1
|
Alves Domingos H, Green M, Ouzounidis VR, Finlayson C, Prevo B, Cheerambathur DK. The kinetochore protein KNL-1 regulates the actin cytoskeleton to control dendrite branching. J Cell Biol 2025; 224:e202311147. [PMID: 39625434 PMCID: PMC11613958 DOI: 10.1083/jcb.202311147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The function of the nervous system is intimately tied to its complex and highly interconnected architecture. Precise control of dendritic branching in individual neurons is central to building the complex structure of the nervous system. Here, we show that the kinetochore protein KNL-1 and its associated KMN (Knl1/Mis12/Ndc80 complex) network partners, typically known for their role in chromosome-microtubule coupling during mitosis, control dendrite branching in the Caenorhabditis elegans mechanosensory PVD neuron. KNL-1 restrains excess dendritic branching and promotes contact-dependent repulsion events, ensuring robust sensory behavior and preventing premature neurodegeneration. Unexpectedly, KNL-1 loss resulted in significant alterations of the actin cytoskeleton alongside changes in microtubule dynamics within dendrites. We show that KNL-1 modulates F-actin dynamics to generate proper dendrite architecture and that its N-terminus can initiate F-actin assembly. These findings reveal that the postmitotic neuronal KMN network acts to shape the developing nervous system by regulating the actin cytoskeleton and provide new insight into the mechanisms controlling dendrite architecture.
Collapse
Affiliation(s)
- Henrique Alves Domingos
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mattie Green
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Vasileios R. Ouzounidis
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Cameron Finlayson
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Bram Prevo
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dhanya K. Cheerambathur
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Beck CL, Kunze A. Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406678. [PMID: 39460486 DOI: 10.1002/smll.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
- Montana Nanotechnology Facility, Montana State University, Bozeman, MT, 59717, USA
- Optical Technology Center, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
3
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Liang X, Agulto R, Eichel K, Taylor CA, Paat VA, Deng H, Ori-McKenney K, Shen K. CRMP/UNC-33 maintains neuronal microtubule arrays by promoting individual microtubule rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596870. [PMID: 38854103 PMCID: PMC11160792 DOI: 10.1101/2024.05.31.596870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microtubules (MTs) are intrinsically dynamic polymers. In neurons, staggered individual microtubules form stable, polarized acentrosomal MT arrays spanning the axon and dendrite to support long-distance intracellular transport. How the stability and polarity of these arrays are maintained when individual MTs remain highly dynamic is still an open question. Here we visualize MT arrays in vivo in C. elegans neurons with single microtubule resolution. We find that the CRMP family homolog, UNC-33, is essential for the stability and polarity of MT arrays in neurites. In unc-33 mutants, MTs exhibit dramatically reduced rescue after catastrophe, develop gaps in coverage, and lose their polarity, leading to trafficking defects. UNC-33 is stably anchored on the cortical cytoskeleton and forms patch-like structures along the dendritic shaft. These discrete and stable UNC-33 patches concentrate free tubulins and correlate with MT rescue sites. In vitro , purified UNC-33 preferentially associates with MT tips and increases MT rescue frequency. Together, we propose that UNC-33 functions as a microtubule-associated protein (MAP) to promote individual MT rescue locally. Through this activity, UNC-33 prevents the loss of individual MTs, thereby maintaining the coverage and polarity of MT arrays throughout the lifetime of neurons.
Collapse
|
5
|
Jin Z, Zhang ZC, Xiao CY, Li MQ, Li QR, Gao LL. CRMP5 participates in oocyte meiosis by regulating spastin to correct microtubule-kinetochore misconnection. ZYGOTE 2024; 32:21-27. [PMID: 38047349 DOI: 10.1017/s0967199423000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Collapse
Affiliation(s)
- Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhi-Cai Zhang
- Department of Dispatching Management, Zibo Medical Emergency Command Center, Zibo, Shandong, 255030, China
| | - Chen-Yu Xiao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Mei-Qi Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Qian-Ru Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lei-Lei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
6
|
Ouzounidis VR, Prevo B, Cheerambathur DK. Sculpting the dendritic landscape: Actin, microtubules, and the art of arborization. Curr Opin Cell Biol 2023; 84:102214. [PMID: 37544207 DOI: 10.1016/j.ceb.2023.102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Vasileios R Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
7
|
Ghose A, Pullarkat P. The role of mechanics in axonal stability and development. Semin Cell Dev Biol 2023; 140:22-34. [PMID: 35786351 PMCID: PMC7615100 DOI: 10.1016/j.semcdb.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023]
Abstract
Much of the focus of neuronal cell biology has been devoted to growth cone guidance, synaptogenesis, synaptic activity, plasticity, etc. The axonal shaft too has received much attention, mainly for its astounding ability to transmit action potentials and the transport of material over long distances. For these functions, the axonal cytoskeleton and membrane have been often assumed to play static structural roles. Recent experiments have changed this view by revealing an ultrastructure much richer in features than previously perceived and one that seems to be maintained at a dynamic steady state. The role of mechanics in this is only beginning to be broadly appreciated and appears to involve passive and active modes of coupling different biopolymer filaments, filament turnover dynamics and membrane biophysics. Axons, being unique cellular processes in terms of high aspect ratios and often extreme lengths, also exhibit unique passive mechanical properties that might have evolved to stabilize them under mechanical stress. In this review, we summarize the experiments that have exposed some of these features. It is our view that axonal mechanics deserves much more attention not only due to its significance in the development and maintenance of the nervous system but also due to the susceptibility of axons to injury and neurodegeneration.
Collapse
Affiliation(s)
- Aurnab Ghose
- Indian Institute of Science Education and Research, Pune 411 008, India.
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru 560 080, India.
| |
Collapse
|
8
|
Samaro A, Cristancho A, Rivas A, Valtierra R, Beck S, Cantu J, Miranda M, Vacio A, Cardenas Muedano O, Holgado A. The daf-7(e1372) mutation rescues dauer formation defects seen in C. elegans unc-33 mutants. Front Physiol 2023; 14:975878. [PMID: 36814478 PMCID: PMC9939912 DOI: 10.3389/fphys.2023.975878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Collapsin response mediator protein-2 (CRMP2) in humans, UNC-33 in C. elegans, is a molecule that mediates axonal outgrowth and stability. UNC-33/CRMP2 has been hypothesized as a potential drug target for treating Alzheimer's and other neurodegenerative diseases, which can often be attributed in part to aging. In aging, CRMP2 becomes hyperphosphorylated, which decreases the protein's functionality, destabilizes the cellular skeleton, and contributes to neurodegeneration. In C. elegans, aging can be slowed by entering dauer diapause; a non-aging developmental stage turned on when the DAF-7/TGFβ signaling pathway is silenced in response to environmental stressors. In our laboratory, we discovered that unc-33 mutants are unable to form dauers in response to environmental stressors, but the mechanism behind this is still unknown. Here, we present a study that investigates whether a mutation in the daf-7 gene which leads to a temperature sensitive constitutive dauer phenotype can rescue phenotypes characteristic of unc-33 mutants. To this end, we created unc-33; daf-7 double mutants and quantified proper dauer formation after exposure to unfavorable environmental conditions. In addition, we tested how the introduction of the daf-7 mutation would affect the locomotion of the double mutants on an agar plate and a liquid medium. Furthermore, we examined axonal elongation of the double mutants using a transgene, juIs76, which expresses GFP in GABAergic motor neurons. Our analysis of unc-33; daf-7 double mutants showed that introducing the daf-7 mutation into an unc-33 mutant rescued dauer formation. However, further studies revealed that the unc-33; daf-7 double mutants had defects in axonal outgrowth of their D-type motor neuron which had been previously seen in unc-33 single mutants and impaired locomotion. Based on these results, we concluded that unc-33 mutants might have a problem suppressing DAF-7 signaling under unfavorable environmental conditions, leading to the activation of reproductive programs and the development of adults instead of dauers.
Collapse
|
9
|
Burute M, Jansen KI, Mihajlovic M, Vermonden T, Kapitein LC. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. SCIENCE ADVANCES 2022; 8:eabo2343. [PMID: 36332030 PMCID: PMC9635826 DOI: 10.1126/sciadv.abo2343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The polarization of neurons into axons and dendrites depends on extracellular cues, intracellular signaling, cytoskeletal rearrangements, and polarized transport, but the interplay between these processes during polarization remains unresolved. Here, we show that axon specification is determined by differences in microtubule network mobility between neurites, regulated by Rho guanosine triphosphatases (GTPases) and extracellular cues. In developing neurons, retrograde microtubule flow prevents the entry of the axon-selective motor protein Kinesin-1 into most neurites. Using inducible assays to control microtubule network flow, we demonstrate that local inhibition of microtubule mobility is sufficient to guide Kinesin-1 into a specific neurite, whereas long-term global inhibition induces the formation of multiple axons. We furthermore show that extracellular mechanical cues and intracellular Rho GTPase signaling control the local differences in microtubule network flow. These results reveal a novel cytoskeletal mechanism for neuronal polarization.
Collapse
Affiliation(s)
- Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
10
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Garcia-Gonzalez B, Avant S, Carassco-Pena A, Miranda MC, Salazar K, Torres E, Holgado A. Investigating the regulation of the unc-33 promoter by environmental stressors. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000651. [PMID: 36317086 PMCID: PMC9617166 DOI: 10.17912/micropub.biology.000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
Abstract
Environmental factors such as prenatal stress are hypothesized to contribute to the development of schizophrenia. Lee and colleagues determined rats exposed to prenatal stress exhibited decreased levels of only one protein, DPYSL2, in their prefrontal cortex and hippocampus. DYPSL2, a protein seen to be inactivated in schizophrenic patients, is important for neuronal development. The C. elegans homolog of DPYSL2, UNC-33, is also found to be critical for axonal outgrowth and synapse formation. Herein, we study the effects of environmental stressors such as increasing temperatures and pathogens on the expression of GFP driven by the unc-33 promoter. Results indicate that neuronal GFP expression was lower in C. elegans exposed to these prenatal stressors, making this the first report denoting an environmental regulation of the unc -33 promoter. This study provides insight into unc-33 and the regulation of its expression in relation to temperature and infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Holgado
- St. Edward's University
,
Correspondence to: Andrea Holgado (
)
| |
Collapse
|
12
|
Lin CH, Chen YC, Chan SP, Ou CY. TIAM-1 differentially regulates dendritic and axonal microtubule organization in patterning neuronal development through its multiple domains. PLoS Genet 2022; 18:e1010454. [PMID: 36223408 PMCID: PMC9612824 DOI: 10.1371/journal.pgen.1010454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development. Here, we characterize the role of actin regulators in axon and dendrite development and show that the RacGEF TIAM-1 regulates dendritic patterns through its N-terminal domains and suppresses axon growth through its C-terminal domains. TIAM-1 maintains plus-end-out microtubule orientation in posterior dendrites and prevents the accumulation of microtubules in the axon. In somatodendritic regions, TIAM-1 interacts with UNC-119 and stabilizes the organization between actin filaments and microtubules. UNC-119 is required for TIAM-1 to control axon growth, and its expression levels determine axon length. Taken together, TIAM-1 regulates neuronal microtubule organization and patterns axon and dendrite development respectively through its different domains.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chun Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Yen Ou
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Rashid A, Tevlin M, Lu Y, Shaham S. A developmental pathway for epithelial-to-motoneuron transformation in C. elegans. Cell Rep 2022; 40:111414. [PMID: 36170838 PMCID: PMC9579992 DOI: 10.1016/j.celrep.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Motoneurons and motoneuron-like pancreatic β cells arise from radial glia and ductal cells, respectively, both tube-lining progenitors that share molecular regulators. To uncover programs underlying motoneuron formation, we studied a similar, cell-division-independent transformation of the C. elegans tube-lining Y cell into the PDA motoneuron. We find that lin-12/Notch acts through ngn-1/Ngn and its regulator hlh-16/Olig to control transformation timing. lin-12 loss blocks transformation, while lin-12(gf) promotes precocious PDA formation. Early basal expression of ngn-1/Ngn and hlh-16/Olig depends on sem-4/Sall and egl-5/Hox. Later, coincident with Y cell morphological changes, ngn-1/Ngn expression is upregulated in a sem-4/Sall and egl-5/Hox-dependent but hlh-16/Olig-independent manner. Subsequently, Y cell retrograde extension forms an anchored process priming PDA axon extension. Extension requires ngn-1-dependent expression of the cytoskeleton organizers UNC-119, UNC-44/ANK, and UNC-33/CRMP, which also activate PDA terminal-gene expression. Our findings uncover cell-division-independent regulatory events leading to motoneuron generation, suggesting a conserved pathway for epithelial-to-motoneuron/motoneuron-like cell differentiation. Rashid et al. report on a conserved epithelial-to-motoneuron transformation pathway in C. elegans requiring ngn-1/Ngn and hlh-16/Olig. lin-12/Notch regulates transformation timing through these genes, while ngn-1/Ngn and hlh-16/Olig expression levels are regulated by sem-4/Sall and egl-5/Hox. Unexpectedly, the cytoskeleton organizers UNC-119, UNC-44, and UNC-33, which are ngn-1/Ngn targets, promote motoneuron terminal identity.
Collapse
Affiliation(s)
- Alina Rashid
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Maya Tevlin
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
15
|
Mechanosensitive body–brain interactions in Caenorhabditis elegans. Curr Opin Neurobiol 2022; 75:102574. [DOI: 10.1016/j.conb.2022.102574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
|
16
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
17
|
Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol 2022; 23:541-558. [PMID: 35383336 DOI: 10.1038/s41580-022-00473-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Rolls MM. Principles of microtubule polarity in linear cells. Dev Biol 2022; 483:112-117. [PMID: 35016908 PMCID: PMC10071391 DOI: 10.1016/j.ydbio.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
Abstract
The microtubule cytoskeleton is critical for maintenance of long and long-lived neurons. The overlapping array of microtubules extends from the major site of synthesis in the cell body to the far reaches of axons and dendrites. New materials are transported from the cell body along these neuronal roads by motor proteins, and building blocks and information about the state of affairs in other parts of the cell are returned by motors moving in the opposite direction. As motor proteins walk only in one direction along microtubules, the combination of correct motor and correctly oriented microtubules is essential for moving cargoes in the right direction. In this review, we focus on how microtubule polarity is established and maintained in neurons. At first thought, it seems that figuring out how microtubules are organized in neurons should be simple. After all, microtubules are essentially sticks with a slow-growing minus end and faster-growing plus end, and arranging sticks within the constrained narrow tubes of axons and dendrites should be straightforward. It is therefore quite surprising how many mechanisms contribute to making sure they are arranged in the correct polarity. Some of these mechanisms operate to generate plus-end-out polarity of axons, and others control mixed or minus-end-out dendrites.
Collapse
Affiliation(s)
- Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
19
|
Mini-review: Microtubule sliding in neurons. Neurosci Lett 2021; 753:135867. [PMID: 33812935 DOI: 10.1016/j.neulet.2021.135867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Microtubule sliding is an underappreciated mechanism that contributes to the establishment, organization, preservation, and plasticity of neuronal microtubule arrays. Powered by molecular motor proteins and regulated in part by static crosslinker proteins, microtubule sliding is the movement of microtubules relative to other microtubules or to non-microtubule structures such as the actin cytoskeleton. In addition to other important functions, microtubule sliding significantly contributes to the establishment and maintenance of microtubule polarity patterns in different regions of the neuron. The purpose of this article is to review the state of knowledge on microtubule sliding in the neuron, with emphasis on its mechanistic underpinnings as well as its functional significance.
Collapse
|
20
|
Chen YC, Huang HR, Hsu CH, Ou CY. CRMP/UNC-33 organizes microtubule bundles for KIF5-mediated mitochondrial distribution to axon. PLoS Genet 2021; 17:e1009360. [PMID: 33571181 PMCID: PMC7904166 DOI: 10.1371/journal.pgen.1009360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/24/2021] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.
Collapse
Affiliation(s)
- Ying-Chun Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Ru Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hao Hsu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Yen Ou
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Liang X, Kokes M, Fetter RD, Sallee MD, Moore AW, Feldman JL, Shen K. Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. eLife 2020; 9:e56547. [PMID: 32657271 PMCID: PMC7375809 DOI: 10.7554/elife.56547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center (MTOC), which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.
Collapse
Affiliation(s)
- Xing Liang
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Marcela Kokes
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Richard D Fetter
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | | | | | | | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
22
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci 2020; 21:E3283. [PMID: 32384769 PMCID: PMC7247333 DOI: 10.3390/ijms21093283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023] Open
Abstract
In a signaling network, not only the functions of molecules are important but when (temporal) and where (spatial) those functions are exerted and orchestrated is what defines the signaling output. To temporally and spatially modulate signaling events, cells generate specialized functional domains with variable lifetime and size that concentrate signaling molecules, enhancing their transduction potential. The plasma membrane is a key in this regulation, as it constitutes a primary signaling hub that integrates signals within and across the membrane. Here, we examine some of the mechanisms that cells exhibit to spatiotemporally regulate signal transduction, focusing on the early events of T cell activation from triggering of T cell receptor to formation and maturation of the immunological synapse.
Collapse
Affiliation(s)
- Esther Garcia
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|