1
|
Venegas JJ, Weisz JM, Choi CY, Herringshaw RE, Nabelsi OA, Liang NC. Social isolation increases impulsive choice with minor changes on metabolic function in middle-aged rats. Physiol Rep 2025; 13:e70184. [PMID: 39821966 PMCID: PMC11738651 DOI: 10.14814/phy2.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
The effects of social isolation (SI) during middle age remain unclear, so we tested the hypothesis that SI would lead to an increase in impulsive choice (IC), anxiety-like behavior, and metabolic dysfunction in middle-aged rats. Male and female rats were housed individually or in groups of four with same-sex housing mates at 11 months of age. Two months later, IC behavior was assessed using a delay-discounting task and anxiety-like behavior through a novelty-suppressed feeding (NSF) task. Lastly, glucose tolerance and insulin sensitivity following exposure to a high-fat diet were assessed using an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). The results showed that socially isolated rats displayed more IC behavior than did group-housed rats of both sexes. However, no significant effect of housing was evident in the NSF task, OGTT, or ITT. Male rats had a higher plasma insulin concentration and insulin resistance index compared to females. Our findings demonstrate that SI in middle age is sufficient to increase IC behavior and highlight inherent sex-specific differences in metabolic profiles. These findings underscore the importance of investigating mechanisms that underlie the effects of social isolation during different stages of life.
Collapse
Affiliation(s)
- Jassmyn J Venegas
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Jacob M Weisz
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Chan Young Choi
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Ren E Herringshaw
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Omar A Nabelsi
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Grissom NM, Glewwe N, Chen C, Giglio E. Sex mechanisms as nonbinary influences on cognitive diversity. Horm Behav 2024; 162:105544. [PMID: 38643533 PMCID: PMC11338071 DOI: 10.1016/j.yhbeh.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Essentially all neuropsychiatric diagnoses show some degree of sex and/or gender differences in their etiology, diagnosis, or prognosis. As a result, the roles of sex-related variables in behavior and cognition are of strong interest to many, with several lines of research showing effects on executive functions and value-based decision making in particular. These findings are often framed within a sex binary, with behavior of females described as less optimal than male "defaults"-- a framing that pits males and females against each other and deemphasizes the enormous overlap in fundamental neural mechanisms across sexes. Here, we propose an alternative framework in which sex-related factors encompass just one subset of many sources of valuable diversity in cognition. First, we review literature establishing multidimensional, nonbinary impacts of factors related to sex chromosomes and endocrine mechanisms on cognition, focusing on value- based decision-making tasks. Next, we present two suggestions for nonbinary interpretations and analyses of sex-related data that can be implemented by behavioral neuroscientists without devoting laboratory resources to delving into mechanisms underlying sex differences. We recommend (1) shifting interpretations of behavior away from performance metrics and towards strategy assessments to avoid the fallacy that the performance of one sex is worse than another; and (2) asking how much variance sex explains in measures and whether any differences are mosaic rather than binary, to avoid assuming that sex differences in separate measures are inextricably correlated. Nonbinary frameworks in research on cognition will allow neuroscience to represent the full spectrum of brains and behaviors.
Collapse
Affiliation(s)
- Nicola M Grissom
- Department of Psychology, University of Minnesota, United States of America.
| | - Nic Glewwe
- Department of Psychology, University of Minnesota, United States of America
| | - Cathy Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States of America
| | - Erin Giglio
- Department of Psychology, University of Minnesota, United States of America
| |
Collapse
|
3
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Faraji M, Viera-Resto OA, Setlow B, Bizon JL. Effects of reproductive experience on cost-benefit decision making in female rats. Front Behav Neurosci 2024; 18:1304408. [PMID: 38352625 PMCID: PMC10863065 DOI: 10.3389/fnbeh.2024.1304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Many individuals undergo mating and/or other aspects of reproductive experience at some point in their lives, and pregnancy and childbirth in particular are associated with alterations in the prevalence of several psychiatric disorders. Research in rodents shows that maternal experience affects spatial learning and other aspects of hippocampal function. In contrast, there has been little work in animal models concerning how reproductive experience affects cost-benefit decision making, despite the relevance of this aspect of cognition for psychiatric disorders. To begin to address this issue, reproductively experienced (RE) and reproductively naïve (RN) female Long-Evans rats were tested across multiple tasks that assess different forms of cost-benefit decision making. In a risky decision-making task, in which rats chose between a small, safe food reward and a large food reward accompanied by variable probabilities of punishment, RE females chose the large risky reward significantly more frequently than RN females (greater risk taking). In an intertemporal choice task, in which rats chose between a small, immediate food reward and a large food reward delivered after a variable delay period, RE females chose the large reward less frequently than RN females. Together, these results show distinct effects of reproductive experience on different forms of cost-benefit decision making in female rats, and highlight reproductive status as a variable that could influence aspects of cognition relevant for psychiatric disorders.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Omar A. Viera-Resto
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L. Bizon
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Guzulaitis R, Palmer LM. A thalamocortical pathway controlling impulsive behavior. Trends Neurosci 2023; 46:1018-1024. [PMID: 37778915 DOI: 10.1016/j.tins.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Planning and anticipating motor actions enables movements to be quickly and accurately executed. However, if anticipation is not properly controlled, it can lead to premature impulsive actions. Impulsive behavior is defined as actions that are poorly conceived and are often risky and inappropriate. Historically, impulsive behavior was thought to be primarily controlled by the frontal cortex and basal ganglia. More recently, two additional brain regions, the ventromedial (VM) thalamus and the anterior lateral motor cortex (ALM), have been shown to have an important role in mice. Here, we explore this newly discovered role of the thalamocortical pathway and suggest cellular mechanisms that may be involved in driving the cortical activity that contributes to impulsive behavior.
Collapse
Affiliation(s)
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
7
|
Blejewski RC, Van Heukelom JT, Langford JS, Hunt KH, Rinkert IR, Wagner TJ, Pitts RC, Hughes CE. Behavioral mechanisms of oxycodone's effects in female and male rats: Reinforcement delay and impulsive choice. Exp Clin Psychopharmacol 2023; 31:1050-1068. [PMID: 37199913 PMCID: PMC10656366 DOI: 10.1037/pha0000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
μ-Opioid agonists (e.g., morphine) typically increase impulsive choice, which has been interpreted as an opioid-induced increase in sensitivity to reinforcement delay. Relatively little research has been done with opioids other than morphine (e.g., oxycodone), or on sex differences in opioid effects, on impulsive choice. The present study investigated the effects of acute (0.1-1.0 mg/kg) and chronic (1.0 mg/kg twice/day) administration of oxycodone on choice controlled by reinforcement delay, a primary mechanism implicated in impulsive choice, in female and male rats. Rats responded under a concurrent-chains procedure designed to quantify the effects of reinforcement delay on choice within each session. For both sexes, choice was sensitive to delay under this procedure. Sensitivity to delay under baseline was slightly higher for males than females, suggesting more impulsive choice with males. When given acutely, intermediate and higher doses of oxycodone decreased sensitivity to delay; this effect was larger and more reliable in males than females. When given chronically, sex differences were also observed: tolerance developed to the sensitivity-decreasing effects in females, whereas sensitization developed in males. These data suggest that reinforcement delay may play an important role in sex differences in impulsive choice, as well as in the effects of acute and chronic administration of opioids in impulsive choice. However, drug-induced changes in impulsive choice could be related to at least two potential behavioral mechanisms: reinforcement delay and/or reinforcement magnitude. Effects of oxycodone on sensitivity to reinforcement magnitude remain to be fully characterized. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Jeremy S. Langford
- Department of Psychology, University of North Carolina Wilmington
- Department of Psychology, West Virginia University
| | - Katelyn H. Hunt
- Department of Psychology, University of North Carolina Wilmington
| | | | - Thomas J. Wagner
- Department of Psychology, University of North Carolina Wilmington
| | - Raymond C. Pitts
- Department of Psychology, University of North Carolina Wilmington
| | | |
Collapse
|
8
|
Garcia M, Gupta S, Wikenheiser AM. Sex differences in patch-leaving foraging decisions in rats. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad011. [PMID: 38596244 PMCID: PMC11003400 DOI: 10.1093/oons/kvad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 04/11/2024]
Abstract
The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions. The behavioral task was designed to mimic the structure of natural foraging problems, where distinct spatial locations are associated with different reward statistics, and decisions require navigation and movement through space. Male and female Long-Evans rats generally followed the predictions of theoretical models of foraging, albeit with a consistent tendency to persist with patches for too long compared to behavioral strategies that maximize food intake rate. The tendency to choose overly-long patch residence times was stronger in male rats. We also observed sex differences in locomotion as rats performed the task, but these differences in movement only partially accounted for the differences in patch residence durations observed between male and female rats. Together, these results suggest a nuanced relationship between movement, sex, and foraging decisions.
Collapse
Affiliation(s)
- Marissa Garcia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sukriti Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew M Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Garcia M, Gupta S, Wikenheiser AM. Sex differences in patch-leaving foraging decisions in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529135. [PMID: 36824852 PMCID: PMC9949151 DOI: 10.1101/2023.02.19.529135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions. The behavioral task was designed to mimic the structure of natural foraging problems, where distinct spatial locations are associated with different reward statistics, and decisions require navigation and movement through space. Male and female Long-Evans rats generally followed the predictions of theoretical models of foraging, albeit with a consistent tendency to persist with patches for too long compared to behavioral strategies that maximize food intake rate. The tendency to choose overly-long patch residence times was stronger in male rats. We also observed sex differences in locomotion as rats performed the task, but these differences in movement only partially accounted for the differences in patch residence durations observed between male and female rats. Together, these results suggest a nuanced relationship between movement, sex, and foraging decisions.
Collapse
Affiliation(s)
- Marissa Garcia
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Current address: Neurosciences Graduate Program, University of California, San Diego, San Diego, CA 92093
| | - Sukriti Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Andrew M. Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
10
|
Gancarz AM, Mitchell SH, George AM, Martin CD, Turk MC, Bool HM, Aktar F, Kwarteng F, Palmer AA, Meyer PJ, Richards JB, Dietz DM, Ishiwari K. Reward maximization assessed using a sequential patch depletion task in a large sample of heterogeneous stock rats. Sci Rep 2023; 13:7027. [PMID: 37120610 PMCID: PMC10148848 DOI: 10.1038/s41598-023-34179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water "patches" and could elect to "stay" in the current patch or "leave" for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward magnitude. Based on the delay in a given session, different visit durations were necessary to obtain the maximum number of rewards. Visit duration may be analogous to an indifference point in traditional DD tasks. Males and females did not significantly differ on traditional measures of DD (e.g. delay gradient; AUC). When examining measures of patch utilization, females made fewer patch changes at all delays and spent more time in the patch before leaving for the alternative patch compared to males. Consistent with this, there was some evidence that females deviated from reward maximization more than males. However, when controlling for body weight, females had a higher normalized rate of reinforcement than males. Measures of reward maximization were only weakly associated with traditional DD measures and may represent distinctive underlying processes. Taken together, females performance differed from males with regard to reward maximization that were not observed utilizing traditional measures of DD, suggesting that the patch depletion model was more sensitive to modest sex differences when compared to traditional DD measures in a large sample of HS rats.
Collapse
Affiliation(s)
- Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, 93311, USA.
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Marisa C Turk
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Heather M Bool
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Fahmida Aktar
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Francis Kwarteng
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - David M Dietz
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
Truckenbrod LM, Cooper EM, Orsini CA. Cognitive mechanisms underlying decision making involving risk of explicit punishment in male and female rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:248-275. [PMID: 36539558 PMCID: PMC10065932 DOI: 10.3758/s13415-022-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Individuals engage in the process of risk-based decision making on a daily basis to navigate various aspects of life. There are, however, individual differences in this form of decision making, with some individuals exhibiting preference for riskier choices (risk taking) and others exhibiting preference for safer choices (risk aversion). Recent work has shown that extremes in risk taking (e.g., excessive risk taking or risk aversion) are not only cognitive features of neuropsychiatric diseases, but may in fact predispose individuals to the development of such diseases. To better understand individual differences in risk taking, and thus the mechanisms by which they confer disease vulnerability, the current study investigated the cognitive contributions to risk taking in both males and females. Rats were first behaviorally characterized in a decision-making task involving risk of footshock punishment and then tested on a battery of cognitive behavioral assays. Individual variability in risk taking was compared with performance on these tasks. Consistent with prior work, females were more risk averse than males. With the exception of the Set-shifting Task, there were no sex differences in performance on other cognitive assays. There were, however, sex-dependent associations between risk taking and specific cognitive measures. Greater risk taking was associated with better cognitive flexibility in males whereas greater risk aversion was associated with better working memory in females. Collectively, these findings reveal that distinct cognitive mechanisms are associated with risk taking in males and females, which may account for sex differences in this form of decision making.
Collapse
Affiliation(s)
- Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Panfil K, Deavours A, Kirkpatrick K. Effects of the estrous cycle on impulsive choice and interval timing in female rats. Horm Behav 2023; 149:105315. [PMID: 36669427 PMCID: PMC9974800 DOI: 10.1016/j.yhbeh.2023.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Research in humans and animals shows differences in impulsive choice, which is a failure to wait for larger, delayed rewards, when comparing males and females. It is possible that fluctuations in sex hormones (estradiol and progesterone) across the reproductive cycle contribute to sex differences in impulsive choice. The current study delivered an impulsive choice task with peak interval trials to female rats while estrous cycles, the rodent reproductive cycle, were tracked over the course of the task. Female rats were more sensitive to changes in delay in the proestrus phase of the estrous cycle and made more larger-later choices when in estrus, particularly when the delay to the smaller reward was short. Estradiol increases dramatically during proestrus while progesterone peaks during estrus, suggesting that estradiol and progesterone may affect impulsive choice through mechanisms such as delay discounting, delay aversion, and/or timing processes. Analyses of timing of the choice task delays showed inconsistent effects of the estrous cycle across delays, suggesting that reward-timing interactions may have complicated how hormone fluctuations affected interval timing. Further research is needed to determine the mechanism underlying increased larger-later choices during the estrus phase, increased delay sensitivity during the proestrus phase, and variability in interval timing across delays and estrous cycle stages.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America.
| | - Aubrey Deavours
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America
| |
Collapse
|
13
|
Gancarz AM, Mitchell SH, George AM, Martin CD, Turk MC, Bool HM, Aktar F, Kwarteng F, Palmer AA, Meyer PJ, Richards JB, Dietz DM, Isiwari K. Reward Maximization Assessed Using a Sequential Patch Depletion Task in a Large Sample of Heterogeneous Stock Rats. RESEARCH SQUARE 2023:rs.3.rs-2525080. [PMID: 36778344 PMCID: PMC9915773 DOI: 10.21203/rs.3.rs-2525080/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water "patches" and could elect to "stay" in the current patch or "leave" for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward magnitude. Based on the delay in a given session, different visit durations were necessary to obtain the maximum number of rewards. Visit duration may be analogous to an indifference point in traditional DD tasks. While differences in traditional DD measures (e.g., delay gradient) have been detected between males and females, these effects were small and inconsistent. However, when examining measures of reward maximization, females made fewer patch changes at all delays and spent more time in the patch before leaving for the alternative patch compared to males. This pattern of choice resulted in males having a higher rate of reinforcement than females. Consistent with this, there was some evidence that females deviated from the optimal more, leading to less reward. Measures of reward maximization were only weakly associated with traditional DD measures and may represent distinctive underlying processes. Taken together, females performance differed from males with regard to reward maximization that were not observed utilizing traditional measures of DD, suggesting that the patch depletion model was more sensitive to modest sex differences when compared to traditional DD measures in a large sample of HS rats.
Collapse
|
14
|
Haynes JM, Willis-Moore ME, Perez D, Cousins DJ, Odum AL. Temporal expectations in delay of gratification. J Exp Anal Behav 2023; 119:59-80. [PMID: 36477783 DOI: 10.1002/jeab.814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
We examined how temporal expectations influence preference reversals in a delay of gratification task for rats based on a hypothesis of Rachlin (2000), who suggested that preference for a larger-later reward may shift in favor of a smaller-immediate reward as a result of changes in when that larger reward is expected. To explore Rachlin's hypothesis, we preexposed two groups of rats to the delays associated with a larger-later reinforcer from a delay of gratification task. One group experienced the delays as a function of their choices in an intertemporal choice task and the other group experienced delays yoked from the first group (independent of their behavior) in an exposure training procedure. In addition, we included a third group of rats that were not exposed to delays during preexposure training as a comparison to the other two groups. Overall, the two groups of rats that experienced delays during preexposure training tended to make fewer defection responses than the comparison group during the delay of gratification task. Consistent with Rachlin's hypothesis, our results suggest that temporal learning may influence preference reversals in a delay of gratification task, providing a number of future directions for research in this area.
Collapse
Affiliation(s)
| | | | - D Perez
- Department of Psychology, Utah State University
| | | | - Amy L Odum
- Department of Psychology, Utah State University
| |
Collapse
|
15
|
Treviño M, Medina-Coss Y León R, Lezama E. Response Time Distributions and the Accumulation of Visual Evidence in Freely Moving Mice. Neuroscience 2022; 501:25-41. [PMID: 35995337 DOI: 10.1016/j.neuroscience.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Response time (RT) distributions are histograms of the observed RTs for discriminative choices, comprising a rich source of empirical information to study perceptual processes. The drift-diffusion model (DDM), a mathematical formulation predicting decision tasks, reproduces the RT distributions, contributing to our understanding of these processes from a theoretical perspective. Notably, although the mouse is a popular model system for studying brain function and behavior, little is known about mouse perceptual RT distributions, and their description from an information-accumulation perspective. We combined an automated visual discrimination task with pharmacological micro-infusions of targeted brain regions to acquire thousands of responses from freely-moving adult mice. Both choices and escape latencies showed a strong dependency on stimulus discriminability. By applying a DDM fit to our experimental data, we found that the rate of incoming evidence (drift rate) increased with stimulus contrast but was reversibly impaired when inactivating the primary visual cortex (V1). Other brain regions involved in the decision-making process, the posterior parietal cortex (PPC) and the frontal orienting fields (FOF), also influenced relevant parameters from the DDM. The large number of empirical observations that we collected for this study allowed us to achieve accurate convergence for the model fit. Therefore, changes in the experimental conditions were mirrored by changes in model parameters, suggesting the participation of relevant brain areas in the decision-making process. This approach could help interpret future studies involving attention, discrimination, and learning in adult mice.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Simmons Cancer Institute at Southern Illinois University, USA
| | - Elí Lezama
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
16
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Hernandez CM, Jackson NL, Hernandez AR, McMahon LL. Impairments in Fear Extinction Memory and Basolateral Amygdala Plasticity in the TgF344-AD Rat Model of Alzheimer's Disease Are Distinct from Nonpathological Aging. eNeuro 2022; 9:ENEURO.0181-22.2022. [PMID: 35998297 PMCID: PMC9239848 DOI: 10.1523/eneuro.0181-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Fear-based disorders such as post-traumatic stress disorder (PTSD) steepen age-related cognitive decline and double the risk for developing Alzheimer's disease (AD). Because of the seemingly hyperactive properties of fear memories, PTSD symptoms can worsen with age. Perturbations in the synaptic circuitry supporting fear memory extinction are key neural substrates of PTSD. The basolateral amygdala (BLA) is a medial temporal lobe structure that is critical in the encoding, consolidation, and retrieval of fear memories. As little is known about fear extinction memory and BLA synaptic dysfunction within the context of aging and AD, the goal of this study was to investigate how fear extinction memory deficits and basal amygdaloid nucleus (BA) synaptic dysfunction differentially associate in nonpathologic aging and AD in the TgF344AD (TgAD) rat model of AD. Young, middle-aged, and older-aged WT and TgAD rats were trained on a delay fear conditioning and extinction procedure before ex vivo extracellular field potential recording experiments in the BA. Relative to young WT rats, long-term extinction memory was impaired, and in general, was associated with a hyperexcitable BA and impaired LTP in TgAD rats at all ages. In contrast, long-term extinction memory was impaired in aged WT rats and was associated with impaired LTP but not BA hyperexcitability. Interestingly, the middle-aged TgAD rats showed intact short-term extinction and BA LTP, which is suggestive of a compensatory mechanism, whereas differential neural recruitment in older-aged WT rats may have facilitated short-term extinction. As such, associations between fear extinction memory and amygdala deficits in nonpathologic aging and AD are dissociable.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
| | - Nateka L Jackson
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
| | - Abbi R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lori L McMahon
- Department of Cellular, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
- Nathan Shock Center of Excellence in the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama 35294
- Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
18
|
Hernandez CM, McQuail JA, Ten Eyck TW, Wheeler AR, Labiste CC, Setlow B, Bizon J. GABA B receptors in prelimbic cortex and basolateral amygdala differentially influence intertemporal decision making and decline with age. Neuropharmacology 2022; 209:109001. [PMID: 35189132 DOI: 10.1016/j.neuropharm.2022.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to decide adaptively between immediate vs. delayed gratification (intertemporal choice) is critical for well-being and is associated with a range of factors that influence quality of life. In contrast to young adults, many older adults show enhanced preference for delayed gratification; however, the neural mechanisms underlying this age difference in intertemporal choice are largely un-studied. Changes in signaling through GABAB receptors (GABABRs) mediate several age-associated differences in cognitive processes linked to intertemporal choice. The current study used a rat model to determine how GABABRs in two brain regions known to regulate intertemporal choice (prelimbic cortex; PrL and basolateral amygdala; BLA) contribute to age differences in this form of decision making in male rats. As in humans, aged rats showed enhanced preference for large, delayed over small, immediate rewards during performance in an intertemporal choice task in operant test chambers. Activation of PrL GABABRs via microinfusion of the agonist baclofen increased choice of large, delayed rewards in young adult rats but did not influence choice in aged rats. Conversely, infusion of baclofen into the BLA strongly reduced choice of large, delayed rewards in both young adult and aged rats. Aged rats further showed a significant reduction in expression of GABABR1 subunit isoforms in the prefrontal cortex, a discovery that is consonant with the null effect of intra-PrL baclofen on intertemporal choice in aged rats. In contrast, expression of GABABR subunits was generally conserved with age in the BLA. Jointly, these findings elucidate a role for GABABRs in intertemporal choice and identify fundamental features of brain maturation and aging that mediate an improved ability to delay gratification.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine - Columbia, Columbia, SC, 29208, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
19
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Effect of Sex and Reproductive Status on Inhibitory Control and Social Cognition in the Domestic Dog ( Canis familiaris). Animals (Basel) 2021; 11:ani11082448. [PMID: 34438905 PMCID: PMC8388798 DOI: 10.3390/ani11082448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Various behavioral differences exist between male and female dogs, but very little research has focused on how sex influences cognition. Even fewer studies have taken sex hormones into account. Our aim was to investigate whether dogs’ sex and neutering status can influence two important cognitive traits: inhibitory control and social cognition. Inhibitory control was assessed using the cylinder test. In this task, the dog is required to inhibit reaching for a treat directly through a transparent barrier, and instead go around the barrier to access the treat. Social cognition was assessed using the unsolvable task, during which a food reward is visible but impossible to access. Dogs have three opportunities for action in this situation: (a) persisting with the problem independently, (b) seeking attention from a human, or (c) abandoning the task. Males were more impulsive and independent compared to females, whereas females had greater inhibitory control and were more likely to gaze at a human during a problem-solving situation. Since neutering status did not affect the results, it seems likely that these sex differences arose during early development and were not affected by levels of circulating sex hormones to a great extent. Abstract Sex differences in a variety of cognitive traits have long been reported in various species, including dogs. However, only a few canine studies have taken the possible effect of reproductive hormones into account. The aim of this study was to investigate the effects of sex and reproductive status of pet dogs (N = 1032) on two cognitive traits: inhibitory control and social cognition. Inhibitory control was assessed using the cylinder test, and the dogs’ tendency to initiate social contact with a human during a problem-solving situation was assessed using the unsolvable task. Female dogs had a significantly higher success rate in the cylinder test compared to males, and they spent significantly more time in human-directed behavior during the unsolvable task. In contrast, males spent significantly more time in independent behavior during the unsolvable task. Reproductive status had no significant effect on the results of the cylinder test or the unsolvable task. Our results showed that female dogs asked for more help/used a more cooperative strategy during a problem-solving situation and had greater inhibitory control compared to males. According to our results, it seems likely that these sex differences were not influenced to a large extent by reproductive hormones.
Collapse
|
21
|
Hernandez CM, Orsini CA, Blaes SL, Bizon JL, Febo M, Bruijnzeel AW, Setlow B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J Psychopharmacol 2021; 35:848-863. [PMID: 33295231 PMCID: PMC8187454 DOI: 10.1177/0269881120965931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, USA,Department of Psychiatry, University of Florida, Gainesville, USA,Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA,Department of Psychology, The University of Texas at Austin, Austin, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| |
Collapse
|
22
|
Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2020; 200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Drugs of abuse and highly palatable foods (e.g. high fat or sweet foods) have powerful reinforcing effects, which can lead to compulsive and addictive drives to ingest these substances to the point of psychopathology and self-harm--specifically the development of Substance Use Disorder (SUD) and obesity. Both SUD and binge-like overeating can be defined as disorders in which the salience of the reward (food or drug) becomes exaggerated relative to, and at the expense of, other rewards that promote well-being. A major roadblock in the treatment of these disorders is high rates of relapse after periods of abstinence. It is common, although not universal, for cue-induced craving to increase over time with abstinence, often triggered by cues previously paired with the reinforcing substance. Accumulating evidence suggests that similar neural circuits and cellular mechanisms contribute to abstinence-induced and cue-triggered seeking of drugs and palatable food. Although much research has focused on the important role of corticolimbic circuitry in drug-seeking, our goal is to expand focus to the more recently explored hypothalamic-thalamic-striatal circuitry. Specifically, we review how connections, and neurotransmitters therein, among the lateral hypothalamus, paraventricular nucleus of the thalamus, and the nucleus accumbens contribute to abstinence-induced opioid- and (high fat or sweet) food-seeking. Given that biological sex and gonadal hormones have been implicated in addictive behavior across species, another layer to this review is to compare behaviors and neural circuit-based mechanisms of abstinence-induced opioid- or food-seeking between males and females when such data is available.
Collapse
Affiliation(s)
| | - Suman K Guha
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|