1
|
Etkin A, Powell J, Savitz AJ. Opportunities for use of neuroimaging in de-risking drug development and improving clinical outcomes in psychiatry: an industry perspective. Neuropsychopharmacology 2024; 50:258-268. [PMID: 39169213 PMCID: PMC11526012 DOI: 10.1038/s41386-024-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Neuroimaging, across positron emission tomography (PET), electroencephalography (EEG), and magnetic resonance imaging (MRI), has been a mainstay of clinical neuroscience research for decades, yet has penetrated little into psychiatric drug development beyond often underpowered phase 1 studies, or into clinical care. Simultaneously, there is a pressing need to improve the probability of success in drug development, increase mechanistic diversity, and enhance clinical efficacy. These goals can be achieved by leveraging neuroimaging in a precision psychiatry framework, wherein effects of drugs on the brain are measured early in clinical development to understand dosing and indication, and then in later-stage trials to identify likely drug responders and enrich clinical trials, ultimately improving clinical outcomes. Here we examine the key variables important for success in using neuroimaging for precision psychiatry from the lens of biotechnology and pharmaceutical companies developing and deploying new drugs in psychiatry. We argue that there are clear paths for incorporating different neuroimaging modalities to de-risk subsequent development phases in the near to intermediate term, culminating in use of select neuroimaging modalities in clinical care for prescription of new precision drugs. Better outcomes through neuroimaging biomarkers, however, require a wholesale commitment to a precision psychiatry approach and will necessitate a cultural shift to align biopharma and clinical care in psychiatry to a precision orientation already routine in other areas of medicine.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, USA.
| | | | - Adam J Savitz
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
2
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
3
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Badal KK, Sadhu A, Raveendra BL, McCracken C, Lozano‐Villada S, Shetty AC, Gillette P, Zhao Y, Stommes D, Fieber LA, Schmale MC, Mahurkar A, Hawkins RD, Puthanveettil SV. Single-neuron analysis of aging-associated changes in learning reveals impairments in transcriptional plasticity. Aging Cell 2024; 23:e14228. [PMID: 38924663 PMCID: PMC11488329 DOI: 10.1111/acel.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.
Collapse
Affiliation(s)
- Kerriann K. Badal
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Integrated Biology Graduate ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | - Abhishek Sadhu
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Present address:
Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bindu L. Raveendra
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Carrie McCracken
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sebastian Lozano‐Villada
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Amol C. Shetty
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Phillip Gillette
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Yibo Zhao
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Dustin Stommes
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Lynne A. Fieber
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Michael C. Schmale
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Anup Mahurkar
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Robert D. Hawkins
- Department of NeuroscienceColumbia UniversityNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | |
Collapse
|
5
|
Wang J, Huo X, Zhou H, Liu H, Li X, Lu N, Sun X. Identification of Autophagy-Related Candidate Genes in the Early Diagnosis of Alzheimer's Disease and Exploration of Potential Molecular Mechanisms. Mol Neurobiol 2024; 61:6584-6598. [PMID: 38329682 DOI: 10.1007/s12035-024-04011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to identify autophagy-related candidate genes for the early diagnosis of Alzheimer's disease (AD) and elucidate their potential molecular mechanisms. Differentially expressed genes (DEGs) and phenotype-associated significant module genes were obtained using the "limma" package and weighted gene co-expression network analysis (WGCNA) based on hippocampal tissue datasets from AD patients and control samples. The intersection between the list of autophagy-related genes (ATGs), DEGs, and module genes was further investigated to obtain AD-autophagy-related differential expression genes (ATDEGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to identify hub genes, and a second intersection was performed with important module genes from the protein-protein interaction (PPI) network to obtain co-hub genes. Finally, a diagnostic model was constructed by receiver operating characteristic (ROC) analysis to determine the candidate genes with high diagnostic efficacy in the external validation set. Moreover, immune infiltration analysis was performed on AD patient brain tissues and explore the correlation between candidate genes and immune cells. We further analyzed the expression level of candidate genes in the SH-SY5Y cells with Aβ25-35 (25 µM). Among the 17 identified AD-ATDEGs, ATP6V1E1 stood out with area under the curve (AUC) values of 0.869, 0.817, and 0.714 in the external validation set, underscoring its high diagnostic efficacy in both hippocampal and peripheral blood contexts for AD patients. Meanwhile, ATP6V1E1 expression was positively correlated with effector memory CD4 + T cells, while negatively correlated with natural killer T cells and activated CD4 + T cells. Results from quantitative PCR (qPCR) and immunofluorescence assays indicated a reduction in ATP6V1E1 expression, aligning with our database analysis findings. In summary, ATP6V1E1 as a candidate gene provides a new perspective for the early identification and pathogenesis of AD.
Collapse
Affiliation(s)
- Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China.
- Hunan Guangxiu Medical Imaging Diagnosis Center, Changsha, China.
| | - Xinhua Huo
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Na Lu
- Reproductive and Genetic Hospital of CITIC Xiangya, Changsha, China
| | - Xuan Sun
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Sanchez-Rodriguez LM, Khan AF, Adewale Q, Bezgin G, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Jiang H, Chai X, Carbonell F, Rosa-Neto P, Iturria-Medina Y. In-vivo neuronal dysfunction by Aβ and tau overlaps with brain-wide inflammatory mechanisms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1383163. [PMID: 38966801 PMCID: PMC11223503 DOI: 10.3389/fnagi.2024.1383163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024] Open
Abstract
The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aβ) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aβ and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aβ and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aβ and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Ahmed F. Khan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Hongxiu Jiang
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| |
Collapse
|
8
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease. Commun Biol 2024; 7:528. [PMID: 38704445 PMCID: PMC11069569 DOI: 10.1038/s42003-024-06217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, CA, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
9
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
10
|
Adewale Q, Khan AF, Bennett DA, Iturria-Medina Y. Single-nucleus RNA velocity reveals critical synaptic and cell-cycle dysregulations in neuropathologically confirmed Alzheimer's disease. Sci Rep 2024; 14:7269. [PMID: 38538816 PMCID: PMC10973452 DOI: 10.1038/s41598-024-57918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Typical differential single-nucleus gene expression (snRNA-seq) analyses in Alzheimer's disease (AD) provide fixed snapshots of cellular alterations, making the accurate detection of temporal cell changes challenging. To characterize the dynamic cellular and transcriptomic differences in AD neuropathology, we apply the novel concept of RNA velocity to the study of single-nucleus RNA from the cortex of 60 subjects with varied levels of AD pathology. RNA velocity captures the rate of change of gene expression by comparing intronic and exonic sequence counts. We performed differential analyses to find the significant genes driving both cell type-specific RNA velocity and expression differences in AD, extensively compared these two transcriptomic metrics, and clarified their associations with multiple neuropathologic traits. The results were cross-validated in an independent dataset. Comparison of AD pathology-associated RNA velocity with parallel gene expression differences reveals sets of genes and molecular pathways that underlie the dynamic and static regimes of cell type-specific dysregulations underlying the disease. Differential RNA velocity and its linked progressive neuropathology point to significant dysregulations in synaptic organization and cell development across cell types. Notably, most of the genes underlying this synaptic dysregulation showed increased RNA velocity in AD subjects compared to controls. Accelerated cell changes were also observed in the AD subjects, suggesting that the precocious depletion of precursor cell pools might be associated with neurodegeneration. Overall, this study uncovers active molecular drivers of the spatiotemporal alterations in AD and offers novel insights towards gene- and cell-centric therapeutic strategies accounting for dynamic cell perturbations and synaptic disruptions.
Collapse
Affiliation(s)
- Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Y I-M, 3801 University Street, Room NW312, Montreal, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Ahmed F Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Y I-M, 3801 University Street, Room NW312, Montreal, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Y I-M, 3801 University Street, Room NW312, Montreal, H3A 2B4, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Young AL, Oxtoby NP, Garbarino S, Fox NC, Barkhof F, Schott JM, Alexander DC. Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat Rev Neurosci 2024; 25:111-130. [PMID: 38191721 DOI: 10.1038/s41583-023-00779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to 'black box' machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Collapse
Affiliation(s)
- Alexandra L Young
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | - Sara Garbarino
- Life Science Computational Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| |
Collapse
|
12
|
Veitch DP, Weiner MW, Miller M, Aisen PS, Ashford MA, Beckett LA, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Nho KT, Nosheny R, Okonkwo O, Perrin RJ, Petersen RC, Rivera Mindt M, Saykin A, Shaw LM, Toga AW, Tosun D. The Alzheimer's Disease Neuroimaging Initiative in the era of Alzheimer's disease treatment: A review of ADNI studies from 2021 to 2022. Alzheimers Dement 2024; 20:652-694. [PMID: 37698424 PMCID: PMC10841343 DOI: 10.1002/alz.13449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Melanie Miller
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Miriam A. Ashford
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Robert C. Green
- Division of GeneticsDepartment of MedicineBrigham and Women's HospitalBroad Institute Ariadne Labs and Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Kwangsik T. Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Monica Rivera Mindt
- Department of PsychologyLatin American and Latino Studies InstituteAfrican and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research CenterCenter for Neurodegenerative ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingInstitute of Neuroimaging and InformaticsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
13
|
Carbonell F, McNicoll C, Zijdenbos AP, Bedell BJ. Spatial association between distributed β-amyloid and tau varies with cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559737. [PMID: 37808643 PMCID: PMC10557646 DOI: 10.1101/2023.09.27.559737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Several PET studies have explored the relationship between β-amyloid load and tau uptake at the early stages of Alzheimer's disease (AD) progression. Most of these studies have focused on the linear relationship between β-amyloid and tau at the local level and their synergistic effect on different AD biomarkers. We hypothesize that patterns of spatial association between β-amyloid and tau might be uncovered using alternative association metrics that account for linear as well as more complex, possible nonlinear dependencies. In the present study, we propose a new Canonical Distance Correlation Analysis (CDCA) to generate distinctive spatial patterns of the cross-correlation structure between tau, as measured by [18F]flortaucipir PET, and β-amyloid, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We found that the CDCA-based β-amyloid scores were not only maximally distance-correlated to tau in cognitively normal (CN) controls and mild cognitive impairment (MCI), but also differentiated between low and high levels of β-amyloid uptake. The most distinctive spatial association pattern was characterized by a spread of β-amyloid covering large areas of the cortex and localized tau in the entorhinal cortex. More importantly, this spatial dependency varies according to cognition, which cannot be explained by the uptake differences in β-amyloid or tau between CN and MCI subjects. Hence, the CDCA-based scores might be more accurate than the amyloid or tau SUVR for the enrollment in clinical trials of those individuals on the path of cognitive deterioration.
Collapse
|
14
|
Vogel JW, Corriveau-Lecavalier N, Franzmeier N, Pereira JB, Brown JA, Maass A, Botha H, Seeley WW, Bassett DS, Jones DT, Ewers M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat Rev Neurosci 2023; 24:620-639. [PMID: 37620599 DOI: 10.1038/s41583-023-00731-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.
Collapse
Affiliation(s)
- Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden.
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Acadamy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Neuro Division, Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Dani S Bassett
- Departments of Bioengineering, Electrical and Systems Engineering, Physics and Astronomy, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
15
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
16
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529377. [PMID: 37502947 PMCID: PMC10370127 DOI: 10.1101/2023.02.21.529377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants ( N = 132 ) . Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Cecile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | | | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| |
Collapse
|
17
|
Ye F, Funk Q, Rockers E, Shulman JM, Masdeu JC, Pascual B. In Alzheimer-prone brain regions, metabolism and risk-gene expression are strongly correlated. Brain Commun 2022; 4:fcac216. [PMID: 36092303 PMCID: PMC9453434 DOI: 10.1093/braincomms/fcac216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroimaging in the preclinical phase of Alzheimer’s disease provides information crucial to early intervention, particularly in people with a high genetic risk. Metabolic network modularity, recently applied to the study of dementia, is increased in Alzheimer’s disease patients compared with controls, but network modularity in cognitively unimpaired elderly with various risks of developing Alzheimer’s disease needs to be determined. Based on their 5-year cognitive progression, we stratified 117 cognitively normal participants (78.3 ± 4.0 years of age, 52 women) into three age-matched groups, each with a different level of risk for Alzheimer’s disease. From their fluorodeoxyglucose PET we constructed metabolic networks, evaluated their modular structures using the Louvain algorithm, and compared them between risk groups. As the risk for Alzheimer’s disease increased, the metabolic connections among brain regions weakened and became more modular, indicating network fragmentation and functional impairment of the brain. We then set out to determine the correlation between regional brain metabolism, particularly in the modules derived from the previous analysis, and the regional expression of Alzheimer-risk genes in the brain, obtained from the Allen Human Brain Atlas. In all risk groups of this elderly population, the regional brain expression of most Alzheimer-risk genes showed a strong correlation with brain metabolism, particularly in the module that corresponded to regions of the brain that are affected earliest and most severely in Alzheimer’s disease. Among the genes, APOE and CD33 showed the strongest negative correlation and SORL1 showed the strongest positive correlation with brain metabolism. The Pearson correlation coefficients remained significant when contrasted against a null-hypothesis distribution of correlation coefficients across the whole transcriptome of 20 736 genes (SORL1: P = 0.0130; CD33, P = 0.0136; APOE: P = 0.0093). The strong regional correlation between Alzheimer-related gene expression in the brain and brain metabolism in older adults highlights the role of brain metabolism in the genesis of dementia.
Collapse
Affiliation(s)
- Fengdan Ye
- Department of Physics and Astronomy, Rice University , Houston, TX 77005 , USA
- Center for Theoretical Biological Physics, Rice University , Houston, TX 77005 , USA
- Nantz National Alzheimer Center, Houston Methodist Neurological and Research Institute, Houston Methodist Hospital, Weill Cornell Medicine , Houston, TX 77030 , USA
| | - Quentin Funk
- Nantz National Alzheimer Center, Houston Methodist Neurological and Research Institute, Houston Methodist Hospital, Weill Cornell Medicine , Houston, TX 77030 , USA
| | - Elijah Rockers
- Nantz National Alzheimer Center, Houston Methodist Neurological and Research Institute, Houston Methodist Hospital, Weill Cornell Medicine , Houston, TX 77030 , USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine , Houston, TX 77030 , USA
- Department of Neuroscience, Baylor College of Medicine , Houston, TX 77030 , USA
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030 , USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine , Houston, TX 77030 , USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital , Houston, TX 77030 , USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist Neurological and Research Institute, Houston Methodist Hospital, Weill Cornell Medicine , Houston, TX 77030 , USA
| | - Belen Pascual
- Nantz National Alzheimer Center, Houston Methodist Neurological and Research Institute, Houston Methodist Hospital, Weill Cornell Medicine , Houston, TX 77030 , USA
| | | |
Collapse
|
18
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Tian D, Xing Y, Gao W, Zhang H, Song Y, Tian Y, Dai Z. Sevoflurane Aggravates the Progress of Alzheimer’s Disease Through NLRP3/Caspase-1/Gasdermin D Pathway. Front Cell Dev Biol 2022; 9:801422. [PMID: 35127716 PMCID: PMC8807556 DOI: 10.3389/fcell.2021.801422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is the most common form of dementia worldwide. Previous studies have reported that sevoflurane, a frequently used anesthetic, can induce cognitive impairment in preclinical and clinical settings. However, the mechanism underlying the development of this neurotoxicity is currently unclear. Methods: Seven-month-old APP/PS1 mice were placed in an anesthesia induction box containing 3% sevoflurane in 100% O2 for 6 h, while BV2 cells were cultured with 4% sevoflurane for 6 h. Pyroptosis and tau protein expression in excised hippocampus tissues and cells were measured using Western blotting and immunofluorescence assay. Caspase-1 and NLRP3 were knocked out in BV2 microglia using CRISPR/Cas9 technology to determine whether they mediate the effects induced by sevoflurane. Results: Sevoflurane directly activated caspase-1 to induce pyroptosis in the mouse model of AD via NLRP3 and AIM2 activation. In addition, sevoflurane mediated cleavage of gasdermin D (GSDMD) but not gasdermin E (GSDME), promoted the biosynthesis of downstream interleukin-1β and interleukin-18, and increased β-amyloid (Aβ) deposition and tau phosphorylation. The nontoxic caspase-1 small-molecule inhibitor VX-765 significantly inhibited this activation process in microglia, while NLRP3 deletion suppressed sevoflurane-induced caspase-1 cleavage and subsequently pyroptosis, as well as tau pathology. Furthermore, silencing caspase-1 alleviated the sevoflurane-induced release of IL-1β and IL-18 and inhibited tau-related enzymes in microglia. Conclusion: This study is the first to report that clinical doses of sevoflurane aggravate the progression of AD via the NLRP3/caspase-1/GSDMD axis. Collectively, our findings elucidate the crucial mechanisms of NLRP3/caspase-1 in pyroptosis and tau pathogenesis induced by sevoflurane and suggest that VX-765 could represent a novel therapeutic intervention for treating AD.
Collapse
Affiliation(s)
- Di Tian
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Yanmei Xing
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Wenli Gao
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Hongyan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Yifeng Song
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Ya Tian
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, China
- *Correspondence: Zhongliang Dai,
| |
Collapse
|
20
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Integrating molecular, histopathological, neuroimaging and clinical neuroscience data with NeuroPM-box. Commun Biol 2021; 4:614. [PMID: 34021244 PMCID: PMC8140107 DOI: 10.1038/s42003-021-02133-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding and treating heterogeneous brain disorders requires specialized techniques spanning genetics, proteomics, and neuroimaging. Designed to meet this need, NeuroPM-box is a user-friendly, open-access, multi-tool cross-platform software capable of characterizing multiscale and multifactorial neuropathological mechanisms. Using advanced analytical modeling for molecular, histopathological, brain-imaging and/or clinical evaluations, this framework has multiple applications, validated here with synthetic (N > 2900), in-vivo (N = 911) and post-mortem (N = 736) neurodegenerative data, and including the ability to characterize: (i) the series of sequential states (genetic, histopathological, imaging or clinical alterations) covering decades of disease progression, (ii) concurrent intra-brain spreading of pathological factors (e.g., amyloid, tau and alpha-synuclein proteins), (iii) synergistic interactions between multiple biological factors (e.g., toxic tau effects on brain atrophy), and (iv) biologically-defined patient stratification based on disease heterogeneity and/or therapeutic needs. This freely available toolbox ( neuropm-lab.com/neuropm-box.html ) could contribute significantly to a better understanding of complex brain processes and accelerating the implementation of Precision Medicine in Neurology.
Collapse
|