1
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
2
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2025; 68:257-270. [PMID: 38402949 PMCID: PMC11785583 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Neoplasm Metastasis
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Alternative Splicing/genetics
- Epithelial-Mesenchymal Transition/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Movement/genetics
- Cadherins/metabolism
- Cadherins/genetics
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- RNA Splicing/genetics
- Male
- Mice, Nude
- Signal Transduction
- Female
- Antigens, CD
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Li W, Wu T, Zhu K, Ba G, Liu J, Zhou P, Li S, Wang L, Liu H, Ren W, Yu H, Yu Y. A single-cell transcriptomic census of mammalian olfactory epithelium aging. Dev Cell 2024; 59:3043-3058.e8. [PMID: 39173624 DOI: 10.1016/j.devcel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Mammalian olfactory epithelium has the capacity of self-renewal throughout life. Aging is one of the major causes leading to the olfactory dysfunction. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on young and aged murine olfactory epithelium (OE) and identified aging-related differentially expressed genes (DEGs) throughout 21 cell types. Aging led to the presence of activated horizontal basal cells (HBCs) in the OE and promoted cellular interaction between HBCs and neutrophils. Aging enhanced the expression of Egr1 and Fos in sustentacular cell differentiation from multipotent progenitors, whereas Bcl11b was downregulated during the sensory neuronal homeostasis in the aged OE. Egr1 and Cebpb were predictive core regulatory factors of the transcriptional network in the OE. Overexpression of Egr1 in aged OE organoids promoted cell proliferation and neuronal differentiation. Moreover, aging altered expression levels and frequencies of olfactory receptors. These findings provide a cellular and molecular framework of OE aging at the single-cell resolution.
Collapse
Affiliation(s)
- Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kesen Zhu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Guangyi Ba
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjv Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
4
|
Hou B, Shu M, Liu C, Du Y, Xu C, Jiang H, Hou J, Chen X, Wang L, Wu X. Unveiling the role of UPF3B in hepatocellular carcinoma: Potential therapeutic target. Cancer Sci 2024; 115:2646-2658. [PMID: 38889220 PMCID: PMC11309952 DOI: 10.1111/cas.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
RNA-binding proteins can regulate nucleotide metabolism and gene expression. UPF3B regulator of nonsense mediated mRNA decay (UPF3B) exhibits dysfunction in cancers. However, its role in the progression of hepatocellular carcinoma (HCC) is still insufficiently understood. Here, we found that UPF3B was markedly upregulated in HCC samples and associated with adverse prognosis in patients. UPF3B dramatically promoted HCC growth both in vivo and in vitro. Mechanistically, UPF3B was found to bind to PPP2R2C, a regulatory subunit of PP2A, boosting its mRNA degradation and activating the PI3K/AKT/mTOR pathway. E2F transcription factor 6 (E2F6) directly binds to the UPF3B promoter to facilitate its transcription. Together, the E2F6/UPF3B/PPP2R2C axis promotes HCC growth through the PI3K/AKT/mTOR pathway. Hence, it could be a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Bowen Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Min Shu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Yunfeng Du
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Cuicui Xu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
| | - Huijiao Jiang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesThe First Affiliated Hospital/Shihezi University School of MedicineShiheziChina
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
| |
Collapse
|
5
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
6
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
7
|
Lehtiniemi T, Bourgery M, Ma L, Ahmedani A, Mäkelä M, Asteljoki J, Olotu O, Laasanen S, Zhang FP, Tan K, Chousal JN, Burow D, Koskinen S, Laiho A, Elo L, Chalmel F, Wilkinson M, Kotaja N. SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis. Nucleic Acids Res 2022; 50:11470-11491. [PMID: 36259644 PMCID: PMC9723633 DOI: 10.1093/nar/gkac900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.
Collapse
Affiliation(s)
- Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Margareeta Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho Asteljoki
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- GM-Unit, Helsinki Institute of Life Science, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dana Burow
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Frédéric Chalmel
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine (IGM), University of California, San Diego, La Jolla, CA 92093, USA
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Tan K, Wilkinson MF. Regulation of both transcription and RNA turnover contribute to germline specification. Nucleic Acids Res 2022; 50:7310-7325. [PMID: 35776114 PMCID: PMC9303369 DOI: 10.1093/nar/gkac542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
The nuanced mechanisms driving primordial germ cells (PGC) specification remain incompletely understood since genome-wide transcriptional regulation in developing PGCs has previously only been defined indirectly. Here, using SLAMseq analysis, we determined genome-wide transcription rates during the differentiation of embryonic stem cells (ESCs) to form epiblast-like (EpiLC) cells and ultimately PGC-like cells (PGCLCs). This revealed thousands of genes undergoing bursts of transcriptional induction and rapid shut-off not detectable by RNAseq analysis. Our SLAMseq datasets also allowed us to infer RNA turnover rates, which revealed thousands of mRNAs stabilized and destabilized during PGCLC specification. mRNAs tend to be unstable in ESCs and then are progressively stabilized as they differentiate. For some classes of genes, mRNA turnover regulation collaborates with transcriptional regulation, but these processes oppose each other in a surprisingly high frequency of genes. To test whether regulated mRNA turnover has a physiological role in PGC development, we examined three genes that we found were regulated by RNA turnover: Sox2, Klf2 and Ccne1. Circumvention of their regulated RNA turnover severely impaired the ESC-to-EpiLC and EpiLC-to-PGCLC transitions. Our study demonstrates the functional importance of regulated RNA stability in germline development and provides a roadmap of transcriptional and post-transcriptional regulation during germline specification.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine (IGM), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Wallmeroth D, Lackmann JW, Kueckelmann S, Altmüller J, Dieterich C, Boehm V, Gehring NH. Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. EMBO J 2022; 41:e109191. [PMID: 35451084 PMCID: PMC9108619 DOI: 10.15252/embj.2021109191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense‐mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor. Here, we present a comprehensive functional analysis of UPF3A and UPF3B in human cells using combinatory experimental approaches. Overexpression or knockout of UPF3A as well as knockout of UPF3B did not substantially change global NMD activity. In contrast, the co‐depletion of UPF3A and UPF3B resulted in a marked NMD inhibition and a transcriptome‐wide upregulation of NMD substrates, demonstrating a functional redundancy between both NMD factors. In rescue experiments, UPF2 or EJC binding‐deficient UPF3B largely retained NMD activity. However, combinations of different mutants, including deletion of the middle domain, showed additive or synergistic effects and therefore failed to maintain NMD. Collectively, UPF3A and UPF3B emerge as fault‐tolerant, functionally redundant NMD activators in human cells.
Collapse
Affiliation(s)
- Damaris Wallmeroth
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Sabrina Kueckelmann
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Yi Z, Arvola RM, Myers S, Dilsavor CN, Abu Alhasan R, Carter BN, Patton RD, Bundschuh R, Singh G. Mammalian UPF3A and UPF3B can activate nonsense-mediated mRNA decay independently of their exon junction complex binding. EMBO J 2022; 41:e109202. [PMID: 35451102 PMCID: PMC9108626 DOI: 10.15252/embj.2021109202] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is governed by the three conserved factors-UPF1, UPF2, and UPF3. While all three are required for NMD in yeast, UPF3B is dispensable for NMD in mammals, and its paralog UPF3A is suggested to only weakly activate or even repress NMD due to its weaker binding to the exon junction complex (EJC). Here, we characterize the UPF3A/B-dependence of NMD in human cell lines deleted of one or both UPF3 paralogs. We show that in human colorectal cancer HCT116 cells, NMD can operate in a UPF3B-dependent and -independent manner. While UPF3A is almost dispensable for NMD in wild-type cells, it strongly activates NMD in cells lacking UPF3B. Notably, NMD remains partially active in cells lacking both UPF3 paralogs. Complementation studies in these cells show that EJC-binding domain of UPF3 paralogs is dispensable for NMD. Instead, the conserved "mid" domain of UPF3 paralogs is consequential for their NMD activity. Altogether, our results demonstrate that the mammalian UPF3 proteins play a more active role in NMD than simply bridging the EJC and the UPF complex.
Collapse
Affiliation(s)
- Zhongxia Yi
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - René M Arvola
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Sean Myers
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Corinne N Dilsavor
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Rabab Abu Alhasan
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Bayley N Carter
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Robert D Patton
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
The Physiological Roles of the Exon Junction Complex in Development and Diseases. Cells 2022; 11:cells11071192. [PMID: 35406756 PMCID: PMC8997533 DOI: 10.3390/cells11071192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/12/2023] Open
Abstract
The exon junction complex (EJC) becomes an increasingly important regulator of early gene expression in the central nervous system (CNS) and other tissues. The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (EIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), together with various auxiliary factors. The EJC is assembled specifically at exon-exon junctions on mRNAs, hence the name of the complex. The EJC regulates multiple levels of gene expression, from splicing to translation and mRNA degradation. The functional roles of the EJC have been established as crucial to the normal progress of embryonic and neurological development, with wide ranging implications on molecular, cellular, and organism level function. Dysfunction of the EJC has been implicated in multiple developmental and neurological diseases. In this review, we discuss recent progress on the EJC’s physiological roles.
Collapse
|
13
|
Padonou F, Gonzalez V, Provin N, Yayilkan S, Jmari N, Maslovskaja J, Kisand K, Peterson P, Irla M, Giraud M. Aire-dependent transcripts escape Raver2-induced splice-event inclusion in the thymic epithelium. EMBO Rep 2022; 23:e53576. [PMID: 35037357 PMCID: PMC8892270 DOI: 10.15252/embr.202153576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aire allows medullary thymic epithelial cells (mTECs) to express and present a large number of self-antigens for central tolerance. Although mTECs express a high diversity of self-antigen splice isoforms, the extent and regulation of alternative splicing events (ASEs) in their transcripts, notably in those induced by Aire, is unknown. In contrast to Aire-neutral genes, we find that transcripts of Aire-sensitive genes show only a low number of ASEs in mTECs, with about a quarter present in peripheral tissues excluded from the thymus. We identify Raver2, as a splicing-related factor overexpressed in mTECs and dependent on H3K36me3 marks, that promotes ASEs in transcripts of Aire-neutral genes, leaving Aire-sensitive ones unaffected. H3K36me3 profiling reveals its depletion at Aire-sensitive genes and supports a mechanism that is preceding Aire expression leading to transcripts of Aire-sensitive genes with low ASEs that escape Raver2-induced alternative splicing. The lack of ASEs in Aire-induced transcripts would result in an incomplete Aire-dependent negative selection of autoreactive T cells, thus highlighting the need of complementary tolerance mechanisms to prevent activation of these cells in the periphery.
Collapse
Affiliation(s)
- Francine Padonou
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Nathan Provin
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Sümeyye Yayilkan
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Nada Jmari
- Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Kai Kisand
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Pärt Peterson
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Magali Irla
- Aix‐Marseille UniversitéCNRSINSERMCIML, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Matthieu Giraud
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| |
Collapse
|
14
|
Lejeune F. Nonsense-Mediated mRNA Decay, a Finely Regulated Mechanism. Biomedicines 2022; 10:biomedicines10010141. [PMID: 35052820 PMCID: PMC8773229 DOI: 10.3390/biomedicines10010141] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
- Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Cell Type-Specific Role of RNA Nuclease SMG6 in Neurogenesis. Cells 2021; 10:cells10123365. [PMID: 34943873 PMCID: PMC8699217 DOI: 10.3390/cells10123365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.
Collapse
|
16
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Abstract
Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.
Collapse
|
18
|
Hu J, Li P, Shi B, Tie J. Importin β1 mediates nuclear import of the factors associated with nonsense-mediated RNA decay. Biochem Biophys Res Commun 2021; 542:34-39. [PMID: 33486189 DOI: 10.1016/j.bbrc.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
In eukaryotic cells, nonsense-mediated RNA decay (NMD) is an essential physiological mechanism coupled to translation, regulating the stability of abnormal RNA containing premature termination codon (PTC) and a significant fraction of normal transcriptomes. So far, the molecular regulation mechanism of NMD pathway is far from fully elucidated. Previously, we observed the interaction between importin β1 (Impβ1) and UPF1, a core factor of NMD. Here, we demonstrated that Impβ1 knockdown stabilized NMD reporters, and Impβ1 and UPF1 interacted and co-regulated an extensive number of target transcripts. Furthermore, Impβ1 affected the interaction between UPF1 and SMG5 or MAGOH, and the nuclear distributions of UPF1, SMG1, SMG5 and MAGOH. Besides, Ran knockdown extremely promoted the dissociation of UPF1 from SMG5 or MAGOH. Our findings provide molecular insight into the potential function of Impβ1in nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Jianran Hu
- Department of Biological Science and Technology, Changzhi University, Changzhi, 046011, China.
| | - Ping Li
- Department of Biological Science and Technology, Changzhi University, Changzhi, 046011, China
| | - Baozhong Shi
- Department of Biological Science and Technology, Changzhi University, Changzhi, 046011, China
| | - Jun Tie
- Department of Biological Science and Technology, Changzhi University, Changzhi, 046011, China
| |
Collapse
|
19
|
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: From nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie 2020; 180:10-22. [PMID: 33132159 DOI: 10.1016/j.biochi.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins. Intriguingly, in humans, UPF3 exists as paralog proteins, UPF3A, and UPF3B. While UPF3 paralogs are traditionally known to be involved in the NMD pathway, there is a growing consensus that there are other critical cellular functions beyond quality control that are dictated by the UPF3 proteins. This review presents the current knowledge on the biochemical functions of UPF3 paralogs in diverse cellular processes, including NMD, translation, and genetic compensation response. We also discuss the contribution of the UPF3 paralogs in development and function of the central nervous system and germ cells. Furthermore, significant advances in the past decade have provided new perspectives on the implications of UPF3 paralogs in neurodevelopmental diseases. In this regard, genome- and transcriptome-wide sequencing analysis of patient samples revealed that loss of UPF3B is associated with brain disorders such as intellectual disability, autism, attention deficit hyperactivity disorder, and schizophrenia. Therefore, we further aim to provide an insight into the brain diseases associated with loss-of-function mutations of UPF3B.
Collapse
Affiliation(s)
- Bhagyashree Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|