1
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
2
|
Xu C, Ramos TB, Marshall OJ, Doe CQ. Notch signaling and Bsh homeodomain activity are integrated to diversify Drosophila lamina neuron types. eLife 2024; 12:RP90136. [PMID: 38193901 PMCID: PMC10945509 DOI: 10.7554/elife.90136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of TasmaniaHobartAustralia
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
4
|
Wdr59 promotes or inhibits TORC1 activity depending on cellular context. Proc Natl Acad Sci U S A 2023; 120:e2212330120. [PMID: 36577058 PMCID: PMC9910487 DOI: 10.1073/pnas.2212330120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Target of Rapamycin Complex I (TORC1) is a central regulator of metabolism in eukaryotes that responds to a wide array of negative and positive inputs. The GTPase-activating protein toward Rags (GATOR) signaling pathway acts upstream of TORC1 and is comprised of two subcomplexes. The trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation by serving as a GTPase-activating protein (GAP) for the TORC1 activator RagA/B, a component of the lysosomally located Rag GTPase. The multi-protein GATOR2 complex inhibits the activity of GATOR1 and thus promotes TORC1 activation. Here we report that Wdr59, originally assigned to the GATOR2 complex based on studies performed in tissue culture cells, unexpectedly has a dual function in TORC1 regulation in Drosophila. We find that in the ovary and the eye imaginal disc brain complex, Wdr59 inhibits TORC1 activity by opposing the GATOR2-dependent inhibition of GATOR1. Conversely, in the Drosophila fat body, Wdr59 promotes the accumulation of the GATOR2 component Mio and is required for TORC1 activation. Similarly, in mammalian HeLa cells, Wdr59 prevents the proteolytic destruction of GATOR2 proteins Mio and Wdr24. Consistent with the reduced levels of the TORC1-activating GATOR2 complex, Wdr59KOs HeLa cells have reduced TORC1 activity which is restored along with GATOR2 protein levels upon proteasome inhibition. Taken together, our data support the model that the Wdr59 component of the GATOR2 complex functions to promote or inhibit TORC1 activity depending on cellular context.
Collapse
|
5
|
Saleh Ziabari O, Zhong Q, Purandare SR, Reiter J, Zera AJ, Brisson JA. Pea aphid winged and wingless males exhibit reproductive, gene expression, and lipid metabolism differences. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100039. [PMID: 36003264 PMCID: PMC9387497 DOI: 10.1016/j.cris.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Alternative, intraspecific phenotypes offer an opportunity to identify the mechanistic basis of differences associated with distinctive life history strategies. Wing dimorphic insects, in which both flight-capable and flight-incapable individuals occur in the same population, are particularly well-studied in terms of why and how the morphs trade off flight for reproduction. Yet despite a wealth of studies examining the differences between female morphs, little is known about male differences, which could arise from different causes than those acting on females. Here we examined reproductive, gene expression, and biochemical differences between pea aphid (Acyrthosiphon pisum) winged and wingless males. We find that winged males are competitively superior in one-on-one mating circumstances, but wingless males reach reproductive maturity faster and have larger testes. We suggest that males tradeoff increased local matings with concurrent possible inbreeding for outbreeding and increased ability to find mates. At the mechanistic level, differential gene expression between the morphs revealed a possible role for activin and insulin signaling in morph differences; it also highlighted genes not previously identified as being functionally important in wing polymorphism, such as genes likely involved in sperm production. Further, we find that winged males have higher lipid levels, consistent with their use as flight fuel, but we find no consistent patterns of different levels of activity among five enzymes associated with lipid biosynthesis. Overall, our analyses provide evidence that winged versus wingless males exhibit differences at the reproductive, gene expression, and biochemical levels, expanding the field's understanding of the functional aspects of morph differences.
Collapse
Affiliation(s)
- Omid Saleh Ziabari
- Department of Biology, University of Rochester, Rochester, NY 14610, USA
| | - Qingyi Zhong
- Department of Biology, University of Rochester, Rochester, NY 14610, USA
| | - Swapna R. Purandare
- Current address: Department of Computational Biology, Indraprastha Institute of Information Technology Delhi; New Delhi, India
| | - Joel Reiter
- Department of Biology, University of Rochester, Rochester, NY 14610, USA
| | - Anthony J. Zera
- School of Biological Sciences, University of Nebraska-Lincoln
| | | |
Collapse
|
6
|
Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Rep 2021; 37:110145. [PMID: 34936868 DOI: 10.1016/j.celrep.2021.110145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Suchetana B Dutta
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerit Arne Linneweber
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Selina Hilgert
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Caroline Poppa
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany
| | - Bassem A Hassan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Kind E, Longden KD, Nern A, Zhao A, Sancer G, Flynn MA, Laughland CW, Gezahegn B, Ludwig HDF, Thomson AG, Obrusnik T, Alarcón PG, Dionne H, Bock DD, Rubin GM, Reiser MB, Wernet MF. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. eLife 2021; 10:e71858. [PMID: 34913436 PMCID: PMC8789284 DOI: 10.7554/elife.71858] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.
Collapse
Affiliation(s)
- Emil Kind
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Kit D Longden
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gizem Sancer
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Miriam A Flynn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bruck Gezahegn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Henrique DF Ludwig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alex G Thomson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tessa Obrusnik
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Paula G Alarcón
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mathias F Wernet
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| |
Collapse
|
8
|
Li Y, Chen PJ, Lin TY, Ting CY, Muthuirulan P, Pursley R, Ilić M, Pirih P, Drews MS, Menon KP, Zinn KG, Pohida T, Borst A, Lee CH. Neural mechanism of spatio-chromatic opponency in the Drosophila amacrine neurons. Curr Biol 2021; 31:3040-3052.e9. [PMID: 34033749 DOI: 10.1016/j.cub.2021.04.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Visual animals detect spatial variations of light intensity and wavelength composition. Opponent coding is a common strategy for reducing information redundancy. Neurons equipped with both spatial and spectral opponency have been identified in vertebrates but not yet in insects. The Drosophila amacrine neuron Dm8 was recently reported to show color opponency. Here, we demonstrate Dm8 exhibits spatio-chromatic opponency. Antagonistic convergence of the direct input from the UV-sensing R7s and indirect input from the broadband receptors R1-R6 through Tm3 and Mi1 is sufficient to confer Dm8's UV/Vis (ultraviolet/visible light) opponency. Using high resolution monochromatic stimuli, we show the pale and yellow subtypes of Dm8s, inheriting retinal mosaic characteristics, have distinct spectral tuning properties. Using 2D white-noise stimulus and reverse correlation analysis, we found that the UV receptive field (RF) of Dm8 has a center-inhibition/surround-excitation structure. In the absence of UV-sensing R7 inputs, the polarity of the RF is inverted owing to the excitatory input from the broadband photoreceptors R1-R6. Using a new synGRASP method based on endogenous neurotransmitter receptors, we show that neighboring Dm8s form mutual inhibitory connections mediated by the glutamate-gated chloride channel GluClα, which is essential for both Dm8's spatial opponency and animals' phototactic behavior. Our study shows spatio-chromatic opponency could arise in the early visual stage, suggesting a common information processing strategy in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pushpanathan Muthuirulan
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marko Ilić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Primož Pirih
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael S Drews
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Kaushiki P Menon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai G Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Pohida
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Borst
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
9
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
10
|
Sancer G, Wernet MF. The development and function of neuronal subtypes processing color and skylight polarization in the optic lobes of Drosophila melanogaster. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101012. [PMID: 33618155 DOI: 10.1016/j.asd.2020.101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The retinal mosaics of many insects contain different ommatidial subtypes harboring photoreceptors that are both molecularly and morphologically specialized for comparing between different wavelengths versus detecting the orientation of skylight polarization. The neural circuits underlying these different inputs and the characterization of their specific cellular elements are the subject of intense research. Here we review recent progress on the description of both assembly and function of color and skylight polarization circuitry, by focusing on two cell types located in the distal portion of the medulla neuropil of the fruit fly Drosophila melanogaster's optic lobes, called Dm8 and Dm9. In the main part of the retina, Dm8 cells fall into two molecularly distinct subtypes whose center becomes specifically connected to either one of randomly distributed 'pale' or 'yellow' R7 photoreceptor fates during development. Only in the 'dorsal rim area' (DRA), both polarization-sensitive R7 and R8 photoreceptors are connected to different Dm8-like cell types, called Dm-DRA1 and Dm-DRA2, respectively. An additional layer of interommatidial integration is introduced by Dm9 cells, which receive input from multiple neighboring R7 and R8 cells, as well as providing feedback synapses back into these photoreceptors. As a result, the response properties of color-sensitive photoreceptor terminals are sculpted towards being both maximally decorrelated, as well as harboring several levels of opponency (both columnar as well as intercolumnar). In the DRA, individual Dm9 cells appear to mix both polarization and color signals, thereby potentially serving as the first level of integration of different celestial stimuli. The molecular mechanisms underlying the establishment of these synaptic connections are beginning to be revealed, by using a combination of live imaging, developmental genetic studies, and cell type-specific transcriptomics.
Collapse
Affiliation(s)
- Gizem Sancer
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Mathias F Wernet
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
12
|
Lin TY, Chen PJ, Yu HH, Hsu CP, Lee CH. Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci 2021; 14:622808. [PMID: 33519386 PMCID: PMC7838386 DOI: 10.3389/fncel.2020.622808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Fendl S, Vieira RM, Borst A. Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons. eLife 2020; 9:62953. [PMID: 33079061 PMCID: PMC7655108 DOI: 10.7554/elife.62953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and ‘FlpTag’, a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.
Collapse
Affiliation(s)
- Sandra Fendl
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| | | | - Alexander Borst
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| |
Collapse
|