1
|
Tanioka H, Deguchi H, Kinoshita S, Sotozono C. A New Method for Lateral Visualization of the Primary Cilia on the Surfaces of Cells Cultured on White Glass Rods. Transl Vis Sci Technol 2024; 13:19. [PMID: 39556085 DOI: 10.1167/tvst.13.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Purpose To investigate the motility of the primary cilia of corneal endothelial cells (CECs), which exist like a hair on the cell surface, using our new in vitro method. Methods A white glass rod was heated with a gas burner to produce a rod approximately 0.5 mm in diameter and 20 mm in length and then coated with collagen. A suspension of cultured human CECs (HCECs) was then added to the rod and cultured for 20 days. Cells on the rod's side were then observed using phase-contrast microscopy, and videos and images of the primary cilia were obtained. After fixing the cells cultured on the rod's surface, immunofluorescence staining was performed and fluorescence and phase contrast images were taken. Results Hair-like structures were observed on the surface of live HCECs on the rod's surface. Video images revealed that the structures sometimes swayed owing to slight convection of the medium, yet had no motile function, and immunostaining with acetylated α-tubulin antibody confirmed that the structures were primary cilia. Conclusions Our new method using white glass rods provided the ability to observe the movement of primary cilia in cultured living HCECs, and the findings clearly showed that the primary cilia of HCECs are passive rather than motile. This novel procedure can be applied widely to other cultured cells as a method to observe the movement of primary cilia from the lateral aspect of the cell. Translational Relevance This method may help to clarify the role of primary cilia in the anterior chamber.
Collapse
Affiliation(s)
- Hidetoshi Tanioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideto Deguchi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Pyatla G, Kabra M, Mandal AK, Zhang W, Mishra A, Bera S, Rathi S, Patnaik S, Anthony AA, Dixit R, Banerjee S, Shekhar K, Marmamula S, Kaur I, Khanna RC, Chakrabarti S. Potential Involvements of Cilia-Centrosomal Genes in Primary Congenital Glaucoma. Int J Mol Sci 2024; 25:10028. [PMID: 39337513 PMCID: PMC11431959 DOI: 10.3390/ijms251810028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS56 in the genetic complexity and clinical heterogeneity of PCG. Given that some of the gene-encoded proteins are localized in the centrosomes (MYOC) and perform ciliary functions (TEK), we explored the involvement of a core centrosomal protein, CEP164, which is responsible for ocular development and regulation of intraocular pressure. Deep sequencing of CEP164 in a PCG cohort devoid of homozygous mutations in candidate genes (n = 298) and controls (n = 1757) revealed CEP164 rare pathogenic variants in 16 cases (5.36%). Co-occurrences of heterozygous alleles of CEP164 with other genes were seen in four cases (1.34%), and a physical interaction was noted for CEP164 and CYP1B1 in HEK293 cells. Cases of co-harboring alleles of the CEP164 and other genes had a poor prognosis compared with those with a single copy of the CEP164 allele. We also screened INPP5E, which synergistically interacts with CEP164, and observed a lower frequency of pathogenic variants (0.67%). Our data suggest the potential involvements of CEP164 and INPP5E and the yet unexplored cilia-centrosomal functions in PCG pathogenesis.
Collapse
Affiliation(s)
- Goutham Pyatla
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meha Kabra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Anil K. Mandal
- Jasti V Ramanamma Children’s Eye Care Centre, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India;
| | - Wei Zhang
- Department of Ophthalmology, UMASS Medical School, Worcester, MA 01605, USA;
| | - Ashish Mishra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Samir Bera
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sonika Rathi
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Satish Patnaik
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Alice A. Anthony
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Ritu Dixit
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Seema Banerjee
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Konegari Shekhar
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Srinivas Marmamula
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Rohit C. Khanna
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| |
Collapse
|
3
|
Havrylov S, Chrystal P, van Baarle S, French CR, MacDonald IM, Avasarala J, Rogers RC, Berry FB, Kume T, Waskiewicz AJ, Lehmann OJ. Pleiotropy in FOXC1-attributable phenotypes involves altered ciliation and cilia-dependent signaling. Sci Rep 2024; 14:20278. [PMID: 39217245 PMCID: PMC11365983 DOI: 10.1038/s41598-024-71159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Alterations to cilia are responsible for a wide range of severe disease; however, understanding of the transcriptional control of ciliogenesis remains incomplete. In this study we investigated whether altered cilia-mediated signaling contributes to the pleiotropic phenotypes caused by the Forkhead transcription factor FOXC1. Here, we show that patients with FOXC1-attributable Axenfeld-Rieger Syndrome (ARS) have a prevalence of ciliopathy-associated phenotypes comparable to syndromic ciliopathies. We demonstrate that altering the level of Foxc1 protein, via shRNA mediated inhibition, CRISPR/Cas9 mutagenesis and overexpression, modifies cilia length in vitro. These structural changes were associated with substantially perturbed cilia-dependent signaling [Hedgehog (Hh) and PDGFRα], and altered ciliary compartmentalization of the Hh pathway transcription factor, Gli2. Consistent with these data, in primary cultures of murine embryonic meninges, cilia length was significantly reduced in heterozygous and homozygous Foxc1 mutants compared to controls. Meningeal expression of the core Hh signaling components Gli1, Gli3 and Sufu was dysregulated, with comparable dysregulation of Pdgfrα signaling evident from significantly altered Pdgfrα and phosphorylated Pdgfrα expression. On the basis of these clinical and experimental findings, we propose a model that altered cilia-mediated signaling contributes to some FOXC1-induced phenotypes.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Chrystal
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Suey van Baarle
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Curtis R French
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jagannadha Avasarala
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | | | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, Canada
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
4
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
5
|
Yang H, Lu W, Sun X. Primary congenital glaucoma: We are always on the way. Taiwan J Ophthalmol 2024; 14:190-196. [PMID: 39027076 PMCID: PMC11253993 DOI: 10.4103/tjo.tjo-d-22-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 07/20/2024] Open
Abstract
Primary congenital glaucoma (PCG), a developmental glaucoma occurring due to angle anomaly, earns growing concerns among ophthalmologists for its vision-damaging attribute. The incidence of PCG varies among races and geographic regions and is mostly genetically associated. Theories have been posed in attempt to address the etiology of this congenital maldevelopment and in the meanwhile providing evidence for feasibility of PCG surgeries. In regard to the clinical aspects of this entity, both the clinical characteristics and general principals of management are introduced, with angle surgeries highlighted for clarifying details including their success rates, key points for a successful surgical intervention, postoperative management, and follow-up strategies. Taking patients' vision-associated quality of life into consideration, we stressed that further perceptual learning and low vision rehabilitation are momentous. However, much has yet to be elucidated in respect of the truly comprehensive pathogenesis underneath as well as means by which clinical outcomes of PCG can be further improved. We are now looking forward to innovative therapeutic approaches like gene therapy in specific genes in the future, with the hope of improving their life-long visual quality in those young patients.
Collapse
Affiliation(s)
- Hongfang Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wenhan Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Seo S, Sonn SK, Kweon HY, Jin J, Kume T, Ko JY, Park JH, Oh GT. Primary Cilium in Neural Crest Cells Crucial for Anterior Segment Development and Corneal Avascularity. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38517430 PMCID: PMC10981158 DOI: 10.1167/iovs.65.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.
Collapse
Affiliation(s)
- Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- Imvastech Inc., Seoul, Republic of Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, Illinois, United States
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- Imvastech Inc., Seoul, Republic of Korea
| |
Collapse
|
7
|
Ishimoto Y, Menezes LF, Zhou F, Yoshida T, Komori T, Qiu J, Young MF, Lu H, Potapova S, Outeda P, Watnick T, Germino GG. A novel ARPKD mouse model with near-complete deletion of the Polycystic Kidney and Hepatic Disease 1 (Pkhd1) genomic locus presents with multiple phenotypes but not renal cysts. Kidney Int 2023; 104:611-616. [PMID: 37419448 PMCID: PMC10529617 DOI: 10.1016/j.kint.2023.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.
| | - Fang Zhou
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Teruhiko Yoshida
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Svetlana Potapova
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Patricia Outeda
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Serpen JY, Presley W, Beil A, Armenti ST, Johnson K, Mian SI, Innis JW, Prasov L. A Novel 13q12 Microdeletion Associated with Familial Syndromic Corneal Opacification. Genes (Basel) 2023; 14:1034. [PMID: 37239394 PMCID: PMC10218699 DOI: 10.3390/genes14051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Progressive corneal opacification can result from multiple etiologies, including corneal dystrophies or systemic and genetic diseases. We describe a novel syndrome featuring progressive epithelial and anterior stromal opacification in a brother and sister and their mildly affected father, with all three family members having sensorineural hearing loss and two also with tracheomalacia/laryngomalacia. All carried a 1.2 Mb deletion at chromosome 13q12.11, with no other noteworthy co-segregating variants identified on clinical exome or chromosomal microarray. RNAseq analysis from an affected corneal epithelial sample from the proband's brother revealed downregulation of XPO4, IFT88, ZDHHC20, LATS2, SAP18, and EEF1AKMT1 within the microdeletion interval, with no notable effect on the expression of nearby genes. Pathway analysis showed upregulation of collagen metabolism and extracellular matrix (ECM) formation/maintenance, with no significantly down-regulated pathways. Analysis of overlapping deletions/variants demonstrated that deleterious variants in XPO4 were found in patients with laryngomalacia and sensorineural hearing loss, with the latter phenotype also being a feature of variants in the partially overlapping DFNB1 locus, yet none of these had reported corneal phenotypes. Together, these data define a novel microdeletion-associated syndromic progressive corneal opacification and suggest that a combination of genes within the microdeletion may contribute to ECM dysregulation leading to pathogenesis.
Collapse
Affiliation(s)
- Jasmine Y. Serpen
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William Presley
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adelyn Beil
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen T. Armenti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla Johnson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shahzad I. Mian
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jeffrey W. Innis
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Portal C, Lin Y, Rastogi V, Peterson C, Yiu SCH, Foster JW, Wilkerson A, Butovich IA, Iomini C. Primary cilia control cellular patterning of Meibomian glands during morphogenesis but not lipid composition. Commun Biol 2023; 6:282. [PMID: 36932132 PMCID: PMC10023665 DOI: 10.1038/s42003-023-04632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Meibomian glands (MGs) are modified sebaceous glands producing the tear film's lipids. Despite their critical role in maintaining clear vision, the mechanisms underlying MG morphogenesis in development and disease remain obscure. Cilia-mediate signals are critical for the development of skin adnexa, including sebaceous glands. Thus, we investigated the role of cilia in MG morphogenesis during development. Most cells were ciliated during early MG development, followed by cilia disassembly during differentiation. In mature glands, ciliated cells were primarily restricted to the basal layer of the proximal gland central duct. Cilia ablation in keratine14-expressing tissue disrupted the accumulation of proliferative cells at the distal tip but did not affect the overall rate of proliferation or apoptosis. Moreover, impaired cellular patterning during elongation resulted in hypertrophy of mature MGs with increased meibum volume without altering its lipid composition. Thus, cilia signaling networks provide a new platform to design therapeutic treatments for MG dysfunction.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Varuni Rastogi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Chi-Hung Yiu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - James W Foster
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
10
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
11
|
Yoon B, Yeung P, Santistevan N, Bluhm LE, Kawasaki K, Kueper J, Dubielzig R, VanOudenhove J, Cotney J, Liao EC, Grinblat Y. Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biol Open 2022; 11:bio059189. [PMID: 35142342 PMCID: PMC9167625 DOI: 10.1242/bio.059189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.
Collapse
Affiliation(s)
- Baul Yoon
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Pan Yeung
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Nicholas Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren E. Bluhm
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Janina Kueper
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
- Institute of Human Genetics, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
12
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|
13
|
Portal C, Wang Z, Scott DK, Wolosin JM, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35103750 PMCID: PMC8822362 DOI: 10.1167/iovs.63.2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The transcription factor c-Myc (Myc) plays central regulatory roles in both self-renewal and differentiation of progenitors of multiple cell lineages. Here, we address its function in corneal epithelium (CE) maintenance and repair. Methods Myc ablation in the limbal–corneal epithelium was achieved by crossing a floxed Myc mouse allele (Mycfl/fl) with a mouse line expressing the Cre recombinase gene under the keratin (Krt) 14 promoter. CE stratification and protein localization were assessed by histology of paraffin and plastic sections and by immunohistochemistry of frozen sections, respectively. Protein levels and gene expression were determined by western blot and real-time quantitative PCR, respectively. CE wound closure was tracked by fluorescein staining. Results At birth, mutant mice appeared indistinguishable from control littermates; however, their rates of postnatal weight gain were 67% lower than those of controls. After weaning, mutants also exhibited spontaneous skin ulcerations, predominantly in the tail and lower lip, and died 45 to 60 days after birth. The mutant CE displayed an increase in stratal thickness, increased levels of Krt12 in superficial cells, and decreased exfoliation rates. Accordingly, the absence of Myc perturbed protein and mRNA levels of genes modulating differentiation and proliferation processes, including ΔNp63β, Ets1, and two Notch target genes, Hey1 and Maml1. Furthermore, Myc promoted CE wound closure and wound-induced hyperproliferation. Conclusions Myc regulates the balance among CE stratification, differentiation, and surface exfoliation and promotes the transition to the hyperproliferative state during wound healing. Its effect on this balance may be exerted through the control of multiple regulators of cell fate, including isoforms of tumor protein p63.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Donald K Scott
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Sun X, Yang H, Lu W. Primary congenital glaucoma: We are always on the way. Taiwan J Ophthalmol 2022. [DOI: 10.4103/2211-5056.363178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Kaplan N, Wang S, Wang J, Yang W, Ventrella R, Majekodunmi A, Perez White BE, Getsios S, Mitchell BJ, Peng H, Lavker RM. Ciliogenesis and autophagy are coordinately regulated by EphA2 in the cornea to maintain proper epithelial architecture. Ocul Surf 2021; 21:193-205. [PMID: 34119713 DOI: 10.1016/j.jtos.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To understand the relationship between ciliogenesis and autophagy in the corneal epithelium. METHODS siRNAs for EphA2 or PLD1 were used to inhibit protein expression in vitro. Morpholino-anti-EphA2 was used to knockdown EphA2 in Xenopus skin. An EphA2 knockout mouse was used to conduct loss of function studies. Autophagic vacuoles were visualized by contrast light microscopy. Autophagy flux, was measured by LC3 turnover and p62 protein levels. Immunostaining and confocal microscopy were conducted to visualize cilia in cultured cells and in vivo. RESULTS Loss of EphA2 (i) increased corneal epithelial thickness by elevating proliferative potential in wing cells, (ii) reduced the number of ciliated cells, (iii) increased large hollow vacuoles, that could be rescued by BafA1; (iv) inhibited autophagy flux and (v) increased GFP-LC3 puncta in the mouse corneal epithelium. This indicated a role for EphA2 in stratified epithelial assembly via regulation of proliferation as well as a positive role in both ciliogenesis and end-stage autophagy. Inhibition of PLD1, an EphA2 interacting protein that is a critical regulator of end-stage autophagy, reversed the accumulation of vacuoles, and the reduction in the number of ciliated cells due to EphA2 depletion, suggesting EphA2 regulation of both end-stage autophagy and ciliogenesis via PLD1. PLD1 mediated rescue of ciliogenesis by EphA2 depletion was blocked by BafA1, placing autophagy between EphA2 signaling and regulation of ciliogenesis. CONCLUSION Our findings demonstrate a novel role for EphA2 in regulating both autophagy and ciliogenesis, processes that are essential for proper corneal epithelial homeostasis.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junyi Wang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA; Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Rosa Ventrella
- Cell and Developmental Biology, Northwestern University, Chicago, IL 60611, USA
| | - Ahmed Majekodunmi
- Department of Neurology, Northwestern University, Chicago, IL, 60611, USA
| | | | | | - Brian J Mitchell
- Cell and Developmental Biology, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Ballesteros A, Fitzgerald TS, Swartz KJ. Expression of a membrane-targeted fluorescent reporter disrupts auditory hair cell mechanoelectrical transduction and causes profound deafness. Hear Res 2021; 404:108212. [PMID: 33667877 PMCID: PMC8035305 DOI: 10.1016/j.heares.2021.108212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
The reporter mT/mG mice expressing a membrane-targeted fluorescent protein are becoming widely used to study the auditory and vestibular system due to its versatility. Here we show that high expression levels of the fluorescent mtdTomato reporter affect the function of the sensory hair cells and the auditory performance of mT/mG transgenic mice. Auditory brainstem responses and distortion product otoacoustic emissions revealed that adult mT/mG homozygous mice are profoundly deaf, whereas heterozygous mice present high frequency loss. We explore whether this line would be useful for studying and visualizing the membrane of auditory hair cells by airyscan super-resolution confocal microscopy. Membrane localization of the reporter was observed in hair cells of the cochlea, facilitating imaging of both cell bodies and stereocilia bundles without altering cellular architecture or the expression of the integral membrane motor protein prestin. Remarkably, hair cells from mT/mG homozygous mice failed to uptake the FM1-43 dye and to locate TMC1 at the stereocilia, indicating defective mechanotransduction machinery. Our work emphasizes that precautions must be considered when working with reporter mice and highlights the potential role of the cellular membrane in maintaining functional hair cells and ensuring proper hearing.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Tracy S Fitzgerald
- Mouse Auditory Testing Core, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
18
|
Yusifov E, Dumoulin A, Stoeckli ET. Investigating Primary Cilia during Peripheral Nervous System Formation. Int J Mol Sci 2021; 22:3176. [PMID: 33804711 PMCID: PMC8003989 DOI: 10.3390/ijms22063176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.
Collapse
Affiliation(s)
| | | | - Esther T. Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (E.Y.); (A.D.)
| |
Collapse
|
19
|
Shinde V, Sobreira N, Wohler ES, Maiti G, Hu N, Silvestri G, George S, Jackson J, Chakravarti A, Willoughby CE, Chakravarti S. Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus. Hum Mol Genet 2021; 30:658-671. [PMID: 33729517 DOI: 10.1093/hmg/ddab075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Keratoconus is a common corneal defect with a complex genetic basis. By whole exome sequencing of affected members from 11 multiplex families of European ancestry, we identified 23 rare, heterozygous, potentially pathogenic variants in 8 genes. These include nonsynonymous single amino acid substitutions in HSPG2, EML6 and CENPF in two families each, and in NBEAL2, LRP1B, PIK3CG and MRGPRD in three families each; ITGAX had nonsynonymous single amino acid substitutions in two families and an indel with a base substitution producing a nonsense allele in the third family. Only HSPG2, EML6 and CENPF have been associated with ocular phenotypes previously. With the exception of MRGPRD and ITGAX, we detected the transcript and encoded protein of the remaining genes in the cornea and corneal cell cultures. Cultured stromal cells showed cytoplasmic punctate staining of NBEAL2, staining of the fibrillar cytoskeletal network by EML6, while CENPF localized to the basal body of primary cilia. We inhibited the expression of HSPG2, EML6, NBEAL2 and CENPF in stromal cell cultures and assayed for the expression of COL1A1 as a readout of corneal matrix production. An upregulation in COL1A1 after siRNA inhibition indicated their functional link to stromal cell biology. For ITGAX, encoding a leukocyte integrin, we assayed its level in the sera of 3 affected families compared with 10 unrelated controls to detect an increase in all affecteds. Our study identified genes that regulate the cytoskeleton, protein trafficking and secretion, barrier tissue function and response to injury and inflammation, as being relevant to keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Elizabeth S Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Giuliana Silvestri
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Sonia George
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Jonathan Jackson
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Colin E Willoughby
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK.,Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Abstract
As a transparent avascular tissue located at the front of the eyeball, the cornea is an important barrier to external damage. Both epithelial and endothelial cells of the cornea harbor primary cilia, which sense changes in the external environment and regulate intracellular signaling pathways. Accumulating evidence suggests that the primary cilium regulates corneal development in several ways, including participation in corneal epithelial stratification and maintenance of corneal endothelial cell morphology. In addition, the primary cilium has been implicated in the pathogenesis of several corneal diseases. In this review, we discuss recent findings that demonstrate the critical role of the primary cilium in corneal development. We also discuss the link between ciliary dysfunction and corneal diseases, which suggests that the primary cilium could be targeted to treat these diseases.
Collapse
Affiliation(s)
- Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China. E-mail:
| |
Collapse
|
21
|
Su Z, Wang J, Lai Q, Zhao H, Hou L. KIT ligand produced by limbal niche cells under control of SOX10 maintains limbal epithelial stem cell survival by activating the KIT/AKT signalling pathway. J Cell Mol Med 2020; 24:12020-12031. [PMID: 32914934 PMCID: PMC7579694 DOI: 10.1111/jcmm.15830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Homeostasis and function of limbal epithelial stem cells (LESCs) rely on the limbal niche, which, if dysfunctional, leads to limbal epithelial stem cell deficiency (LSCD) and impaired vision. Hence, recovery of niche function is a principal therapeutic goal in LSCD, but the molecular mechanisms of limbal niche homeostasis are still largely unknown. Here, we report that the neural crest transcription factor SOX10, which is expressed in neural crest‐derived limbal niche cells (LNCs), is required for LNCs to promote survival of LESCs both in vivo and in vitro. In fact, using mice with a Sox10 mutation and in vitro coculture experiments, we show that SOX10 in LNCs stimulates the production of KIT ligand (KITL), which in turn activates in LESCs the KIT‐AKT signalling pathway that protects the cells against activated CASPASE 3‐associated cell death. These results suggest that SOX10 and the KITL/KIT‐AKT pathway play key roles in limbal niche homeostasis and LESC survival. These findings provide molecular insights into limbal niche function and may point to rational approaches for therapeutic interventions in LSCD.
Collapse
Affiliation(s)
- Zhongyuan Su
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Qinghua Lai
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huanyu Zhao
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| |
Collapse
|