1
|
Scott DC, Chittori S, Purser N, King MT, Maiwald SA, Churion K, Nourse A, Lee C, Paulo JA, Miller DJ, Elledge SJ, Harper JW, Kleiger G, Schulman BA. Structural basis for C-degron selectivity across KLHDCX family E3 ubiquitin ligases. Nat Commun 2024; 15:9899. [PMID: 39548056 PMCID: PMC11568203 DOI: 10.1038/s41467-024-54126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Specificity of the ubiquitin-proteasome system depends on E3 ligase-substrate interactions. Many such pairings depend on E3 ligases binding to peptide-like sequences - termed N- or C-degrons - at the termini of substrates. However, our knowledge of structural features distinguishing closely related C-degron substrate-E3 pairings is limited. Here, by systematically comparing ubiquitylation activities towards a suite of common model substrates, and defining interactions by biochemistry, crystallography, and cryo-EM, we reveal principles of C-degron recognition across the KLHDCX family of Cullin-RING ligases (CRLs). First, a motif common across these E3 ligases anchors a substrate's C-terminus. However, distinct locations of this C-terminus anchor motif in different blades of the KLHDC2, KLHDC3, and KLHDC10 β-propellers establishes distinct relative positioning and molecular environments for substrate C-termini. Second, our structural data show KLHDC3 has a pre-formed pocket establishing preference for an Arg or Gln preceding a C-terminal Gly, whereas conformational malleability contributes to KLHDC10's recognition of varying features adjacent to substrate C-termini. Finally, additional non-consensus interactions, mediated by C-degron binding grooves and/or by distal propeller surfaces and substrate globular domains, can substantially impact substrate binding and ubiquitylatability. Overall, the data reveal combinatorial mechanisms determining specificity and plasticity of substrate recognition by KLDCX-family C-degron E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel A Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kelly Churion
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chan Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
2
|
Wang Z, Lu H, Zhong Y, Feng L, Jin H, Wang X. Impaired cyclin D3 protein degradation contributes to trastuzumab resistance in HER2 positive breast cancer. Med Oncol 2024; 41:305. [PMID: 39487929 PMCID: PMC11531418 DOI: 10.1007/s12032-024-02535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As the first anti-HER2 targeted agent approved by FDA in 1998, Trastuzumab has significantly improved the outcome of patients with HER2 positive metastatic breast cancer. Unfortunately, resistance to trastuzumab is a severe obstacle to its therapeutic efficacy in clinical application, and its mechanism has not yet been fully elucidated. In our study, we found that stabilization of cyclin D3 could be one reason for trastuzumab resistance. Trastuzumab could induce G1/G0 phase arrest by downregulating cyclin D3 protein expression. However, the protein expression of cyclin D3 was not affected in trastuzumab-resistant cells, which might be related to aberrant activation of ERK signaling pathway. Furthermore, degradation of cyclin D3 protein by trastuzumab was mainly resulted from ubiquitin-dependent proteasome mechanism instead of transcriptional regulation. In trastuzumab-resistant breast cancer cells, trastuzumab-induced degradation of cyclin D3 protein was abrogated. When the ubiquitin pathway was inhibited, cells would show a predisposition to resistance to trastuzumab. Further, CDK4/6 inhibitor can inhibit the proliferation of trastuzumab-resistant HER-2 positive breast cancer cells. Therefore, combination of CDK4/6 inhibitors and anti-HER2 targeted therapy may be an alternative and promising strategy to overcome trastuzumab resistance in the future.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiqi Lu
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Zhong
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
3
|
Lin CP, Komives EA. Diversity of structure and function in Cullin E3 ligases. Curr Opin Struct Biol 2024; 88:102879. [PMID: 39013361 DOI: 10.1016/j.sbi.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The cellular process by which the protein ubiquitin (Ub) is covalently attached to a protein substrate involves Ub activating (E1s) and conjugating enzymes (E2s) that work together with a large variety of E3 ligases that impart substrate specificity. The largest family of E3s is the Cullin-RING ligase (CRL) family which utilizes a wide variety of substrate receptors, adapter proteins, and cooperating ligases. Cryo-electron microscopy (cryoEM) has revealed a wide variety of structures which suggest how Ub transfer occurs. Hydrogen deuterium exchange mass spectrometry (HDXMS) has revealed the role of dynamics and expanded our knowledge of how covalent NEDD8 modification (neddylation) activates the CRLs, particularly by facilitating cooperation with additional RING-between-RING ligases to transfer Ub.
Collapse
Affiliation(s)
- Calvin P Lin
- Department of Chemistry and Biochemistry University of California San Diego MC 0309, 1200B Tata Hall 9325 S Scholars Dr, San Diego, CA 92161, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry University of California San Diego MC 0309, 1200B Tata Hall 9325 S Scholars Dr, San Diego, CA 92161, USA.
| |
Collapse
|
4
|
Koszela J, Pham NT, Shave S, St-Cyr D, Ceccarelli DF, Orlicky S, Marinier A, Sicheri F, Tyers M, Auer M. A Novel Confocal Scanning Protein-Protein Interaction Assay (PPI-CONA) Reveals Exceptional Selectivity and Specificity of CC0651, a Small Molecule Binding Enhancer of the Weak Interaction between the E2 Ubiquitin-Conjugating Enzyme CDC34A and Ubiquitin. Bioconjug Chem 2024; 35:1441-1449. [PMID: 39167708 PMCID: PMC11417995 DOI: 10.1021/acs.bioconjchem.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Protein-protein interactions (PPIs) are some of the most challenging target classes in drug discovery. Highly sensitive detection techniques are required for the identification of chemical modulators of PPIs. Here, we introduce PPI confocal nanoscanning (PPI-CONA), a miniaturized, microbead based high-resolution fluorescence imaging assay. We demonstrate the capabilities of PPI-CONA by detecting low affinity ternary complex formation between the human CDC34A ubiquitin-conjugating (E2) enzyme, ubiquitin, and CC0651, a small molecule enhancer of the CDC34A-ubiquitin interaction. We further exemplify PPI-CONA with an E2 enzyme binding study on CC0651 and a CDC34A binding specificity study of a series of CC0651 analogues. Our results indicate that CC0651 is highly selective toward CDC34A. We further demonstrate how PPI-CONA can be applied to screening very low affinity interactions. PPI-CONA holds potential for high-throughput screening for modulators of PPI targets and characterization of their affinity, specificity, and selectivity.
Collapse
Affiliation(s)
- Joanna Koszela
- School
of Molecular Biosciences, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Nhan T. Pham
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
- College
of Medicine and Veterinary Medicine, Institute for Regeneration and
Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, U.K.
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Daniel St-Cyr
- X-Chem
Inc., Montréal, Québec H4S 1Z9, Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Derek F. Ceccarelli
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Steven Orlicky
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anne Marinier
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Frank Sicheri
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Mike Tyers
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
- Program
in Molecular Medicine, The Hospital for
Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
| |
Collapse
|
5
|
Yoshida Y, Takahashi T, Ishii N, Matsuo I, Takahashi S, Inoue H, Endo A, Tsuchiya H, Okada M, Ando C, Suzuki T, Dohmae N, Saeki Y, Tanaka K, Suzuki T. Sugar-mediated non-canonical ubiquitination impairs Nrf1/NFE2L1 activation. Mol Cell 2024; 84:3115-3127.e11. [PMID: 39116872 DOI: 10.1016/j.molcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-β-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Haruka Inoue
- Graduate School of Science and Technology, Gunma University, 1-5 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikaru Tsuchiya
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Meari Okada
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikara Ando
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; Division of Protein Metabolism, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Takeda-CiRA Joint Program (T-CiRA), 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
6
|
Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol 2024; 223:e202311171. [PMID: 38517379 PMCID: PMC10959754 DOI: 10.1083/jcb.202311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.
Collapse
Affiliation(s)
- Yoshino Akizuki
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Stephanie Kaypee
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Fumiyo Ikeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Nguyen DM, Rath DH, Devost D, Pétrin D, Rizk R, Ji AX, Narayanan N, Yong D, Zhai A, Kuntz DA, Mian MUQ, Pomroy NC, Keszei AFA, Benlekbir S, Mazhab-Jafari MT, Rubinstein JL, Hébert TE, Privé GG. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 2024; 121:e2315018121. [PMID: 38625940 PMCID: PMC11047111 DOI: 10.1073/pnas.2315018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gβγ and reduces Gβγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gβ1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gβγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gβγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gβ and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gβγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Deanna H. Rath
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Robert Rizk
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Alan X. Ji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Naveen Narayanan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Andrew Zhai
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Maha U. Q. Mian
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Neil C. Pomroy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | | | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - John L. Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| |
Collapse
|
8
|
Li J, Purser N, Liwocha J, Scott DC, Byers HA, Steigenberger B, Hill S, Tripathi-Giesgen I, Hinkle T, Hansen FM, Prabu JR, Radhakrishnan SK, Kirkpatrick DS, Reichermeier KM, Schulman BA, Kleiger G. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol Cell 2024; 84:1304-1320.e16. [PMID: 38382526 PMCID: PMC10997478 DOI: 10.1016/j.molcel.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.
Collapse
Affiliation(s)
- Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Holly A Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Trent Hinkle
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
9
|
Francisco T, Pedrosa AG, Rodrigues TA, Abalkhail T, Li H, Ferreira MJ, van der Heden van Noort GJ, Fransen M, Hettema EH, Azevedo JE. Noncanonical and reversible cysteine ubiquitination prevents the overubiquitination of PEX5 at the peroxisomal membrane. PLoS Biol 2024; 22:e3002567. [PMID: 38470934 PMCID: PMC10959387 DOI: 10.1371/journal.pbio.3002567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana G. Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tony A. Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tarad Abalkhail
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Maria J. Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ewald H. Hettema
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Jorge E. Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Wu K, DeVita RJ, Pan ZQ. Monoubiquitination empowers ubiquitin chain elongation. J Biol Chem 2024; 300:105753. [PMID: 38354782 PMCID: PMC10944112 DOI: 10.1016/j.jbc.2024.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Ubiquitination often generates lysine 48-linked polyubiquitin chains that signal proteolytic destruction of the protein target. A significant subset of ubiquitination proceeds by a priming/extending mechanism, in which a substrate is first monoubiquitinated with a priming E2-conjugating enzyme or a set of E3 ARIH/E2 enzymes specific for priming. This is then followed by ubiquitin (Ub) chain extension catalyzed by an E2 enzyme capable of elongation. This report provides further insights into the priming/extending mechanism. We employed reconstituted ubiquitination systems of substrates CK1α (casein kinase 1α) and β-catenin by Cullin-RING E3 Ub ligases (CRLs) CRL4CRBN and CRL1βTrCP, respectively, in the presence of priming E2 UbcH5c and elongating E2 Cdc34b (cell division cycle 34b). We have established a new "apyrase chase" strategy that uncouples priming from chain elongation, which allows accurate measurement of the decay rates of the ubiquitinated substrate with a defined chain length. Our work has revealed highly robust turnover of monoubiquitinated β-catenin that empowers efficient polyubiquitination. The results of competition experiments suggest that the interactions between the ubiquitinated β-catenin and CRL1βTrCP are highly dynamic. Moreover, ubiquitination of the Ub-modified β-catenin appeared more resistant to inhibition by competitors than the unmodified substrate, suggesting tighter binding with CRL1βTrCP. These findings support a role for conjugated Ub in enhancing interactions with E3.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA; Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
11
|
Liwocha J, Li J, Purser N, Rattanasopa C, Maiwald S, Krist DT, Scott DC, Steigenberger B, Prabu JR, Schulman BA, Kleiger G. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat Struct Mol Biol 2024; 31:378-389. [PMID: 38326650 PMCID: PMC10873206 DOI: 10.1038/s41594-023-01206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chutima Rattanasopa
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Samuel Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Gary Kleiger
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
12
|
Purser N, Tripathi-Giesgen I, Li J, Scott DC, Horn-Ghetko D, Baek K, Schulman BA, Alpi AF, Kleiger G. Catalysis of non-canonical protein ubiquitylation by the ARIH1 ubiquitin ligase. Biochem J 2023; 480:1817-1831. [PMID: 37870100 PMCID: PMC10657180 DOI: 10.1042/bcj20230373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Protein ubiquitylation typically involves isopeptide bond formation between the C-terminus of ubiquitin to the side-chain amino group on Lys residues. However, several ubiquitin ligases (E3s) have recently been identified that ubiquitylate proteins on non-Lys residues. For instance, HOIL-1 belongs to the RING-in-between RING (RBR) class of E3s and has an established role in Ser ubiquitylation. Given the homology between HOIL-1 and ARIH1, an RBR E3 that functions with the large superfamily of cullin-RING E3 ligases (CRLs), a biochemical investigation was undertaken, showing ARIH1 catalyzes Ser ubiquitylation to CRL-bound substrates. However, the efficiency of ubiquitylation was exquisitely dependent on the location and chemical environment of the Ser residue within the primary structure of the substrate. Comprehensive mutagenesis of the ARIH1 Rcat domain identified residues whose mutation severely impacted both oxyester and isopeptide bond formation at the preferred site for Ser ubiquitylation while only modestly affecting Lys ubiquitylation at the physiological site. The results reveal dual isopeptide and oxyester protein ubiquitylation activities of ARIH1 and set the stage for physiological investigations into this function of emerging importance.
Collapse
Affiliation(s)
- Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| | - Daniel C. Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, U.S.A
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, U.S.A
| | - Arno F. Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| |
Collapse
|
13
|
De Silva ARI, Shrestha S, Page RC. Real-time bio-layer interferometry ubiquitination assays as alternatives to western blotting. Anal Biochem 2023; 679:115296. [PMID: 37604387 PMCID: PMC10529061 DOI: 10.1016/j.ab.2023.115296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Ubiquitination is a crucial cellular pathway enabling normal cellular functions. Abnormalities in the ubiquitination process can lead to cellular dysfunction and cause a range of diseases. Efforts to screen and develop small molecule inhibitors targeting portions of the ubiquitination cascade require rapid and robust methods for detecting ubiquitination. Enormous efforts have been made in the field to detect ubiquitination using various techniques including fluorescence, spectrophotometry, chemiluminescence, NMR, and radioactive tracers. The most common method to detect ubiquitination is western blotting. However, western blotting is time-consuming and difficult to use when seeking fine-grained time course experiments. Here we present the use of bio-layer interferometry to rapidly assay ubiquitination in real-time. An E3 ligase auto-ubiquitination system and a substrate ubiquitination assay have been applied as tests for the newly developed assay. The developed BLI ubiquitination assay provides one-second time resolution and detects the formation of polyubiquitin chains directly on a biosensor-bound target. Results are returned instantaneously, and reagent concentrations are identical to those used by traditional western blot-based ubiquitination assays. The developed BLI ubiquitination assay is a viable alternative to traditional western blot assays to detect ubiquitination in a rapid real-time manner.
Collapse
Affiliation(s)
- Anthony Ruvindi I De Silva
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Shreesti Shrestha
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
14
|
Aguilan JT, Pedrosa E, Dolstra H, Baykara RN, Barnes J, Zhang J, Sidoli S, Lachman HM. Proteomics and phosphoproteomics profiling in glutamatergic neurons and microglia in an iPSC model of Jansen de Vries Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548192. [PMID: 37461463 PMCID: PMC10350077 DOI: 10.1101/2023.07.08.548192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.
Collapse
Affiliation(s)
- Jennifer T. Aguilan
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jesse Barnes
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| |
Collapse
|
15
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Akizuki Y, Morita M, Mori Y, Kaiho-Soma A, Dixit S, Endo A, Shimogawa M, Hayashi G, Naito M, Okamoto A, Tanaka K, Saeki Y, Ohtake F. cIAP1-based degraders induce degradation via branched ubiquitin architectures. Nat Chem Biol 2023; 19:311-322. [PMID: 36316570 DOI: 10.1038/s41589-022-01178-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2VHL and CRL4CRBN, frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.
Collapse
Affiliation(s)
- Yoshino Akizuki
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Mai Morita
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Yuki Mori
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Ai Kaiho-Soma
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Shivani Dixit
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Marie Shimogawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Fumiaki Ohtake
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan.
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan.
| |
Collapse
|
17
|
Activities and binding partners of E3 ubiquitin ligase DTX3L and its roles in cancer. Biochem Soc Trans 2022; 50:1683-1692. [DOI: 10.1042/bst20220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a protein post-translational modification that affects protein localisation, stability and interactions. E3 ubiquitin ligases regulate the final step of the ubiquitination reaction by recognising target proteins and mediating the ubiquitin transfer from an E2 enzyme. DTX3L is a multi-domain E3 ubiquitin ligase in which the N-terminus mediates protein oligomerisation, a middle D3 domain mediates the interaction with PARP9, a RING domain responsible for recognising E2 ∼ Ub and a DTC domain has the dual activity of ADP-ribosylating ubiquitin and mediating ubiquitination. The activity of DTX3L is known to be modulated by at least two different factors: the concentration of NAD+, which dictates if the enzyme acts as a ligase or as an ADP-ribosyltransferase, and its binding partners, which affect DTX3L activity through yet unknown mechanisms. In light of recent findings it is possible that DTX3L could ubiquitinate ADP-ribose attached to proteins. Different DTX3L–protein complexes have been found to be part of multiple signalling pathways through which they promote the adhesion, proliferation, migration and chemoresistance of e.g. lymphoma, glioma, melanoma, and prostate cancer. In this review, we have covered the literature available for the molecular functions of DTX3L especially in the context of cancer biology, different pathways it regulates and how these relate to its function as an oncoprotein.
Collapse
|
18
|
Naranjo O, Osborne O, Torices S, Toborek M. In Vivo Targeting of the Neurovascular Unit: Challenges and Advancements. Cell Mol Neurobiol 2022; 42:2131-2146. [PMID: 34086179 PMCID: PMC9056891 DOI: 10.1007/s10571-021-01113-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The blood-brain barrier (BBB) is essential for the homeostasis of the central nervous system (CNS). Functions of the BBB are performed by the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, basement membrane, and neurons. NVU cells interact closely and together are responsible for neurovascular coupling, BBB integrity, and transendothelial fluid transport. Studies have shown that NVU dysfunction is implicated in several acute and chronic neurological diseases, including Alzheimer's disease, multiple sclerosis, and stroke. The mechanisms of NVU disruption remain poorly understood, partially due to difficulties in selective targeting of NVU cells. In this review, we discuss the relative merits of available protein markers and drivers of the NVU along with recent advancements that have been made in the field to increase efficiency and specificity of NVU research.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Olivia Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Adaptive exchange sustains cullin-RING ubiquitin ligase networks and proper licensing of DNA replication. Proc Natl Acad Sci U S A 2022; 119:e2205608119. [PMID: 36037385 PMCID: PMC9456757 DOI: 10.1073/pnas.2205608119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.
Collapse
|
20
|
Hopf LVM, Baek K, Klügel M, von Gronau S, Xiong Y, Schulman BA. Structure of CRL7 FBXW8 reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nat Struct Mol Biol 2022; 29:854-862. [PMID: 35982156 PMCID: PMC9507964 DOI: 10.1038/s41594-022-00815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Most cullin-RING ubiquitin ligases (CRLs) form homologous assemblies between a neddylated cullin-RING catalytic module and a variable substrate-binding receptor (for example, an F-box protein). However, the vertebrate-specific CRL7FBXW8 is of interest because it eludes existing models, yet its constituent cullin CUL7 and F-box protein FBXW8 are essential for development, and CUL7 mutations cause 3M syndrome. In this study, cryo-EM and biochemical analyses reveal the CRL7FBXW8 assembly. CUL7’s exclusivity for FBXW8 among all F-box proteins is explained by its unique F-box-independent binding mode. In CRL7FBXW8, the RBX1 (also known as ROC1) RING domain is constrained in an orientation incompatible with binding E2~NEDD8 or E2~ubiquitin intermediates. Accordingly, purified recombinant CRL7FBXW8 lacks auto-neddylation and ubiquitination activities. Instead, our data indicate that CRL7 serves as a substrate receptor linked via SKP1–FBXW8 to a neddylated CUL1–RBX1 catalytic module mediating ubiquitination. The structure reveals a distinctive CRL–CRL partnership, and provides a framework for understanding CUL7 assemblies safeguarding human health. The cryo-EM structure of CRL7FBXW8 shows that CUL7–RBX1 binds FBXW8–SKP1 in an F-box-independent manner. Bridged by FBXW8–SKP1, CRL7FBXW8 forms a multi-cullin E3 ligase complex with neddylated CUL1–RBX1, which ubiquitinates a substrate recruited to CUL7.
Collapse
Affiliation(s)
- Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
21
|
Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. iScience 2022; 25:104591. [PMID: 35789855 PMCID: PMC9249674 DOI: 10.1016/j.isci.2022.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Skp1 overexpression promotes tumor growth, whereas reduced Skp1 activity is also linked with genomic instability and neoplastic transformation. This highlights the need to gain better understanding of Skp1 biology in cancer settings. To this context, potent and cellularly active small-molecule Skp1 inhibitors may be of great value. Using a hypothesis-driven, structure-guided approach, we herein identify Z0933M as a potent Skp1 inhibitor with KD ∼0.054 μM. Z0933M occupies a hydrophobic hotspot (P1) – encompassing an aromatic cage of two phenylalanines (F101 and F139) – alongside C-terminal extension of Skp1 and, thus, hampers its ability to interact with F-box proteins, a prerequisite step to constitute intact and active SCF E3 ligase(s) complexes. In cellulo, Z0933M disrupted SCF E3 ligase(s) functioning, recapitulated previously reported effects of Skp1-reduced activity, and elicited cell death by a p53-dependent mechanism. We propose Z0933M as valuable tool for future efforts toward probing Skp1 cancer biology, with implications for cancer therapy. Z0933M manifests strong binding with Skp1 and inhibits Skp1-F-box PPIs Z0933M interacts with a P1 hotspot alongside C-terminal extension of Skp1 Z0933M alters SCF E3 ligase functioning, leading to substrate accumulation/modulation Z0933M causes cell-cycle arrest, and elicits cell death by p53-dependent mechanism
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Muqddas Tariq
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hao Jiang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Yahai Shu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
22
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
23
|
PINK1 signalling in neurodegenerative disease. Essays Biochem 2021; 65:913-923. [PMID: 34897410 PMCID: PMC8709887 DOI: 10.1042/ebc20210036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022]
Abstract
PTEN-induced kinase 1 (PINK1) impacts cell health and human pathology through diverse pathways. The strict processing of full-length PINK1 on the outer mitochondrial membrane populates a cytoplasmic pool of cleaved PINK1 (cPINK1) that is constitutively degraded. However, despite rapid proteasomal clearance, cPINK1 still appears to exert quality control influence over the neuronal protein homeostasis network, including protein synthesis and degradation machineries. The cytoplasmic concentration and activity of this molecule is therefore a powerful sensor that coordinates aspects of mitochondrial and cellular health. In addition, full-length PINK1 is retained on the mitochondrial membrane following depolarisation, where it is a powerful inducer of multiple mitophagic pathways. This function is executed primarily through the phosphorylation of several ubiquitin ligases, including its most widely studied substrate Parkin. Furthermore, the phosphorylation of both pro- and anti-apoptotic proteins by mitochondrial PINK1 acts as a pro-cellular survival signal when faced with apoptotic stimuli. Through these varied roles PINK1 directly influences functions central to cell dysfunction in neurodegenerative disease.
Collapse
|
24
|
Kiss L, James LC. The molecular mechanisms that drive intracellular neutralization by the antibody-receptor and RING E3 ligase TRIM21. Semin Cell Dev Biol 2021; 126:99-107. [PMID: 34823983 DOI: 10.1016/j.semcdb.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
The cytosolic antibody receptor and RING E3 ligase TRIM21 targets intracellular, antibody-coated immune complexes for degradation and activates the immune system. Here we review how TRIM21 degrades diverse targets and how this activity can be exploited in molecular biology and for the development of new therapeutics. In addition, we compare what is known about TRIM21's mechanism to other TRIM proteins and RING E3 ligases.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, UK.
| | | |
Collapse
|
25
|
St-Cyr D, Ceccarelli DF, Orlicky S, van der Sloot AM, Tang X, Kelso S, Moore S, James C, Posternak G, Coulombe-Huntington J, Bertomeu T, Marinier A, Sicheri F, Tyers M. Identification and optimization of molecular glue compounds that inhibit a noncovalent E2 enzyme-ubiquitin complex. SCIENCE ADVANCES 2021; 7:eabi5797. [PMID: 34705497 PMCID: PMC10763754 DOI: 10.1126/sciadv.abi5797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.
Collapse
Affiliation(s)
- Daniel St-Cyr
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Derek F. Ceccarelli
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Stephen Orlicky
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Almer M. van der Sloot
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Xiaojing Tang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Susan Kelso
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Susan Moore
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Clint James
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Ganna Posternak
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
- Department of Chemistry, University of Montreal, Montreal, Québec H3C 3J7, Canada
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3T 1J4, Canada
- Department of Medicine, University of Montreal, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
26
|
Xia Y, Fujisawa R, Deegan TD, Sonneville R, Labib KPM. TIMELESS-TIPIN and UBXN-3 promote replisome disassembly during DNA replication termination in Caenorhabditis elegans. EMBO J 2021; 40:e108053. [PMID: 34269473 PMCID: PMC8408604 DOI: 10.15252/embj.2021108053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin-RING ubiquitin ligase CUL-2LRR-1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC-48 "unfoldase". Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome-associated TIMELESS-TIPIN complex is required for CUL-2LRR-1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS-TIPIN, CUL-2LRR-1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is important in vivo for replisome disassembly in the absence of TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN-3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.
Collapse
Affiliation(s)
- Yisui Xia
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Tom D Deegan
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Remi Sonneville
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Karim P M Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
27
|
Le TT, Ainsworth J, Polo Rivera C, Macartney T, Labib KP. Reconstitution of human CMG helicase ubiquitylation by CUL2LRR1 and multiple E2 enzymes. Biochem J 2021; 478:2825-2842. [PMID: 34195792 PMCID: PMC8331092 DOI: 10.1042/bcj20210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cullin ubiquitin ligases drive replisome disassembly during DNA replication termination. In worm, frog and mouse cells, CUL2LRR1 is required to ubiquitylate the MCM7 subunit of the CMG helicase. Here, we show that cullin ligases also drive CMG-MCM7 ubiquitylation in human cells, thereby making the helicase into a substrate for the p97 unfoldase. Using purified human proteins, including a panel of E2 ubiquitin-conjugating enzymes, we have reconstituted CMG helicase ubiquitylation, dependent upon neddylated CUL2LRR1. The reaction is highly specific to CMG-MCM7 and requires the LRR1 substrate targeting subunit, since replacement of LRR1 with the alternative CUL2 adaptor VHL switches ubiquitylation from CMG-MCM7 to HIF1. CUL2LRR1 firstly drives monoubiquitylation of CMG-MCM7 by the UBE2D class of E2 enzymes. Subsequently, CUL2LRR1 activates UBE2R1/R2 or UBE2G1/G2 to extend a single K48-linked ubiquitin chain on CMG-MCM7. Thereby, CUL2LRR1 converts CMG into a substrate for p97, which disassembles the ubiquitylated helicase during DNA replication termination.
Collapse
Affiliation(s)
- Thanh Thi Le
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Thomas Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Karim P.M. Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
28
|
Xia Y. The Fate of Two Unstoppable Trains After Arriving Destination: Replisome Disassembly During DNA Replication Termination. Front Cell Dev Biol 2021; 9:658003. [PMID: 34368118 PMCID: PMC8335557 DOI: 10.3389/fcell.2021.658003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, the perfect duplication of the chromosomes is executed by a dynamic molecular machine called the replisome. As a key step to finishing DNA replication, replisome disassembly is triggered by ubiquitylation of the MCM7 subunit of the helicase complex CMG. Afterwards, the CDC48/p97 "unfoldase" is recruited to the ubiquitylated helicase to unfold MCM7 and disassemble the replisome. Here we summarise recently discovered mechanisms of replisome disassembly that are likely to be broadly conserved in eukaryotes. We also discuss two crucial questions that remain to be explored further in the future. Firstly, how is CMG ubiquitylation repressed by the replication fork throughout elongation? Secondly, what is the biological significance of replisome disassembly and what are the consequences of failing to ubiquitylate and disassemble the CMG helicase?
Collapse
Affiliation(s)
- Yisui Xia
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Harper JW, Schulman BA. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu Rev Biochem 2021; 90:403-429. [PMID: 33823649 PMCID: PMC8217159 DOI: 10.1146/annurev-biochem-090120-013613] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany;
| |
Collapse
|
30
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
31
|
Baranova J, Dragunas G, Botellho MCS, Ayub ALP, Bueno-Alves R, Alencar RR, Papaiz DD, Sogayar MC, Ulrich H, Correa RG. Autism Spectrum Disorder: Signaling Pathways and Prospective Therapeutic Targets. Cell Mol Neurobiol 2021; 41:619-649. [PMID: 32468442 DOI: 10.1007/s10571-020-00882-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Mayara C S Botellho
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ana Luisa P Ayub
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Rebeca Bueno-Alves
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Rebeca R Alencar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Debora D Papaiz
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Mari C Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
- Cell and Molecular Therapy Center, School of Medicine, University of São Paulo, Rua Pangaré 100 (Edifício NUCEL), Butantã, São Paulo, SP, 05360-130, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ricardo G Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
32
|
Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, Demizu Y, Naito M, Saeki Y, Tanaka K, Ohtake F. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell 2021; 81:1411-1424.e7. [PMID: 33567268 DOI: 10.1016/j.molcel.2021.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.
Collapse
Affiliation(s)
- Ai Kaiho-Soma
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshino Akizuki
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takuji Shoda
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasuko Kawase
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan; Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
33
|
Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 2021; 590:671-676. [PMID: 33536622 PMCID: PMC7904520 DOI: 10.1038/s41586-021-03197-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
E3 ligases are typically classified by hallmark domains such as RING and RBR, which are thought to specify unique catalytic mechanisms of ubiquitin transfer to recruited substrates1,2. However, rather than functioning individually, many neddylated cullin-RING E3 ligases (CRLs) and RBR-type E3 ligases in the ARIH family-which together account for nearly half of all ubiquitin ligases in humans-form E3-E3 super-assemblies3-7. Here, by studying CRLs in the SKP1-CUL1-F-box (SCF) family, we show how neddylated SCF ligases and ARIH1 (an RBR-type E3 ligase) co-evolved to ubiquitylate diverse substrates presented on various F-box proteins. We developed activity-based chemical probes that enabled cryo-electron microscopy visualization of steps in E3-E3 ubiquitylation, initiating with ubiquitin linked to the E2 enzyme UBE2L3, then transferred to the catalytic cysteine of ARIH1, and culminating in ubiquitin linkage to a substrate bound to the SCF E3 ligase. The E3-E3 mechanism places the ubiquitin-linked active site of ARIH1 adjacent to substrates bound to F-box proteins (for example, substrates with folded structures or limited length) that are incompatible with previously described conventional RING E3-only mechanisms. The versatile E3-E3 super-assembly may therefore underlie widespread ubiquitylation.
Collapse
Affiliation(s)
- Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Carle Illinois College of Medicine, Champaign, IL, USA
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Monique P C Mulder
- Oncode Institute, Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel C Scott
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Huib Ovaa
- Oncode Institute, Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
34
|
Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nat Chem Biol 2020; 17:272-279. [PMID: 33288957 PMCID: PMC7904580 DOI: 10.1038/s41589-020-00696-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Virtually all aspects of cell biology are regulated by a ubiquitin code
where distinct ubiquitin chain architectures guide the binding events and
itineraries of modified substrates. Various combinations of E2 and E3 enzymes
accomplish chain formation by forging isopeptide bonds between the C-terminus of
their transiently-linked donor ubiquitin and a specific nucleophilic amino acid
on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of
most acceptors - the lysine side-chain - affects catalysis. Here, use of
synthetic ubiquitins with non-natural acceptor site replacements reveals that
the aliphatic side-chain specifying reactive amine geometry is a determinant of
the ubiquitin code, through unanticipated and complex reliance of many distinct
ubiquitin carrying enzymes on a canonical acceptor lysine.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.,Carle Illinois College of Medicine, Champaign, IL, USA
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Vinh H Truong
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel Houston
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicole Burton
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
35
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
36
|
Baek K, Scott DC, Schulman BA. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr Opin Struct Biol 2020; 67:101-109. [PMID: 33160249 DOI: 10.1016/j.sbi.2020.10.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023]
Abstract
RING E3s comprise the largest family of ubiquitin (UB) and ubiquitin-like protein (UBL) ligases. RING E3s typically promote UB or UBL transfer from the active site of an associated E2 enzyme to a distally-recruited substrate. Many RING E3s - including the cullin-RING ligase family - are multifunctional, interacting with various E2s (or other E3s) to target distinct proteins, transfer different UBLs, or to initially modify substrates with UB or subsequently elongate UB chains. Here we consider recent structures of cullin-RING ligases, and their partner E2 enzymes, representing ligation reactions. The studies collectively reveal multimodal mechanisms - interactions between ancillary E2 or E3 domains, post-translational modifications, or auxiliary binding partners - directing cullin-RING E3-E2 enzyme active sites to modify their specific targets.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
37
|
Vitamin E is necessary for zebrafish nervous system development. Sci Rep 2020; 10:15028. [PMID: 32958954 PMCID: PMC7506018 DOI: 10.1038/s41598-020-71760-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E-) diets, were spawned to obtain E+ and E- embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E- embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E- embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E- embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E- embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
Collapse
|
38
|
Regulation of Cullin-RING E3 ligase dynamics by Inositol hexakisphosphate. Proc Natl Acad Sci U S A 2020; 117:6292-6294. [PMID: 32156730 DOI: 10.1073/pnas.2001683117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 2020; 578:461-466. [PMID: 32051583 PMCID: PMC7050210 DOI: 10.1038/s41586-020-2000-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023]
Abstract
Virtually all eukaryotic processes are regulated by cullin-RING E3 ligase (CRL)-catalyzed protein ubiquitylation1, which is exquisitely controlled by cullin modification with the ubiquitin (UB)-like protein NEDD82–6. However, how CRLs catalyze ubiquitylation, and the basis for NEDD8 activation, remain unknown. We report the cryo EM structure of a chemically-trapped complex representing the ubiquitylation intermediate whereby neddylated CRL1β-TRCP promotes UB transfer from the E2 UBE2D to its recruited substrate phosphorylated IκBα. The structure shows that NEDD8 acts as a nexus binding disparate cullin elements and the RING-activated UB-linked UBE2D. Concomitant local structural remodeling and large-scale CRL domain movements converge to juxtapose the substrate and ubiquitylation active site. The results explain how a distinctive UB-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust for rapid substrate ubiquitylation and fragile to enable ensuing cullin-RING functions.
Collapse
|
40
|
Hill S, Reichermeier K, Scott DC, Samentar L, Coulombe-Huntington J, Izzi L, Tang X, Ibarra R, Bertomeu T, Moradian A, Sweredoski MJ, Caberoy N, Schulman BA, Sicheri F, Tyers M, Kleiger G. Robust cullin-RING ligase function is established by a multiplicity of poly-ubiquitylation pathways. eLife 2019; 8:e51163. [PMID: 31868589 PMCID: PMC6975927 DOI: 10.7554/elife.51163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| | - Kurt Reichermeier
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Department of Discovery ProteomicsGenentech IncSouth San FranciscoUnited States
- Department of Discovery OncologyGenentech IncSouth San FranciscoUnited States
| | - Daniel C Scott
- Department of Structural BiologySt Jude Children's Research HospitalMemphisUnited States
| | - Lorena Samentar
- School of Life SciencesUniversity of NevadaLas VegasUnited States
- University of the PhilippinesIloiloPhilippines
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Luisa Izzi
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Xiaojing Tang
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Rebeca Ibarra
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman InstituteCalifornia Institute of TechnologyPasadenaUnited States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman InstituteCalifornia Institute of TechnologyPasadenaUnited States
| | - Nora Caberoy
- School of Life SciencesUniversity of NevadaLas VegasUnited States
| | - Brenda A Schulman
- Max Planck Institute of Biochemistry, Molecular Machines and SignalingMartinsriedGermany
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Gary Kleiger
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| |
Collapse
|