1
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Guyon J, Haidar Ahmad S, El Baba R, Le Quang M, Bikfalvi A, Daubon T, Herbein G. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31:1070-1080. [PMID: 38553638 PMCID: PMC11257955 DOI: 10.1038/s41417-024-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Collapse
Affiliation(s)
- Joris Guyon
- University of Bordeaux, INSERM U1312, BRIC, Bordeaux, France
- CHU Bordeaux, Department of Medical Pharmacology, Bordeaux, France
| | - Sandy Haidar Ahmad
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Ranim El Baba
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Georges Herbein
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France.
- CHU Besançon, Department of Virology, Besançon, France.
| |
Collapse
|
4
|
Papadopoulos D, Ha SA, Fleischhauer D, Uhl L, Russell TJ, Mikicic I, Schneider K, Brem A, Valanju OR, Cossa G, Gallant P, Schuelein-Voelk C, Maric HM, Beli P, Büchel G, Vos SM, Eilers M. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Mol Cell 2024; 84:2070-2086.e20. [PMID: 38703770 DOI: 10.1016/j.molcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timothy J Russell
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Ivan Mikicic
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Katharina Schneider
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Annika Brem
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Omkar Rajendra Valanju
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schuelein-Voelk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Petra Beli
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
5
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Yalala S, Gondane A, Poulose N, Liang J, Mills IG, Itkonen HM. CDK9 inhibition activates innate immune response through viral mimicry. FASEB J 2024; 38:e23628. [PMID: 38661032 DOI: 10.1096/fj.202302375r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.
Collapse
Affiliation(s)
- Shivani Yalala
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ninu Poulose
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jing Liang
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Freie B, Carroll PA, Varnum-Finney BJ, Ramsey EL, Ramani V, Bernstein I, Eisenman RN. A germline point mutation in the MYC-FBW7 phosphodegron initiates hematopoietic malignancies. Genes Dev 2024; 38:253-272. [PMID: 38565249 PMCID: PMC11065175 DOI: 10.1101/gad.351292.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA;
| | - Patrick A Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | | | - Erin L Ramsey
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA;
| |
Collapse
|
8
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Jones RG, von Walden F, Murach KA. Exercise-Induced MYC as an Epigenetic Reprogramming Factor That Combats Skeletal Muscle Aging. Exerc Sport Sci Rev 2024; 52:63-67. [PMID: 38391187 PMCID: PMC10963142 DOI: 10.1249/jes.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Of the "Yamanaka factors" Oct3/4 , Sox2 , Klf4 , and c-Myc (OSKM), the transcription factor c-Myc ( Myc ) is the most responsive to exercise in skeletal muscle and is enriched within the muscle fiber. We hypothesize that the pulsatile induction of MYC protein after bouts of exercise can serve to epigenetically reprogram skeletal muscle toward a more resilient and functional state.
Collapse
Affiliation(s)
- Ronald G. Jones
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| |
Collapse
|
10
|
Her J, Zheng H, Bunting SF. RNF4 sustains Myc-driven tumorigenesis by facilitating DNA replication. J Clin Invest 2024; 134:e167419. [PMID: 38530355 PMCID: PMC11093604 DOI: 10.1172/jci167419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
The mammalian SUMO-targeted E3 ubiquitin ligase Rnf4 has been reported to act as a regulator of DNA repair, but the importance of RNF4 as a tumor suppressor has not been tested. Using a conditional-knockout mouse model, we deleted Rnf4 in the B cell lineage to test the importance of RNF4 for growth of somatic cells. Although Rnf4-conditional-knockout B cells exhibited substantial genomic instability, Rnf4 deletion caused no increase in tumor susceptibility. In contrast, Rnf4 deletion extended the healthy lifespan of mice expressing an oncogenic c-myc transgene. Rnf4 activity is essential for normal DNA replication, and in its absence, there was a failure in ATR-CHK1 signaling of replication stress. Factors that normally mediate replication fork stability, including members of the Fanconi anemia gene family and the helicases PIF1 and RECQL5, showed reduced accumulation at replication forks in the absence of RNF4. RNF4 deficiency also resulted in an accumulation of hyper-SUMOylated proteins in chromatin, including members of the SMC5/6 complex, which contributes to replication failure by a mechanism dependent on RAD51. These findings indicate that RNF4, which shows increased expression in multiple human tumor types, is a potential target for anticancer therapy, especially in tumors expressing c-myc.
Collapse
Affiliation(s)
- Joonyoung Her
- Department of Molecular Biology and Biochemistry and
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | |
Collapse
|
11
|
Garralda E, Beaulieu ME, Moreno V, Casacuberta-Serra S, Martínez-Martín S, Foradada L, Alonso G, Massó-Vallés D, López-Estévez S, Jauset T, Corral de la Fuente E, Doger B, Hernández T, Perez-Lopez R, Arqués O, Castillo Cano V, Morales J, Whitfield JR, Niewel M, Soucek L, Calvo E. MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat Med 2024; 30:762-771. [PMID: 38321218 PMCID: PMC10957469 DOI: 10.1038/s41591-024-02805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .
Collapse
Affiliation(s)
| | | | - Víctor Moreno
- START Madrid-FJD-Hospital Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | - Guzman Alonso
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Bernard Doger
- START Madrid-FJD-Hospital Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Oriol Arqués
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- Peptomyc S.L., Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Emiliano Calvo
- START Madrid-CIOCC-Centro Integral Oncológico Clara Campal, Madrid, Spain
| |
Collapse
|
12
|
Sepulveda GP, Gushchanskaia ES, Mora-Martin A, Esse R, Nikorich I, Ceballos A, Kwan J, Blum BC, Dholiya P, Emili A, Perissi V, Cardamone MD, Grishok A. DOT1L stimulates MYC/Mondo transcription factor activity by promoting its degradation cycle on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579191. [PMID: 38370658 PMCID: PMC10871221 DOI: 10.1101/2024.02.06.579191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Gian P. Sepulveda
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ekaterina S. Gushchanskaia
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Tessera Therapeutics, Somerville, MA, 02143, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Ruben Esse
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iana Nikorich
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: Research Unit, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Prakruti Dholiya
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
- Division of Computational Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: OHSU Knight Cancer Institute, School of Medicine, Portland, OR, 97239, USA
| | - Valentina Perissi
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria D. Cardamone
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Korro Bio Inc., Cambridge, MA, 02139, USA
| | - Alla Grishok
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Genome Science Institute, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
13
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Jha RK, Kouzine F, Levens D. MYC function and regulation in physiological perspective. Front Cell Dev Biol 2023; 11:1268275. [PMID: 37941901 PMCID: PMC10627926 DOI: 10.3389/fcell.2023.1268275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
MYC, a key member of the Myc-proto-oncogene family, is a universal transcription amplifier that regulates almost every physiological process in a cell including cell cycle, proliferation, metabolism, differentiation, and apoptosis. MYC interacts with several cofactors, chromatin modifiers, and regulators to direct gene expression. MYC levels are tightly regulated, and deregulation of MYC has been associated with numerous diseases including cancer. Understanding the comprehensive biology of MYC under physiological conditions is an utmost necessity to demark biological functions of MYC from its pathological functions. Here we review the recent advances in biological mechanisms, functions, and regulation of MYC. We also emphasize the role of MYC as a global transcription amplifier.
Collapse
Affiliation(s)
| | | | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, United States
| |
Collapse
|
15
|
Lau MS, Hu Z, Zhao X, Tan YS, Liu J, Huang H, Yeo CJ, Leong HF, Grinchuk OV, Chan JK, Yan J, Tee WW. Transcriptional repression by a secondary DNA binding surface of DNA topoisomerase I safeguards against hypertranscription. Nat Commun 2023; 14:6464. [PMID: 37833256 PMCID: PMC10576097 DOI: 10.1038/s41467-023-42078-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis. This function is dependent on specific DNA-interacting residues located on a conserved protein surface. A loss-of-function knock-in mutation on this surface, R548Q, is sufficient to cause hypertranscription and alter differentiation outcomes in mouse embryonic stem cells (mESCs). Hypertranscription in mESCs is accompanied by reduced TOP1 chromatin binding and change in genomic supercoiling. Notably, the mutation does not impact TOP1 enzymatic activity; rather, it diminishes TOP1-DNA binding and formation of compact protein-DNA structures. Thus, TOP1 exhibits opposing influences on transcription through distinct activities which are likely to be coordinated. This highlights TOP1 as a safeguard of appropriate total transcription levels in cells.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Zhao
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Jinyue Liu
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clarisse Jingyi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Justin Kaixuan Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Zhang J, Han X, Ma L, Xu S, Lin Y. Deciphering a global source of non-genetic heterogeneity in cancer cells. Nucleic Acids Res 2023; 51:9019-9038. [PMID: 37587722 PMCID: PMC10516630 DOI: 10.1093/nar/gkad666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Cell-to-cell variability within a clonal population, also known as non-genetic heterogeneity, has created significant challenges for intervening with diseases such as cancer. While non-genetic heterogeneity can arise from the variability in the expression of specific genes, it remains largely unclear whether and how clonal cells could be heterogeneous in the expression of the entire transcriptome. Here, we showed that gene transcriptional activity is globally modulated in individual cancer cells, leading to non-genetic heterogeneity in the global transcription rate. Such heterogeneity contributes to cell-to-cell variability in transcriptome size and displays both dynamic and static characteristics, with the global transcription rate temporally modulated in a cell-cycle-coupled manner and the time-averaged rate being distinct between cells and heritable across generations. Additional evidence indicated the role of ATP metabolism in this heterogeneity, and suggested its implication in intrinsic cancer drug tolerance. Collectively, our work shed light on the mode, mechanism, and implication of a global but often hidden source of non-genetic heterogeneity.
Collapse
Affiliation(s)
- Jianhan Zhang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xu Han
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Ma
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shuhui Xu
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Purhonen J, Klefström J, Kallijärvi J. MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol 2023; 11:1257651. [PMID: 37731815 PMCID: PMC10507175 DOI: 10.3389/fcell.2023.1257651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
20
|
Guan Q, Chen Z, Yu F, Liu L, Huang Y, Wei G, Chiang CM, Wong J, Li J. MYC promotes global transcription in part by controlling P-TEFb complex formation via DNA-binding independent inhibition of CDK9 SUMOylation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2167-2184. [PMID: 37115490 PMCID: PMC10524883 DOI: 10.1007/s11427-022-2281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 04/29/2023]
Abstract
MYC is an oncogenic transcription factor with a novel role in enhancing global transcription when overexpressed. However, how MYC promotes global transcription remains controversial. Here, we used a series of MYC mutants to dissect the molecular basis for MYC-driven global transcription. We found that MYC mutants deficient in DNA binding or known transcriptional activation activities can still promote global transcription and enhance serine 2 phosphorylation (Ser2P) of the RNA polymerase (Pol) II C-terminal domain (CTD), a hallmark of active elongating RNA Pol II. Two distinct regions within MYC can promote global transcription and Ser2P of Pol II CTD. The ability of various MYC mutants to promote global transcription and Ser2P correlates with their ability to suppress CDK9 SUMOylation and enhance positive transcription elongation factor b (P-TEFb) complex formation. We showed that MYC suppresses CDK9 SUMOylation by inhibiting the interaction between CDK9 and SUMO enzymes including UBC9 and PIAS1. Furthermore, MYC's activity in enhancing global transcription positively contributes to its activity in promoting cell proliferation and transformation. Together, our study demonstrates that MYC promotes global transcription, at least in part, by promoting the formation of the active P-TEFb complex via a sequence-specific DNA-binding activity-independent manner.
Collapse
Affiliation(s)
- Qingqing Guan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
21
|
Illi B, Nasi S. Myc beyond Cancer: Regulation of Mammalian Tissue Regeneration. PATHOPHYSIOLOGY 2023; 30:346-365. [PMID: 37606389 PMCID: PMC10443299 DOI: 10.3390/pathophysiology30030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
Myc is one of the most well-known oncogenes driving tumorigenesis in a wide variety of tissues. From the brain to blood, its deregulation derails physiological pathways that grant the correct functioning of the cell. Its action is carried out at the gene expression level, where Myc governs basically every aspect of transcription. Indeed, in addition to its role as a canonical, chromatin-bound transcription factor, Myc rules RNA polymerase II (RNAPII) transcriptional pause-release, elongation and termination and mRNA capping. For this reason, it is evident that minimal perturbations of Myc function mirror malignant cell behavior and, consistently, a large body of literature mainly focuses on Myc malfunctioning. In healthy cells, Myc controls molecular mechanisms involved in pivotal functions, such as cell cycle (and proliferation thereof), apoptosis, metabolism and cell size, angiogenesis, differentiation and stem cell self-renewal. In this latter regard, Myc has been found to also regulate tissue regeneration, a hot topic in the research fields of aging and regenerative medicine. Indeed, Myc appears to have a role in wound healing, in peripheral nerves and in liver, pancreas and even heart recovery. Herein, we discuss the state of the art of Myc's role in tissue regeneration, giving an overview of its potent action beyond cancer.
Collapse
Affiliation(s)
- Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Nasi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, Herbein G. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene 2023:10.1038/s41388-023-02709-3. [PMID: 37147437 DOI: 10.1038/s41388-023-02709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in malignant gliomas. EZH2 and Myc play a potential oncogenic role, correlating with the glioma grade. Herewith, we present the first experimental evidence for HCMV as a reprogramming vector, straight through the dedifferentiation of mature human astrocytes, and generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits. HCMV counterparts the progression of the perceived cellular and molecular mechanisms succeeding the transformation and invasion processes with CEGBCs involved in spheroid formation and invasiveness. Glioblastoma multiforme (GBM) biopsies were characterized by an elevated EZH2 and Myc expression, possessing a strong positive correlation between the aforementioned markers in the presence of HCMV. From GBM tissues, we isolated HCMV clinical strains that transformed HAs toward CEGBCs exhibiting upregulated EZH2 and Myc. Spheroids generated from CEGBCs possessed invasion potential and were sensitive to EZH2 inhibitor, ganciclovir, and temozolomide triple therapy. HCMV clinical strains transform HAs and fit with an HCMV-induced glioblastoma model of oncogenesis, and supports the tumorigenic properties of Myc and EZH2 which might be highly pertinent in the pathophysiology of astrocytic brain tumors and thereby paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sébastien Pasquereau
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Marine Abad
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
23
|
Martinez-Corral R, Park M, Biette KM, Friedrich D, Scholes C, Khalil AS, Gunawardena J, DePace AH. Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology. Cell Syst 2023; 14:324-339.e7. [PMID: 37080164 PMCID: PMC10472254 DOI: 10.1016/j.cels.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/22/2022] [Accepted: 02/10/2023] [Indexed: 04/22/2023]
Abstract
Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.
Collapse
Affiliation(s)
| | - Minhee Park
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kelly M Biette
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dhana Friedrich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
25
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
27
|
Bangalore DM, Tessmer I. Direct hOGG1-Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res 2022; 50:10385-10398. [PMID: 36156093 PMCID: PMC9561264 DOI: 10.1093/nar/gkac796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The base excision repair (BER) glycosylase hOGG1 (human oxoguanine glycosylase 1) is responsible for repairing oxidative lesions in the genome, in particular oxidised guanine bases (oxoG). In addition, a role of hOGG1 in transcription regulation by recruitment of various transcription factors has been reported. Here, we demonstrate direct interactions between hOGG1 and the medically important oncogene transcription factor Myc that is involved in transcription initiation of a large number of genes including inflammatory genes. Using single molecule atomic force microscopy (AFM), we reveal recruitment of Myc to its E-box promoter recognition sequence by hOGG1 specifically under oxidative stress conditions, and conformational changes in hOGG1-Myc complexes at oxoG lesions that suggest loading of Myc at oxoG lesions by hOGG1. Importantly, our data show suppression of hOGG1 catalytic activity in oxoG repair by Myc. Furthermore, mutational analyses implicate the C28 residue in hOGG1 in oxidation induced protein dimerisation and suggest a role of hOGG1 dimerisation under oxidising conditions in hOGG1-Myc interactions. From our data we develop a mechanistic model for Myc recruitment by hOGG1 under oxidising, inflammatory conditions, which may be responsible for the observed enhanced gene expression of Myc target genes.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
28
|
Murach KA, Liu Z, Jude B, Figueiredo VC, Wen Y, Khadgi S, Lim S, Morena da Silva F, Greene NP, Lanner JT, McCarthy JJ, Vechetti IJ, von Walden F. Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks. J Biol Chem 2022; 298:102515. [PMID: 36150502 PMCID: PMC9583450 DOI: 10.1016/j.jbc.2022.102515] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023] Open
Abstract
Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbβ, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.
Collapse
Affiliation(s)
- Kevin A. Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| | - Zhengye Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Baptiste Jude
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden,Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
| | - Vandre C. Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, USA
| | - Sabin Khadgi
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P. Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - John J. McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ivan J. Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, USA,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| | - Ferdinand von Walden
- Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| |
Collapse
|
29
|
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022; 80:104056. [PMID: 35596973 PMCID: PMC9121245 DOI: 10.1016/j.ebiom.2022.104056] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection has been actively implicated in complex neoplastic processes. Beyond oncomodulation, the molecular mechanisms that might underlie HCMV-induced oncogenesis are being extensively studied. Polycomb repressive complex 2 (PRC2) proteins, in particular enhancer of zeste homolog 2 (EZH2) are associated with cancer progression. Nevertheless, little is known about EZH2 activation in the context of HCMV infection and breast oncogenesis. Methods Herein, we identified EZH2 as a downstream target for HCMV-induced Myc upregulation upon acute and chronic infection with high-risk strains using a human mammary epithelial model. Findings We detected polyploidy and CMV-transformed HMECs (CTH) cells harboring HCMV and dynamically undergoing the giant cells cycle. Acquisition of embryonic stemness markers positively correlated with EZH2 and Myc expression. EZH2 inhibitors curtail sustained CTH cells’ malignant phenotype. Besides harboring polyploid giant cancer cells (PGCCs), tumorigenic breast biopsies were characterized by an enhanced EZH2 and Myc expression, with a strong positive correlation between EZH2 and Myc expression, and between PGCC count and EZH2/Myc expression in the presence of HCMV. Further, we isolated two HCMV strains from EZH2HighMycHigh basal-like tumors which replicate in MRC5 cells and transform HMECs toward CTH cells after acute infection. Interpretation Our data establish a potential link between HCMV-induced Myc activation, the subsequent EZH2 upregulation, and polyploidy induction. These data support the proposed tumorigenesis properties of EZH2/Myc, and allow the isolation of two oncogenic HCMV strains from EZH2HighMycHigh basal breast tumors while identifying EZH2 as a potential therapeutic target in the management of breast cancer, particularly upon HCMV infection. Funding This work was supported by grants from the University of Franche-Comté (UFC) (CR3300), the Région Franche-Comté (2021-Y-08292 and 2021-Y-08290) and the Ligue contre le Cancer (CR3304) to Georges Herbein. Zeina Nehme is a recipient of a doctoral scholarship from the municipality of Habbouch. Sandy Haidar Ahmad is recipient of a doctoral scholarship from Lebanese municipality. Ranim El Baba is a recipient of a doctoral scholarship from Hariri foundation for sustainable human development.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sébastien Pasquereau
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
30
|
Upregulation of ribosome biogenesis via canonical E-boxes is required for Myc-driven proliferation. Dev Cell 2022; 57:1024-1036.e5. [PMID: 35472319 DOI: 10.1016/j.devcel.2022.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022]
Abstract
The transcription factor Myc drives cell growth across animal phyla and is activated in most forms of human cancer. However, it is unclear which Myc target genes need to be regulated to induce growth and whether multiple targets act additively or if induction of each target is individually necessary. Here, we identified Myc target genes whose regulation is conserved between humans and flies and deleted Myc-binding sites (E-boxes) in the promoters of fourteen of these genes in Drosophila. E-box mutants of essential genes were homozygous viable, indicating that the E-boxes are not required for basal expression. Eight E-box mutations led to Myc-like phenotypes; the strongest mutant, ppanEbox-/-, also made the flies resistant to Myc-induced cell growth without affecting Myc-induced apoptosis. The ppanEbox-/- flies are healthy and display only a minor developmental delay, suggesting that it may be possible to treat or prevent tumorigenesis by targeting individual downstream targets of Myc.
Collapse
|
31
|
Chan A, Wang HH, Haley RM, Song C, Gonzalez-Martinez D, Bugaj L, Mitchell MJ, Tsourkas A. Cytosolic Delivery of Small Protein Scaffolds Enables Efficient Inhibition of Ras and Myc. Mol Pharm 2022; 19:1104-1116. [PMID: 35225618 PMCID: PMC8983512 DOI: 10.1021/acs.molpharmaceut.1c00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to deliver small protein scaffolds intracellularly could enable the targeting and inhibition of many therapeutic targets that are not currently amenable to inhibition with small-molecule drugs. Here, we report the engineering of small protein scaffolds with anionic polypeptides (ApPs) to promote electrostatic interactions with positively charged nonviral lipid-based delivery systems. Proteins fused with ApPs are either complexed with off-the-shelf cationic lipids or encapsulated within ionizable lipid nanoparticles for highly efficient cytosolic delivery (up to 90%). The delivery of protein inhibitors is used to inhibit two common proto-oncogenes, Ras and Myc, in two cancer cell lines. This report demonstrates the feasibility of combining minimally engineered small protein scaffolds with tractable nanocarriers to inhibit intracellular proteins that are generally considered "undruggable" with current small molecule drugs and biologics.
Collapse
Affiliation(s)
- Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hejia Henry Wang
- Department Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cindy Song
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - David Gonzalez-Martinez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lukasz Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
See YX, Chen K, Fullwood MJ. MYC overexpression leads to increased chromatin interactions at superenhancers and MYC binding sites. Genome Res 2022; 32:629-642. [PMID: 35115371 PMCID: PMC8997345 DOI: 10.1101/gr.276313.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
The MYC oncogene encodes for the MYC protein and is frequently dysregulated across multiple cancer cell types, making it an attractive target for cancer therapy. MYC overexpression leads to MYC binding at active enhancers, resulting in a global transcriptional amplification of active genes. Because super-enhancers are frequently dysregulated in cancer, we hypothesized that MYC preferentially invades into super-enhancers and alters the cancer genome organization. To that end, we performed ChIP-seq, RNA-seq, circular chromosome conformation capture (4C-seq), and Spike-in Quantitative Hi-C (SIQHiC) on the U2OS osteosarcoma cell line with tetracycline-inducible MYC. MYC overexpression in U2OS cells modulated histone acetylation and increased MYC binding at super-enhancers. SIQHiC analysis revealed increased global chromatin contact frequency, particularly at chromatin interactions connecting MYC binding sites at promoters and enhancers. Immunofluorescence staining showed that MYC molecules formed punctate foci at these transcriptionally active domains after MYC overexpression. These results demonstrate the accumulation of overexpressed MYC at promoter–enhancer hubs and suggest that MYC invades into enhancers through spatial proximity. At the same time, the increased protein–protein interactions may strengthen these chromatin interactions to increase chromatin contact frequency. CTCF siRNA knockdown in MYC-overexpressed U2OS cells demonstrated that removal of architectural proteins can disperse MYC and abrogate the increase in chromatin contacts. By elucidating the chromatin landscape of MYC-driven cancers, we can potentially target MYC-associated chromatin interactions for cancer therapy.
Collapse
Affiliation(s)
- Yi Xiang See
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Kaijing Chen
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Melissa J Fullwood
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
33
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
34
|
Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine 2022; 75:103756. [PMID: 34942444 PMCID: PMC8713111 DOI: 10.1016/j.ebiom.2021.103756] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
c-MYC controls global gene expression and regulates cell proliferation, cell differentiation, cell cycle, metabolism and apoptosis. According to some estimates, MYC is dysregulated in ≈70% of human cancers and strong evidence implicates aberrantly expressed MYC in both tumor initiation and maintenance. In vivo studies show that MYC inhibition elicits a prominent anti-proliferative effect and sustained tumor regression while any alteration on healthy tissue remains reversible. This opens an exploitable window for treatment that makes MYC one of the most appealing therapeutic targets for cancer drug development. This review describes the main functional and structural features of the protein structure of MYC and provides a general overview of the most relevant or recently identified interactors that modulate MYC oncogenic activity. This review also summarizes the different approaches aiming to abrogate MYC oncogenic function, with a particular focus on the prototype inhibitors designed for the direct and indirect targeting of MYC.
Collapse
Affiliation(s)
- Victor Llombart
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK
| | - Marc R Mansour
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK; UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, London, UK.
| |
Collapse
|
35
|
Das SK, Kuzin V, Cameron DP, Sanford S, Jha RK, Nie Z, Rosello MT, Holewinski R, Andresson T, Wisniewski J, Natsume T, Price DH, Lewis BA, Kouzine F, Levens D, Baranello L. MYC assembles and stimulates topoisomerases 1 and 2 in a "topoisome". Mol Cell 2021; 82:140-158.e12. [PMID: 34890565 DOI: 10.1016/j.molcel.2021.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/11/2021] [Accepted: 11/13/2021] [Indexed: 12/25/2022]
Abstract
High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Suzanne Sanford
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Zuqin Nie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Marta Trullols Rosello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ronald Holewinski
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Thorkell Andresson
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Brian A Lewis
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA.
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
36
|
Bronder D, Tighe A, Wangsa D, Zong D, Meyer TJ, Wardenaar R, Minshall P, Hirsch D, Heselmeyer-Haddad K, Nelson L, Spierings D, McGrail JC, Cam M, Nussenzweig A, Foijer F, Ried T, Taylor SS. TP53 loss initiates chromosomal instability in fallopian tube epithelial cells. Dis Model Mech 2021; 14:dmm049001. [PMID: 34569598 PMCID: PMC8649171 DOI: 10.1242/dmm.049001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) originates in the fallopian tube epithelium and is characterized by ubiquitous TP53 mutation and extensive chromosomal instability (CIN). However, direct causes of CIN, such as mutations in DNA replication and mitosis genes, are rare in HGSOC. We therefore asked whether oncogenic mutations that are common in HGSOC can indirectly drive CIN in non-transformed human fallopian tube epithelial cells. To model homologous recombination deficient HGSOC, we sequentially mutated TP53 and BRCA1 then overexpressed MYC. Loss of p53 function alone was sufficient to drive the emergence of subclonal karyotype alterations. TP53 mutation also led to global gene expression changes, influencing modules involved in cell cycle commitment, DNA replication, G2/M checkpoint control and mitotic spindle function. Both transcriptional deregulation and karyotype diversity were exacerbated by loss of BRCA1 function, with whole-genome doubling events observed in independent p53/BRCA1-deficient lineages. Thus, our observations indicate that loss of the key tumour suppressor TP53 is sufficient to deregulate multiple cell cycle control networks and thereby initiate CIN in pre-malignant fallopian tube epithelial cells. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel Bronder
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Paul Minshall
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniela Hirsch
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Diana Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Joanne C. McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
37
|
Lovering RC, Gaudet P, Acencio ML, Ignatchenko A, Jolma A, Fornes O, Kuiper M, Kulakovskiy IV, Lægreid A, Martin MJ, Logie C. A GO catalogue of human DNA-binding transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194765. [PMID: 34673265 DOI: 10.1016/j.bbagrm.2021.194765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022]
Abstract
To control gene transcription, DNA-binding transcription factors recognise specific sequence motifs in gene regulatory regions. A complete and reliable GO annotation of all DNA-binding transcription factors is key to investigating the delicate balance of gene regulation in response to environmental and developmental stimuli. The need for such information is demonstrated by the many lists of transcription factors that have been produced over the past decade. The COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) Consortium brought together experts in the field of transcription with the aim of providing high quality and interoperable gene regulatory data. The Gene Ontology (GO) Consortium provides strict definitions for gene product function, including factors that regulate transcription. The collaboration between the GREEKC and GO Consortia has enabled the application of those definitions to produce a new curated catalogue of over 1400 human DNA-binding transcription factors, that can be accessed at https://www.ebi.ac.uk/QuickGO/targetset/dbTF. This catalogue has facilitated an improvement in the GO annotation of human DNA-binding transcription factors and led to the GO annotation of almost sixty thousand DNA-binding transcription factors in over a hundred species. Thus, this work will aid researchers investigating the regulation of transcription in both biomedical and basic science.
Collapse
Affiliation(s)
- Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London WC1E 6BT, United Kingdom.
| | - Pascale Gaudet
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211 Geneve 4, Switzerland.
| | - Marcio L Acencio
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - Alex Ignatchenko
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada.
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - Maria J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | - Colin Logie
- Molecular Biology Department, Faculty of Science, Radboud University, PO Box 9101, 6500HB Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
40
|
Gaudet P, Logie C, Lovering RC, Kuiper M, Lægreid A, Thomas PD. Gene Ontology representation for transcription factor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194752. [PMID: 34461313 DOI: 10.1016/j.bbagrm.2021.194752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Transcription plays a central role in defining the identity and functionalities of cells, as well as in their responses to changes in the cellular environment. The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the functions of gene products. A GO annotation is a statement about the function of a particular gene product, represented as an association between a gene product and the biological concept a GO term defines. Critically, each GO annotation is based on traceable scientific evidence. Here, we describe the different GO terms that are associated with proteins involved in transcription and its regulation, focusing on the standard of evidence required to support these associations. This article is intended to help users of GO annotations understand how to interpret the annotations and can contribute to the consistency of GO annotations. We distinguish between three classes of activities involved in transcription or directly regulating it - general transcription factors, DNA-binding transcription factors, and transcription co-regulators.
Collapse
Affiliation(s)
- Pascale Gaudet
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211 Genève, Switzerland.
| | - Colin Logie
- Molecular Biology Department, Faculty of Science, Radboud University, PO box 9101, 6500HB Nijmegen, the Netherlands
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Zanotti S, Vanhauwaert S, Van Neste C, Olexiouk V, Van Laere J, Verschuuren M, Van der Meulen J, Mus LM, Durinck K, Tilleman L, Deforce D, Van Nieuwerburgh F, Hogarty MD, Decaesteker B, De Vos WH, Speleman F. MYCN-induced nucleolar stress drives an early senescence-like transcriptional program in hTERT-immortalized RPE cells. Sci Rep 2021; 11:14454. [PMID: 34262099 PMCID: PMC8280219 DOI: 10.1038/s41598-021-93863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
MYCN is an oncogenic driver in neural crest-derived neuroblastoma and medulloblastoma. To better understand the early effects of MYCN activation in a neural-crest lineage context, we profiled the transcriptome of immortalized human retina pigment epithelial cells with inducible MYCN activation. Gene signatures associated with elevated MYC/MYCN activity were induced after 24 h of MYCN activation, which attenuated but sustained at later time points. Unexpectedly, MYCN activation was accompanied by reduced cell growth. Gene set enrichment analysis revealed a senescence-like signature with strong induction of p53 and p21 but in the absence of canonical hallmarks of senescence such as β-galactosidase positivity, suggesting incomplete cell fate commitment. When scrutinizing the putative drivers of this growth attenuation, differential gene expression analysis identified several regulators of nucleolar stress. This process was also reflected by phenotypic correlates such as cytoplasmic granule accrual and nucleolar coalescence. Hence, we propose that the induction of MYCN congests the translational machinery, causing nucleolar stress and driving cells into a transient pre-senescent state. Our findings shed new light on the early events induced by MYCN activation and may help unravelling which factors are required for cells to tolerate unscheduled MYCN overexpression during early malignant transformation.
Collapse
Affiliation(s)
- Sofia Zanotti
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Christophe Van Neste
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Volodimir Olexiouk
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Jolien Van Laere
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Joni Van der Meulen
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Molecular Diagnostic, Ghent University, 9000, Ghent, Belgium
| | - Liselot M Mus
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Bioresource Center Ghent, Health, Innovation and Research Center, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Kaat Durinck
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Laurentijn Tilleman
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Michael D Hogarty
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bieke Decaesteker
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
43
|
Figueiredo VC, Wen Y, Alkner B, Fernandez-Gonzalo R, Norrbom J, Vechetti IJ, Valentino T, Mobley CB, Zentner GE, Peterson CA, McCarthy JJ, Murach KA, von Walden F. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J Physiol 2021; 599:3363-3384. [PMID: 33913170 DOI: 10.1113/jp281244] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V ̇ O 2 max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.
Collapse
Affiliation(s)
- Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | - Taylor Valentino
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ferdinand von Walden
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Pellanda P, Dalsass M, Filipuzzi M, Loffreda A, Verrecchia A, Castillo Cano V, Thabussot H, Doni M, Morelli MJ, Soucek L, Kress T, Mazza D, Mapelli M, Beaulieu ME, Amati B, Sabò A. Integrated requirement of non-specific and sequence-specific DNA binding in Myc-driven transcription. EMBO J 2021; 40:e105464. [PMID: 33792944 DOI: 10.15252/embj.2020105464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.
Collapse
Affiliation(s)
- Paola Pellanda
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Virginia Castillo Cano
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain
| | | | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Mapelli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
45
|
Gene Transactivation and Transrepression in MYC-Driven Cancers. Int J Mol Sci 2021; 22:ijms22073458. [PMID: 33801599 PMCID: PMC8037706 DOI: 10.3390/ijms22073458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.
Collapse
|