1
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Liu J, Chai XX, Qiu XR, Sun WJ, Tian YL, Guo WH, Yin DC, Zhang CY. Type X collagen knockdown inactivate ITGB1/PI3K/AKT to suppress chronic unpredictable mild stress-stimulated triple-negative breast cancer progression. Int J Biol Macromol 2024; 273:133074. [PMID: 38866293 DOI: 10.1016/j.ijbiomac.2024.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Rong Qiu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Yi-Le Tian
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China.
| |
Collapse
|
3
|
Poirier A, Ormonde JVS, Aubry I, Abidin BM, Feng CH, Martinez-Cordova Z, Hincapie AM, Wu C, Pérez-Quintero LA, Wang CL, Gingras AC, Madrenas J, Tremblay ML. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci Signal 2024; 17:eadg4422. [PMID: 38166031 DOI: 10.1126/scisignal.adg4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.
Collapse
Affiliation(s)
- Alexandre Poirier
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - João Vitor Silva Ormonde
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials (LNBio - CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
| | - Chu-Han Feng
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | - Chia-Lin Wang
- NYU Langone Medical Center, 660 1st Ave, Fl 5, New York City, NY 10016, USA
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Joaquín Madrenas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 40095, USA
| | - Michel L Tremblay
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Lai TH, Ahmed M, Hwang JS, Bahar ME, Pham TM, Yang J, Kim W, Maulidi RF, Lee DK, Kim DH, Kim HJ, Kim DR. Manipulating RKIP reverses the metastatic potential of breast cancer cells. Front Oncol 2023; 13:1189350. [PMID: 37469399 PMCID: PMC10352845 DOI: 10.3389/fonc.2023.1189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Breast cancer is a common tumor type among women, with a high fatality due to metastasis. Metastasis suppressors encode proteins that inhibit the metastatic cascade independent of the primary tumor growth. Raf kinase inhibitory protein (RKIP) is one of the promising metastasis suppressor candidates. RKIP is reduced or lost in aggressive variants of different types of cancer. A few pre-clinical or clinical studies have capitalized on this protein as a possible therapeutic target. In this article, we employed two breast cancer cells to highlight the role of RKIP as an antimetastatic gene. One is the low metastatic MCF-7 with high RKIP expression, and the other is MDA-MB-231 highly metastatic cell with low RKIP expression. We used high-throughput data to explore how RKIP is lost in human tissues and its effect on cell mobility. Based on our previous work recapitulating the links between RKIP and SNAI, we experimentally manipulated RKIP in the cell models through its novel upstream NME1 and investigated the subsequent genotypic and phenotypic changes. We also demonstrated that RKIP explained the uneven migration abilities of the two cell types. Furthermore, we identified the regulatory circuit that might carry the effect of an existing drug, Epirubicin, on activating gene transcription. In conclusion, we propose and test a potential strategy to reverse the metastatic capability of breast cancer cells by chemically manipulating RKIP expression.
Collapse
Affiliation(s)
- Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Rizi Firman Maulidi
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University Hospital, and Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| |
Collapse
|
6
|
Poirier A, Wu C, Hincapie AM, Martinez-Cordova Z, Abidin BM, Tremblay ML. TAOK3 limits age-associated inflammation by negatively modulating macrophage differentiation and their production of TNFα. Immun Ageing 2023; 20:31. [PMID: 37400834 DOI: 10.1186/s12979-023-00350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.
Collapse
Affiliation(s)
- Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine, McGill University, Montréal, Québec, Canada.
- McGill University, Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue West, Montréal, Québec, H3A 1A3, Canada.
| |
Collapse
|
7
|
Wan Y, Cohen J, Szenk M, Farquhar KS, Coraci D, Krzysztoń R, Azukas J, Van Nest N, Smashnov A, Chern YJ, De Martino D, Nguyen LC, Bien H, Bravo-Cordero JJ, Chan CH, Rosner MR, Balázsi G. Nonmonotone invasion landscape by noise-aware control of metastasis activator levels. Nat Chem Biol 2023; 19:887-899. [PMID: 37231268 PMCID: PMC10299915 DOI: 10.1038/s41589-023-01344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
A major pharmacological assumption is that lowering disease-promoting protein levels is generally beneficial. For example, inhibiting metastasis activator BACH1 is proposed to decrease cancer metastases. Testing such assumptions requires approaches to measure disease phenotypes while precisely adjusting disease-promoting protein levels. Here we developed a two-step strategy to integrate protein-level tuning, noise-aware synthetic gene circuits into a well-defined human genomic safe harbor locus. Unexpectedly, engineered MDA-MB-231 metastatic human breast cancer cells become more, then less and then more invasive as we tune BACH1 levels up, irrespective of the native BACH1. BACH1 expression shifts in invading cells, and expression of BACH1's transcriptional targets confirm BACH1's nonmonotone phenotypic and regulatory effects. Thus, chemical inhibition of BACH1 could have unwanted effects on invasion. Additionally, BACH1's expression variability aids invasion at high BACH1 expression. Overall, precisely engineered, noise-aware protein-level control is necessary and important to unravel disease effects of genes to improve clinical drug efficacy.
Collapse
Affiliation(s)
- Yiming Wan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joseph Cohen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mariola Szenk
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin S Farquhar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Damiano Coraci
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rafał Krzysztoń
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua Azukas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Nicholas Van Nest
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alex Smashnov
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Jye Chern
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Harold Bien
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Gábor Balázsi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
8
|
Vallés-Martí A, Mantini G, Manoukian P, Waasdorp C, Sarasqueta AF, de Goeij-de Haas RR, Henneman AA, Piersma SR, Pham TV, Knol JC, Giovannetti E, Bijlsma MF, Jiménez CR. Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma. Cell Rep 2023; 42:112581. [PMID: 37269289 DOI: 10.1016/j.celrep.2023.112581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases. By using integrative inferred kinase activity (INKA) scoring, we identify multiple (parallel) activated kinases that are subsequently matched to kinase inhibitors. Compared with high-dose single-drug treatments, INKA-tailored low-dose 3-drug combinations against multiple targets demonstrate superior efficacy against PDAC cell lines, organoid cultures, and patient-derived xenografts. Overall, this approach is particularly more effective against the aggressive mesenchymal PDAC model compared with the epithelial model in both preclinical settings and may contribute to improved treatment outcomes in PDAC patients.
Collapse
Affiliation(s)
- Andrea Vallés-Martí
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands
| | - Giulia Mantini
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Paul Manoukian
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | | | - Richard R de Goeij-de Haas
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Alex A Henneman
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Sander R Piersma
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Thang V Pham
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Jaco C Knol
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Connie R Jiménez
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Liu J, Yang CQ, Chen Q, Yu TY, Zhang SL, Guo WH, Luo LH, Zhao G, Yin DC, Zhang CY. MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer. Biomater Sci 2022; 10:4596-4611. [PMID: 35792605 DOI: 10.1039/d2bm00543c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Gang Zhao
- The First Hospital of Jilin University, 130021, Changchun, China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
11
|
Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, Schaefer F, Lorenz K, Veglia G, Rosner MR. Raf Kinase Inhibitory Protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci U S A 2022; 119:e2121867119. [PMID: 35696587 PMCID: PMC9231499 DOI: 10.1073/pnas.2121867119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the β-adrenergic receptor (β-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes β-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the β-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Colin Ong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Suzana Gomes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Bok-Soon Lee
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037
- George Washington University Cancer Center, George Washington University, Washington, DC 20037
| | - Florian Schaefer
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Harnessing RKIP to Combat Heart Disease and Cancer. Cancers (Basel) 2022; 14:cancers14040867. [PMID: 35205615 PMCID: PMC8870036 DOI: 10.3390/cancers14040867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.
Collapse
|
13
|
Giovanini G, Barros LRC, Gama LR, Tortelli TC, Ramos AF. A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy. Cancers (Basel) 2022; 14:633. [PMID: 35158901 PMCID: PMC8833822 DOI: 10.3390/cancers14030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
Collapse
Affiliation(s)
- Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
| | - Luciana R. C. Barros
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | - Leonardo R. Gama
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | | | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| |
Collapse
|
14
|
Ang MJY, Yoon J, Zhou M, Wei HL, Goh YY, Li Z, Feng J, Wang H, Su Q, Ong DST, Liu X. Deciphering Nanoparticle Trafficking into Glioblastomas Uncovers an Augmented Antitumor Effect of Metronomic Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106194. [PMID: 34726310 DOI: 10.1002/adma.202106194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Indexed: 05/28/2023]
Abstract
Nanoparticles have been explored in glioblastomas as they can traverse the blood-brain barrier and target glioblastoma selectively. However, direct observation of nanoparticle trafficking into glioblastoma cells and their underlying intracellular fate after systemic administration remains uncharacterized. Here, based on high-resolution transmission electron microscopy experiments of an intracranial glioblastoma model, it is shown that ligand-modified nanoparticles can traverse the blood-brain barrier, endocytose into the lysosomes of glioblastoma cells, and undergo endolysosomal escape upon photochemical ionization. Moreover, an optimal dose of metronomic chemotherapy using dual-drug-loaded nanocarriers can induce an augmented antitumor effect directly on tumors, which has not been recognized in previous studies. Metronomic chemotherapy enhances antitumor effects 3.5-fold compared with the standard chemotherapy regimen using the same accumulative dose in vivo. This study provides a conceptual framework that can be used to develop metronomic nanoparticle regimens as a safe and viable therapeutic strategy for treating glioblastomas and other advanced-stage solid tumors.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School (ISEP), National University of Singapore, Singapore, 119077, Singapore
- The N1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| | - Jeehyun Yoon
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Han-Lin Wei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School (ISEP), National University of Singapore, Singapore, 119077, Singapore
- The N1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| | - Zhenglin Li
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jia Feng
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, 138632, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School (ISEP), National University of Singapore, Singapore, 119077, Singapore
- The N1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
15
|
East MP, Johnson GL. Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. J Biol Chem 2021; 298:101525. [PMID: 34958800 PMCID: PMC8888345 DOI: 10.1016/j.jbc.2021.101525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Pharmacological inhibition of protein kinases induces adaptive reprogramming of tumor cell regulatory networks by altering expression of genes that regulate signaling, including protein kinases. Adaptive responses are dependent on transcriptional changes resulting from remodeling of enhancer and promoter landscapes. Enhancer and promoter remodeling in response to targeted kinase inhibition is controlled by changes in open chromatin state and by activity of specific transcription factors, such as c-MYC. This review focuses on the dynamic plasticity of protein kinase expression of the tumor cell kinome and the resulting adaptive resistance to targeted kinase inhibition. Plasticity of the functional kinome has been shown in patient window trials where triple-negative and human epidermal growth factor receptor 2–positive breast cancer patient tumors were characterized by RNAseq after biopsies before and after 1 week of therapy. The expressed kinome changed dramatically during drug treatment, and these changes in kinase expression were shown in cell lines and xenografts in mice to be correlated with adaptive tumor cell drug resistance. The dynamic transcriptional nature of the kinome also differs for inhibitors targeting different kinase signaling pathways (e.g., BRAF-MEK-ERK versus PI3K-AKT) that are commonly activated in cancers. Heterogeneity arising from differences in gene regulation and mutations represents a challenge to therapeutic durability and prevention of clinical drug resistance with drug-tolerant tumor cell populations developing and persisting through treatment. We conclude that understanding the heterogeneity of kinase expression at baseline and in response to therapy is imperative for development of combinations and timing intervals of therapies making interventions durable.
Collapse
Affiliation(s)
- Michael P East
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gary L Johnson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
| |
Collapse
|
16
|
Yesilkanal AE, Johnson GL, Ramos AF, Rosner MR. New strategies for targeting kinase networks in cancer. J Biol Chem 2021; 297:101128. [PMID: 34461089 PMCID: PMC8449055 DOI: 10.1016/j.jbc.2021.101128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Targeted strategies against specific driver molecules of cancer have brought about many advances in cancer treatment since the early success of the first small-molecule inhibitor Gleevec. Today, there are a multitude of targeted therapies approved by the Food and Drug Administration for the treatment of cancer. However, the initial efficacy of virtually every targeted treatment is often reversed by tumor resistance to the inhibitor through acquisition of new mutations in the target molecule, or reprogramming of the epigenome, transcriptome, or kinome of the tumor cells. At the core of this clinical problem lies the assumption that targeted treatments will only be efficacious if the inhibitors are used at their maximum tolerated doses. Such aggressive regimens create strong selective pressure on the evolutionary progression of the tumor, resulting in resistant cells. High-dose single agent treatments activate alternative mechanisms that bypass the inhibitor, while high-dose combinatorial treatments suffer from increased toxicity resulting in treatment cessation. Although there is an arsenal of targeted agents being tested clinically and preclinically, identifying the most effective combination treatment plan remains a challenge. In this review, we discuss novel targeted strategies with an emphasis on the recent cross-disciplinary studies demonstrating that it is possible to achieve antitumor efficacy without increasing toxicity by adopting low-dose multitarget approaches to treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA.
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandre F Ramos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades, University of São Paulo, Brazil
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
17
|
Igarashi K, Nishizawa H, Saiki Y, Matsumoto M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. J Biol Chem 2021; 297:101032. [PMID: 34339740 PMCID: PMC8387770 DOI: 10.1016/j.jbc.2021.101032] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell–cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a “two-faced BACH1 model”, which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|