorphs obtained from patients with PD, DLB or MSA. This result suggests that aptaFOOT-Seq could be used for the detection of misfolded or abnormal protein conformations to improve the diagnosis of synucleinopathies.
Collapse
Affiliation(s)
- Alix Bouvier-Müller
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| | - Deborah Fourmy
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| | - Alexis Fenyi
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| | - Luc Bousset
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| | - Ronald Melki
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| | - Frédéric Ducongé
- CEA, DRF, Institut of biology JACOB, Molecular Imaging Research Center (MIRCen), Fontenay aux roses 92335, France
- CNRS UMR 9199, Laboratoire des Maladies Neurodégénératives, Fontenay aux roses 92335, France
- Université Paris-Saclay, Fontenay aux roses 92335, France
| |
Collapse
|
24
|
Vieira TCRG, Barros CA, Domingues R, Outeiro TF. PrP meets alpha-synuclein: Molecular mechanisms and implications for disease. J Neurochem 2024; 168:1625-1639. [PMID: 37855859 DOI: 10.1111/jnc.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
The discovery of prions has challenged dogmas and has revolutionized our understanding of protein-misfolding diseases. The concept of self-propagation via protein conformational changes, originally discovered for the prion protein (PrP), also applies to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a central player in Parkinson's disease and in other synucleinopathies. aSyn pathology appears to spread from one cell to another during disease progression, and involves the misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is still being studied, but one important hypothesis involves receptor-mediated transport. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for protein aggregates in different neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive overview of the current state of knowledge regarding the interaction between aSyn and PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and aSyn, including their structure, function, and aggregation. Additionally, we discuss the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates and identify remaining unanswered questions in this area of research. Ultimately, we posit that exploring the interaction between aSyn and PrPC may offer potential treatment options for synucleinopathies.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline A Barros
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Domingues
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
25
|
Adam L, Kumar R, Arroyo‐Garcia LE, Molenkamp WH, Nowak JS, Klute H, Farzadfard A, Alkenayeh R, Nielsen J, Biverstål H, Otzen DE, Johansson J, Abelein A. Specific inhibition of α-synuclein oligomer generation and toxicity by the chaperone domain Bri2 BRICHOS. Protein Sci 2024; 33:e5091. [PMID: 38980078 PMCID: PMC11232276 DOI: 10.1002/pro.5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Protein misfolding and aggregation are involved in several neurodegenerative disorders, such as α-synuclein (αSyn) implicated in Parkinson's disease, where new therapeutic approaches remain essential to combat these devastating diseases. Elucidating the microscopic nucleation mechanisms has opened new opportunities to develop therapeutics against toxic mechanisms and species. Here, we show that naturally occurring molecular chaperones, represented by the anti-amyloid Bri2 BRICHOS domain, can be used to target αSyn-associated nucleation processes and structural species related to neurotoxicity. Our findings revealed that BRICHOS predominantly suppresses the formation of new nucleation units on the fibrils surface (secondary nucleation), decreasing the oligomer generation rate. Further, BRICHOS directly binds to oligomeric αSyn species and effectively diminishes αSyn fibril-related toxicity. Hence, our studies show that molecular chaperones can be utilized as tools to target molecular processes and structural species related to αSyn neurotoxicity and have the potential as protein-based treatments against neurodegenerative disorders.
Collapse
Affiliation(s)
- Laurène Adam
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Rakesh Kumar
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Luis Enrique Arroyo‐Garcia
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | | | - Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Hannah Klute
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Azad Farzadfard
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Rami Alkenayeh
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Henrik Biverstål
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
26
|
Todd TW, Islam NN, Cook CN, Caulfield TR, Petrucelli L. Cryo-EM structures of pathogenic fibrils and their impact on neurodegenerative disease research. Neuron 2024; 112:2269-2288. [PMID: 38834068 PMCID: PMC11257806 DOI: 10.1016/j.neuron.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, β-amyloid (Aβ), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naeyma N Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Reis PM, Holec SAM, Ezeiruaku C, Frost MP, Brown CK, Liu SL, Olson SH, Woerman AL. Structurally targeted mutagenesis identifies key residues supporting α -synuclein misfolding in multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602104. [PMID: 39026799 PMCID: PMC11257492 DOI: 10.1101/2024.07.04.602104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α -synuclein spreading throughout the central nervous system. While familial PD is linked to several point mutations in α -synuclein, there are no known mutations associated with MSA. Our previous work investigating differences in α -synuclein misfolding between the two disorders showed that the familial PD mutation E46K inhibits replication of MSA prions both in vitro and in vivo, providing key evidence to support the hypothesis that α -synuclein adopts unique strains in patients. Here, to further interrogate α -synuclein misfolding, we engineered a panel of cell lines harboring both PD-linked and novel mutations designed to identify key residues that facilitate α -synuclein misfolding in MSA. These data were paired with in silico analyses using Maestro software to predict the effect of each mutation on the ability of α -synuclein to misfold into one of the reported MSA cryo-electron microscopy conformations. In many cases, our modeling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation on MSA propagation in vitro, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α -synuclein misfolding. Overall, our studies use a structure-based approach to investigate α -synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
Collapse
Affiliation(s)
- Patricia M. Reis
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Chimere Ezeiruaku
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Matthew P. Frost
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christine K. Brown
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L. Liu
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
29
|
Kochen NN, Seaney D, Vasandani V, Murray M, Braun AR, Sachs JN. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study. Proteins 2024; 92:854-864. [PMID: 38458997 PMCID: PMC11147710 DOI: 10.1002/prot.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Hydration plays a crucial role in the refolding of intrinsically disordered proteins into amyloid fibrils; however, the specific interactions between water and protein that may contribute to this process are still unknown. In our previous studies of alpha-synuclein (aSyn), we have shown that waters confined in fibril cavities are stabilizing features of this pathological fold; and that amino acids that hydrogen bond with these confined waters modulate primary and seeded aggregation. Here, we extend our aSyn molecular dynamics (MD) simulations with three new polymorphs and correlate MD trajectory information with known post-translational modifications (PTMs) and experimental data. We show that cavity residues are more evolutionarily conserved than non-cavity residues and are enriched with PTM sites. As expected, the confinement within hydrophilic cavities results in more stably hydrated amino acids. Interestingly, cavity PTM sites display the longest protein-water hydrogen bond lifetimes, three-fold greater than non-PTM cavity sites. Utilizing the deep mutational screen dataset by Newberry et al. and the Thioflavin T aggregation review by Pancoe et al. parsed using a fibril cavity/non-cavity definition, we show that hydrophobic changes to amino acids in cavities have a larger effect on fitness and aggregation rate than residues outside cavities, supporting our hypothesis that these sites are involved in the inhibition of aSyn toxic fibrillization. Finally, we expand our study to include analysis of fibril structures of tau, FUS, TDP-43, prion, and hnRNPA1; all of which contained hydrated cavities, with tau, FUS, and TDP-43 recapitulating our PTM results in aSyn fibril cavities.
Collapse
Affiliation(s)
- Noah Nathan Kochen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darren Seaney
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vivek Vasandani
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marguerite Murray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Zhao YD, Zhang W, Xing LZ, Xu J, Shi WM, Zhang YX. In vitro inhibition of α-Synuclein aggregation and disaggregation of preformed fibers by polyphenol hybrids with 2-conjugated benzothiazole. Bioorg Med Chem Lett 2024; 105:129752. [PMID: 38631541 DOI: 10.1016/j.bmcl.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.
Collapse
Affiliation(s)
- Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Wei-Min Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
31
|
Blacher C, Abramov-Harpaz K, Miller Y. Primary Nucleation of Polymorphic α-Synuclein Dimers Depends on Copper Concentrations and Definite Copper-Binding Site. Biomolecules 2024; 14:627. [PMID: 38927031 PMCID: PMC11201572 DOI: 10.3390/biom14060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The primary nucleation process of α-synuclein (AS) that forms toxic oligomeric species is the early stage of the pathological cause of Parkinson's disease. It is well-known that copper influences this primary nucleation process. While significant efforts have been made to solve the structures of polymorphic AS fibrils, the structures of AS oligomers and the copper-bound AS oligomers at the molecular level and the effect of copper concentrations on the primary nucleation are elusive. Here, we propose and demonstrate new molecular mechanism pathways of primary nucleation of AS that are tuned by distinct copper concentrations and by a specific copper-binding site. We present the polymorphic AS dimers bound to different copper-binding sites at the atomic resolution in high- and low-copper concentrations, using extensive molecular dynamics simulations. Our results show the complexity of the primary nucleation pathways that rely on the copper concentrations and the copper binding site. From a broader perspective, our study proposes a new strategy to control the primary nucleation of other toxic amyloid oligomers in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmia Blacher
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| |
Collapse
|
32
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Stillman NH, Joseph JA, Ahmed J, Baysah CZ, Dohoney RA, Ball TD, Thomas AG, Fitch TC, Donnelly CM, Kumar S. Protein mimetic 2D FAST rescues alpha synuclein aggregation mediated early and post disease Parkinson's phenotypes. Nat Commun 2024; 15:3658. [PMID: 38688913 PMCID: PMC11061149 DOI: 10.1038/s41467-024-47980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.
Collapse
Affiliation(s)
- Nicholas H Stillman
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Johnson A Joseph
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Jemil Ahmed
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
- Molecular and Cellular Biophysics Program, Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver, Denver, CO, 80210, USA
| | - Charles Zuwu Baysah
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Ryan A Dohoney
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Tyler D Ball
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Alexandra G Thomas
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Tessa C Fitch
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Courtney M Donnelly
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA.
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA.
- Molecular and Cellular Biophysics Program, Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
34
|
Sharma K, Chib S, Gupta A, Singh R, Chalotra R. Interplay between α-synuclein and parkin genes: Insights of Parkinson's disease. Mol Biol Rep 2024; 51:586. [PMID: 38683365 DOI: 10.1007/s11033-024-09520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Parkinson's disease (PD) is a complex and debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The pathogenesis of PD is intimately linked to the roles of two key molecular players, α-synuclein (α-syn) and Parkin. Understanding the intricate interplay between α-syn and Parkin is essential for unravelling the molecular underpinnings of PD. Their roles in synaptic function and protein quality control underscore their significance in neuronal health. Dysregulation of these processes, as seen in PD, highlights the potential for targeted therapeutic strategies aimed at restoring normal protein homeostasis and mitigating neurodegeneration. Investigating the connections between α-syn, Parkin, and various pathological mechanisms provides insights into the complex web of factors contributing to PD pathogenesis and offers hope for the development of more effective treatments for this devastating neurological disorder. The present compilation provides an overview of their structures, regional and cellular locations, associations, physiological functions, and pathological roles in the context of PD.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Aniket Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
35
|
Chen S, Barritt JD, Cascella R, Bigi A, Cecchi C, Banchelli M, Gallo A, Jarvis JA, Chiti F, Dobson CM, Fusco G, De Simone A. Structure-Toxicity Relationship in Intermediate Fibrils from α-Synuclein Condensates. J Am Chem Soc 2024; 146:10537-10549. [PMID: 38567991 PMCID: PMC11027145 DOI: 10.1021/jacs.3c14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/18/2024]
Abstract
The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel β-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.
Collapse
Affiliation(s)
- Serene
W. Chen
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Joseph D. Barritt
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Roberta Cascella
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Alessandra Bigi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Martina Banchelli
- Institute
of Applied Physics “Nello Carrara” National Research
Council of Italy, Sesto Fiorentino, Florence 50019, Italy
| | - Angelo Gallo
- Department
of Chemistry, University of Turin, Turin 10124, Italy
| | - James A. Jarvis
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
- Randall
Centre for Cell and Molecular Biophysics and Centre for Biomolecular
Spectroscopy, King’s College London, London SE1 9RT, U.K.
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | | | - Giuliana Fusco
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Pharmacy, University of Naples, Naples 80131, Italy
| | - Alfonso De Simone
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
- Department
of Pharmacy, University of Naples, Naples 80131, Italy
| |
Collapse
|
36
|
Semenyuk PI. Alpha-synuclein phosphorylation induces amyloid conversion via enhanced electrostatic bridging: Insights from molecular modeling of the full-length protein. Biophys Chem 2024; 307:107196. [PMID: 38335809 DOI: 10.1016/j.bpc.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Fibril formation from alpha-synuclein is a key point in Parkinson's disease, multiple system atrophy, and other synucleinopathies. The mechanism of the amyloid-like conversion followed by the formation of pre-fibrillar soluble oligomers and fibrils is not completely clear; furthermore, it is unclear how the Parkinson's disease-related point mutations located in the pre-NAC region enhance fibrillation. In the present paper, atomistic replica exchange molecular dynamics simulations of the full-length alpha-synuclein and its two mutants, A53T and E46K, elucidated amyloid conversion intermediates. Both mutants demonstrated an enhanced tendency for the conversion but in different manners; the main intermediate conformations populated in the WT alpha-synuclein conformational ensemble disappeared due to mutations, indicating a different conversion pathway. Analysis of the preferable beta-hairpin positions and intermediate conformations seems to reflect a tendency to form a particular amyloid fibril polymorph. A strong elevation of amyloid transformation level was shown also for Ser129-phosphorylated alpha-synuclein. Altered intermediate conformations, the most preferable beta-hairpin positions in the NAC region, and prevalent salt bridges propose the formation of so-called polymorph 2 or even a novel type of fibrils. A better understanding of the detailed mechanism of the amyloid conversion sheds light on the effect of Lewy body-related phosphorylation and might help in the development of new therapeutics for synucleinopathies.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Leninskie gory 1/40, Russia.
| |
Collapse
|
37
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Berthold DA, Gordon IR, Liu J, Milchberg MH, O'Shea JY, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Perrin RJ, Perlmutter JS, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat Commun 2024; 15:2750. [PMID: 38553463 PMCID: PMC10980826 DOI: 10.1038/s41467-024-46832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah A Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isabelle R Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Y O'Shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brock Summers
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Owen A Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard J Perrin
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Paul T Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
38
|
Xing LZ, Zhang W, Zhao YD, Xu J, Zhang YX. Pyrazolamide derivatives inhibit α-Synuclein aggregation, disaggregate preformed fibers, and reduce inclusion formation in neuron cells. Eur J Med Chem 2024; 268:116198. [PMID: 38368711 DOI: 10.1016/j.ejmech.2024.116198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
α-Syn fibers, the primary cause and central element of Lewy bodies (LB), play a pivotal role in the development of Parkinson's disease (PD). This research aims to identify more potent inhibitors of α-Syn aggregation. A series of N-aryl-3-aryl-pyrazole-5-carboxamide derivatives were designed and synthesized for this purpose. Among them, four candidate compounds, combining pyrazole and polyphenol blocks, were identified through screening, demonstrating good inhibitory effects with IC50 values in the low micromolar range (1.25-4.29 μM). Two candidates exhibited high permeability through the blood-brain barrier. Mechanistic studies using various methods revealed that the candidates preferentially bind to the aggregation-prone domains-proNAC or NAC domains of α-Syn. This binding hinders the conformational transition from random coil/α-helix to β-sheet, preserving α-Syn proteostasis. As a result, it interferes with α-Syn nuclei formation, prolongs the lag phase, decelerates the elongation phase, and ultimately impedes the formation of α-Syn fibrils. Additionally, the candidates demonstrated promising results in the disaggregation of preformed α-Syn fibers, potentially by binding to specific sites near the β-sheet domain within fibers. This reduces fiber stability, causing rapid collapse and yielding smaller aggregates and monomers. Crucially, the candidate compounds exhibited significant inhibitory efficacy against α-Syn aggregation within nerve cells with low cytotoxicity. This resulted in a notable inhibition of the formation of LB-like α-Syn inclusions. These compounds show considerable promise as potential therapeutic agents for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Ji Xu
- Department of Pharmacology, School of Basic Medical Science, Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001, Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China.
| |
Collapse
|
39
|
Sternke-Hoffmann R, Sun X, Menzel A, Pinto MDS, Venclovaitė U, Wördehoff M, Hoyer W, Zheng W, Luo J. Phase Separation and Aggregation of α-Synuclein Diverge at Different Salt Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582895. [PMID: 38464093 PMCID: PMC10925286 DOI: 10.1101/2024.03.01.582895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The coacervation and structural rearrangement of the protein alpha-synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is recognized as the key element of amyloid diseases, liquid-liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work showed that factors promoting or inhibiting amyloid formation have similar effects on phase separation. Here, we provide a detailed scanning of a wide range of parameters including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and phase separation. The influence of salt on aggregation under crowded conditions follows a non-monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting-out effects on the intramolecular interactions between the N-terminal and C-terminal regions of αSyn. By contrast, we find a monotonic salt dependence of phase separation due to the intermolecular interaction. Furthermore, we observe the time evolution of the two distinct assembly states, with macroscopic fibrillar-like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving the aggregates through a variety of heterotypic interactions, thus preventing αSyn from its dynamically arrested state.
Collapse
Affiliation(s)
- Rebecca Sternke-Hoffmann
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xun Sun
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Andreas Menzel
- Photon Science Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Miriam Dos Santos Pinto
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Urtė Venclovaitė
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Michael Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, United States
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
40
|
Yildirim-Balatan C, Fenyi A, Besnault P, Gomez L, Sepulveda-Diaz JE, Michel PP, Melki R, Hunot S. Parkinson's disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J Neuroinflammation 2024; 21:54. [PMID: 38383421 PMCID: PMC10882738 DOI: 10.1186/s12974-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Collapse
Affiliation(s)
- Cansu Yildirim-Balatan
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Alexis Fenyi
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Pierre Besnault
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Lina Gomez
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Patrick P Michel
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Stéphane Hunot
- Sorbonne Université, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France.
- Inserm UMRS 1127, Paris, France.
- CNRS UMR 7225, Paris, France.
| |
Collapse
|
41
|
Suresh K, Dahal E, Badano A. Synthetic β-sheets mimicking fibrillar and oligomeric structures for evaluation of spectral X-ray scattering technique for biomarker quantification. Cell Biosci 2024; 14:26. [PMID: 38374092 PMCID: PMC10877803 DOI: 10.1186/s13578-024-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Archetypical cross-β spines sharpen the boundary between functional and pathological proteins including β-amyloid, tau, α-synuclein and transthyretin are linked to many debilitating human neurodegenerative and non-neurodegenerative amyloidoses. An increased focus on development of pathogenic β-sheet specific fluid and imaging structural biomarkers and conformation-specific monoclonal antibodies in targeted therapies has been recently observed. Identification and quantification of pathogenic oligomers remain challenging for existing neuroimaging modalities. RESULTS We propose two artificial β-sheets which can mimic the nanoscopic structural characteristics of pathogenic oligomers and fibrils for evaluating the performance of a label free, X-ray based biomarker detection and quantification technique. Highly similar structure with elliptical cross-section and parallel cross-β motif is observed among recombinant α-synuclein fibril, Aβ-42 fibril and artificial β-sheet fibrils. We then use these β-sheet models to assess the performance of spectral small angle X-ray scattering (sSAXS) technique for detecting β-sheet structures. sSAXS showed quantitatively accurate detection of antiparallel, cross-β artificial oligomers from a tissue mimicking environment and significant distinction between different oligomer packing densities such as diffuse and dense packings. CONCLUSION The proposed synthetic β-sheet models mimicked the nanoscopic structural characteristics of β-sheets of fibrillar and oligomeric states of Aβ and α-synuclein based on the ATR-FTIR and SAXS data. The tunability of β-sheet proportions and shapes of structural motifs, and the low-cost of these β-sheet models can become useful test materials for evaluating β-sheet or amyloid specific biomarkers in a wide range of neurological diseases. By using the proposed synthetic β-sheet models, our study indicates that the sSAXS has potential to evaluate different stages of β-sheet-enriched structures including oligomers of pathogenic proteins.
Collapse
Affiliation(s)
- Karthika Suresh
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
42
|
Röntgen A, Toprakcioglu Z, Tomkins JE, Vendruscolo M. Modulation of α-synuclein in vitro aggregation kinetics by its alternative splice isoforms. Proc Natl Acad Sci U S A 2024; 121:e2313465121. [PMID: 38324572 PMCID: PMC10873642 DOI: 10.1073/pnas.2313465121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
The misfolding and aggregation of α-synuclein is linked to a family of neurodegenerative disorders known as synucleinopathies, the most prominent of which is Parkinson's disease (PD). Understanding the aggregation process of α-synuclein from a mechanistic point of view is thus of key importance. SNCA, the gene encoding α-synuclein, comprises six exons and produces various isoforms through alternative splicing. The most abundant isoform is expressed as a 140-amino acid protein (αSyn-140), while three other isoforms, αSyn-126, αSyn-112, and αSyn-98, are generated by skipping exon 3, exon 5, or both exons, respectively. In this study, we performed a detailed biophysical characterization of the aggregation of these four isoforms. We found that αSyn-112 and αSyn-98 exhibit accelerated aggregation kinetics compared to αSyn-140 and form distinct aggregate morphologies, as observed by transmission electron microscopy. Moreover, we observed that the presence of relatively small amounts of αSyn-112 accelerates the aggregation of αSyn-140, significantly reducing the aggregation half-time. These results indicate a potential role of alternative splicing in the pathological aggregation of α-synuclein and provide insights into how this process could be associated with the development of synucleinopathies.
Collapse
Affiliation(s)
- Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - James E. Tomkins
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
43
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
44
|
Melki R. Disease Mechanisms of Multiple System Atrophy: What a Parallel Between the Form of Pasta and the Alpha-Synuclein Assemblies Involved in MSA and PD Tells Us. CEREBELLUM (LONDON, ENGLAND) 2024; 23:13-21. [PMID: 35657577 PMCID: PMC10864476 DOI: 10.1007/s12311-022-01417-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Intracellular deposits rich in aggregated alpha-synuclein that appear within the central nervous system are intimately associated to Parkinson's disease and multiple system atrophy. While it is understandable that the aggregation of proteins, which share no primary structure identity, such as alpha-synuclein and tau protein, leads to different diseases, that of a given protein yielding distinct pathologies is counterintuitive. This short review relates molecular and mechanistic processes to the observed pathological diversity associated to alpha-synuclein aggregation.
Collapse
Affiliation(s)
- Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
| |
Collapse
|
45
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
46
|
Lu J, Ge P, Sawaya MR, Hughes MP, Boyer DR, Cao Q, Abskharon R, Cascio D, Tayeb-Fligelman E, Eisenberg DS. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem 2024; 300:105531. [PMID: 38072051 PMCID: PMC10844680 DOI: 10.1016/j.jbc.2023.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Peng Ge
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Einav Tayeb-Fligelman
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA.
| |
Collapse
|
47
|
Sharma K, Stockert F, Shenoy J, Berbon M, Abdul-Shukkoor MB, Habenstein B, Loquet A, Schmidt M, Fändrich M. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat Commun 2024; 15:486. [PMID: 38212334 PMCID: PMC10784485 DOI: 10.1038/s41467-023-44489-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.
Collapse
Affiliation(s)
- Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Fabian Stockert
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jayakrishna Shenoy
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | | | - Birgit Habenstein
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Antoine Loquet
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
48
|
Nordengen K, Morland C. From Synaptic Physiology to Synaptic Pathology: The Enigma of α-Synuclein. Int J Mol Sci 2024; 25:986. [PMID: 38256059 PMCID: PMC10815905 DOI: 10.3390/ijms25020986] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Alpha-synuclein (α-syn) has gained significant attention due to its involvement in neurodegenerative diseases, particularly Parkinson's disease. However, its normal function in the human brain is equally fascinating. The α-syn protein is highly dynamic and can adapt to various conformational stages, which differ in their interaction with synaptic elements, their propensity to drive pathological aggregation, and their toxicity. This review will delve into the multifaceted role of α-syn in different types of synapses, shedding light on contributions to neurotransmission and overall brain function. We describe the physiological role of α-syn at central synapses, including the bidirectional interaction between α-syn and neurotransmitter systems.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
| |
Collapse
|
49
|
Mahato J, Mukherjee R, Bose A, Mehra S, Gadhe L, Maji SK, Chowdhury A. Sensitized Emission Imaging Allows Nanoscale Surface Polarity Mapping of α-Synuclein Amyloid Fibrils. ACS Chem Neurosci 2024; 15:108-118. [PMID: 38099928 DOI: 10.1021/acschemneuro.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
When misfolded, α-Synuclein (α-Syn), a natively disordered protein, aggregates to form amyloid fibrils responsible for the neurodegeneration observed in Parkinson's disease. Structural studies revealed distinct molecular packing of α-Syn in different fibril polymorphs and variations of interprotofilament connections in the fibrillar architecture. Fibril polymorphs have been hypothesized to exhibit diverse surface polarities depending on the folding state of the protein during aggregation; however, the spatial variation of surface polarity in amyloid fibrils remains unexplored. To map the local polarity (or hydrophobicity) along α-Syn fibrils, we visualized the spectral characteristics of two dyes with distinct polarities-hydrophilic Thioflavin T (ThT) and hydrophobic Nile red (NR)─when both are bound to α-Syn fibrils. Dual-channel fluorescence imaging reveals uneven partitioning of ThT and NR along individual fibrils, implying that relatively more polar/hydrophobic patches are spread over a few hundred nanometers. Remarkably, spectrally resolved sensitized emission imaging of α-Syn fibrils provides unambiguous evidence of energy transfer from ThT to NR, implying that dyes of dissimilar polarity are in close proximity. Furthermore, spatially resolved fluorescence spectroscopy of the solvatochromic probe NR allowed us to quantitatively map the range and variation of the polarity parameter ET30 along individual fibrils. Our results suggest the existence of interlaced polar and nonpolar nanoscale domains throughout the fibrils; however, the relative populations of these patches vary considerably over larger length scales likely due to heterogeneous packing of α-Syn during fibrilization and dissimilar exposed polarities of polymorphic segments. The employed method may provide a foundation for imaging modalities of other similar structurally unresolved systems with diverse hydrophobic-hydrophilic topology.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Rajat Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Abhik Bose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
- Sunita Sanghi Centre of Ageing and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai 400076, Mumbai, India
| |
Collapse
|
50
|
Tarutani A, Hasegawa M. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. J Mov Disord 2024; 17:15-29. [PMID: 37990381 PMCID: PMC10846975 DOI: 10.14802/jmd.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023] Open
Abstract
Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|