1
|
Luan Y, Rubinski A, Biel D, Otero Svaldi D, Alonzo Higgins I, Shcherbinin S, Pontecorvo M, Franzmeier N, Ewers M. Tau-network mapping of domain-specific cognitive impairment in Alzheimer's disease. Neuroimage Clin 2024; 44:103699. [PMID: 39509992 PMCID: PMC11574813 DOI: 10.1016/j.nicl.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Fibrillar tau gradually progresses in the brain during the course of Alzheimer's disease (AD). However, the contribution of tau accumulation in a given brain region to decline in different cognitive domains and thus phenotypic heterogeneity in AD remains unclear. Here, we leveraged the functional connectome to link the locality of tau accumulation to domain-specific cognitive impairment. In the current study, we mapped regional tau-PET accumulation onto the normative functional connectome. Subsequently, we cross-validated in two samples of AD-patients the associations between the tau-connectivity profiles and cognitive domains (episodic memory, executive function, or language). Lastly, we tested the effect of local tau-PET accumulation on the domain-specific tau-lesion networks and cognition. We identified cognitive-domain-specific tau-lesion networks, where closer topological proximity of tau-PET locations to a network was predictive of worse impairment in that domain. Higher tau-PET was associated with decreased domain-specific network connectivity, and the decrease in connectivity was associated with lower domain-specific cognition. The tau locations' connectivity profile explained domain-specific cognitive impairment, where disrupted connectivity may underlie the effect of tau on cognitive impairment.
Collapse
Affiliation(s)
- Ying Luan
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | | | | | | | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
2
|
Sun X, Zhao C, Chen SY, Chang Y, Han YL, Li K, Sun HM, Wang ZF, Liang Y, Jia JJ. Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease. J Magn Reson Imaging 2024; 60:1458-1469. [PMID: 38100518 DOI: 10.1002/jmri.29189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). PURPOSE To evaluate the sensitivity of FW-DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW-DTI indices to predict amyloid-beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. STUDY TYPE Retrospective. POPULATION Thirty-eight Aβ-negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ-negative MCI patients (MCI-n) (68.87 ± 8.83 years old, 60% female), 29 Aβ-positive MCI patients (MCI-p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ-positive AD patients (72.93 ± 9.11 years old, 55% female). FIELD STRENGTH/SEQUENCE 3.0T; DTI, T1-weighted, T2-weighted, T2 star-weighted angiography, and Aβ PET (18F-florbetaben or 11C-PIB). ASSESSMENT FW-corrected and standard diffusion indices were analyzed using trace-based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). STATISTICAL TESTS Chi-squared test, one-way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value <0.05 was considered statistically significant. RESULTS Compared with CH/MCI-n/MCI-p, AD showed significant change in tissue compartment indices of FW-DTI. No difference was found in the FW index among pair-wise group comparisons (the minimum FWE-corrected P = 0.114). There was a significant association between FW-DTI indices and memory and visuospatial function. The SVM classifier with tissue radial diffusivity as an input feature had the best classification performance of MCI subtypes (AUC = 0.91), and the classifying accuracy of FW-DTI was all over 89.89%. DATA CONCLUSION FW-DTI indices prove to be potential biomarkers of AD. The classification of MCI subtypes based on SVM and FW-DTI indices has good accuracy and could help early diagnosis. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xuan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Cui Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Si-Yu Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yan Chang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yu-Liang Han
- Department of Neurology, The 305 Hospital of PLA, Beijing, China
| | - Ke Li
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hong-Mei Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fu Wang
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jian-Jun Jia
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Du Y, Zhang S, Qiu Q, Fang Y, Zhao L, Yue L, Wang J, Yan F, Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer's disease. Transl Psychiatry 2024; 14:301. [PMID: 39039061 PMCID: PMC11263372 DOI: 10.1038/s41398-024-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li K, Wang S, Luo X, Zeng Q, Liu X, Hong L, Li J, Hong H, Xu X, Zhang Y, Jiaerken Y, Zhang R, Xie L, Xu S, Zhang X, Chen Y, Liu Z, Zhang M, Huang P. Associations of Alzheimer's Disease Pathology and Small Vessel Disease With Cerebral White Matter Degeneration: A Tract-Based MR Diffusion Imaging Study. J Magn Reson Imaging 2024; 60:268-278. [PMID: 37737474 DOI: 10.1002/jmri.29022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND White matter (WM) degeneration is a key feature of Alzheimer's disease (AD). However, the underlying mechanism remains unclear. PURPOSE To investigate how amyloid-β (Aβ), tau, and small vascular disease (SVD) jointly affect WM degeneration in subjects along AD continuum. STUDY TYPE Retrospective. SUBJECTS 152 non-demented participants (age: 55.8-91.6, male/female: 66/86) from the ADNI database were included, classified into three groups using the A (Aβ)/T (tau)/N pathological scheme (Group 1: A-T-; Group 2: A+T-; Group 3: A+T+) based on positron emission tomography data. FIELD STRENGTH/SEQUENCE 3T; T1-weighted images, T2-weighted fluid-attenuated inversion recovery images, T2*-weighted images, diffusion-weighted spin-echo echo-planar imaging sequence (54 diffusion directions). ASSESSMENT Free-water diffusion model (generated parameters: free water, FW; tissue fractional anisotropy, FAt; tissue mean diffusivity, MDt); SVD total score; Neuropsychological tests. STATISTICAL TESTS Linear regression analysis was performed to investigate the independent contribution of AD (Aβ and tau) and SVD pathologies to diffusion parameters in each fiber tract, first in the entire population and then in each subgroup. We also investigated associations between diffusion parameters and cognitive functions. The level of statistical significance was set at p < 0.05 (false discovery rate corrected). RESULTS In the entire population, we found that: 1) Increased FW was significantly associated with SVD and tau, while FAt and MDt were significantly associated with Aβ and tau; 2) The spatial pattern of fiber tracts related to a certain pathological marker is consistent with the known distribution of that pathology; 3) Subgroup analysis showed that Group 2 and 3 had more alterations of FAt and MDt associated with Aβ and tau; 4) Diffusion imaging indices showed significant associations with cognitive score in all domains except memory. DATA CONCLUSION WM microstructural injury was associated with both AD and SVD pathologies, showing compartment-specific, tract-specific, and stage-specific WM patterns. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
6
|
Tranfa M, Lorenzini L, Collij LE, Vállez García D, Ingala S, Pontillo G, Pieperhoff L, Maranzano A, Wolz R, Haller S, Blennow K, Frisoni G, Sudre CH, Chételat G, Ewers M, Payoux P, Waldman A, Martinez‐Lage P, Schwarz AJ, Ritchie CW, Wardlaw JM, Gispert JD, Brunetti A, Mutsaerts HJMM, Wink AM, Barkhof F. Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure. Ann Clin Transl Neurol 2024; 11:1541-1556. [PMID: 38757392 PMCID: PMC11187968 DOI: 10.1002/acn3.52071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid β1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Clinical Memory Research Unit, Department of Clinical SciencesLund UniversityMalmöSweden
| | - David Vállez García
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Department of RadiologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Cerebriu A/SCopenhagenDenmark
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
| | - Leonard Pieperhoff
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Alessio Maranzano
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | | | - Sven Haller
- CIMC ‐ Centre d'Imagerie Médicale de CornavinGenevaSwitzerland
- Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Giovanni Frisoni
- Laboratory Alzheimer's Neuroimaging & EpidemiologyIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- University Hospitals and University of GenevaGenevaSwitzerland
| | - Carole H. Sudre
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College London (UCL)LondonUK
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Gael Chételat
- Normandie Univ, Unicaen, Inserm, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, institut Blood‐and‐Brain @ Caen‐Normandie, CyceronUniversité de NormandieCaenFrance
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Pierre Payoux
- Department of Nuclear MedicineToulouse University HospitalToulouseFrance
- ToNIC, Toulouse NeuroImaging CenterUniversity of Toulouse, Inserm, UPSToulouseFrance
| | - Adam Waldman
- Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Department of MedicineImperial College LondonLondonUK
| | - Pablo Martinez‐Lage
- Centro de Investigación y Terapias Avanzadas, Neurología, CITA‐Alzheimer FoundationSan SebastiánSpain
| | - Adam J. Schwarz
- Takeda Pharmaceuticals, Ltd.CambridgeMassachusettsUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Craig W. Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2, Western General HospitalUniversity of EdinburghEdinburghUK
- Brain Health ScotlandEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- UK Dementia Research Institute Centre at the University of EdinburghEdinburghUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Henk J. M. M. Mutsaerts
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI)Ghent UniversityGhentBelgium
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| |
Collapse
|
7
|
Qiu T, Liu Z, Rheault F, Legarreta JH, Valcourt Caron A, St‐Onge F, Strikwerda‐Brown C, Metz A, Dadar M, Soucy J, Pichet Binette A, Spreng RN, Descoteaux M, Villeneuve S. Structural white matter properties and cognitive resilience to tau pathology. Alzheimers Dement 2024; 20:3364-3377. [PMID: 38561254 PMCID: PMC11095478 DOI: 10.1002/alz.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION We assessed whether macro- and/or micro-structural white matter properties are associated with cognitive resilience to Alzheimer's disease pathology years prior to clinical onset. METHODS We examined whether global efficiency, an indicator of communication efficiency in brain networks, and diffusion measurements within the limbic network and default mode network moderate the association between amyloid-β/tau pathology and cognitive decline. We also investigated whether demographic and health/risk factors are associated with white matter properties. RESULTS Higher global efficiency of the limbic network, as well as free-water corrected diffusion measures within the tracts of both networks, attenuated the impact of tau pathology on memory decline. Education, age, sex, white matter hyperintensities, and vascular risk factors were associated with white matter properties of both networks. DISCUSSION White matter can influence cognitive resilience against tau pathology, and promoting education and vascular health may enhance optimal white matter properties. HIGHLIGHTS Aβ and tau were associated with longitudinal memory change over ∼7.5 years. White matter properties attenuated the impact of tau pathology on memory change. Health/risk factors were associated with white matter properties.
Collapse
Affiliation(s)
- Ting Qiu
- Douglas Mental Health University InstituteMontrealCanada
| | - Zhen‐Qi Liu
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | - François Rheault
- Medical Imaging and NeuroInformatics LabUniversité de SherbrookeSherbrookeCanada
| | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's HospitalMass General Brigham/Harvard Medical SchoolBostonMassachusettsUSA
| | - Alex Valcourt Caron
- Sherbrooke Connectivity Imaging LaboratoryUniversité de SherbrookeSherbrookeCanada
| | | | - Cherie Strikwerda‐Brown
- Douglas Mental Health University InstituteMontrealCanada
- School of Psychological ScienceThe University of Western AustraliaPerthAustralia
| | - Amelie Metz
- Douglas Mental Health University InstituteMontrealCanada
| | - Mahsa Dadar
- Douglas Mental Health University InstituteMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Jean‐Paul Soucy
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | | | - R. Nathan Spreng
- Douglas Mental Health University InstituteMontrealCanada
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging LaboratoryUniversité de SherbrookeSherbrookeCanada
| | - Sylvia Villeneuve
- Douglas Mental Health University InstituteMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | | |
Collapse
|
8
|
Ahmadi K, Pereira JB, van Westen D, Pasternak O, Zhang F, Nilsson M, Stomrud E, Spotorno N, Hansson O. Fixel-Based Analysis Reveals Tau-Related White Matter Changes in Early Stages of Alzheimer's Disease. J Neurosci 2024; 44:e0538232024. [PMID: 38565289 PMCID: PMC11063818 DOI: 10.1523/jneurosci.0538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Several studies have shown white matter (WM) abnormalities in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aβ-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aβ-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm 17176, Sweden
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund 22185, Sweden
| | - Ofer Pasternak
- Departments of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Fan Zhang
- Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Markus Nilsson
- Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund 22185, Sweden
- Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 21428, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22362, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 21428, Sweden
| |
Collapse
|
9
|
Phillips JS, Adluru N, Chung MK, Radhakrishnan H, Olm CA, Cook PA, Gee JC, Cousins KAQ, Arezoumandan S, Wolk DA, McMillan CT, Grossman M, Irwin DJ. Greater white matter degeneration and lower structural connectivity in non-amnestic vs. amnestic Alzheimer's disease. Front Neurosci 2024; 18:1353306. [PMID: 38567286 PMCID: PMC10986184 DOI: 10.3389/fnins.2024.1353306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Multimodal evidence indicates Alzheimer's disease (AD) is characterized by early white matter (WM) changes that precede overt cognitive impairment. WM changes have overwhelmingly been investigated in typical, amnestic mild cognitive impairment and AD; fewer studies have addressed WM change in atypical, non-amnestic syndromes. We hypothesized each non-amnestic AD syndrome would exhibit WM differences from amnestic and other non-amnestic syndromes. Materials and methods Participants included 45 cognitively normal (CN) individuals; 41 amnestic AD patients; and 67 patients with non-amnestic AD syndromes including logopenic-variant primary progressive aphasia (lvPPA, n = 32), posterior cortical atrophy (PCA, n = 17), behavioral variant AD (bvAD, n = 10), and corticobasal syndrome (CBS, n = 8). All had T1-weighted MRI and 30-direction diffusion-weighted imaging (DWI). We performed whole-brain deterministic tractography between 148 cortical and subcortical regions; connection strength was quantified by tractwise mean generalized fractional anisotropy. Regression models assessed effects of group and phenotype as well as associations with grey matter volume. Topological analyses assessed differences in persistent homology (numbers of graph components and cycles). Additionally, we tested associations of topological metrics with global cognition, disease duration, and DWI microstructural metrics. Results Both amnestic and non-amnestic patients exhibited lower WM connection strength than CN participants in corpus callosum, cingulum, and inferior and superior longitudinal fasciculi. Overall, non-amnestic patients had more WM disease than amnestic patients. LvPPA patients had left-lateralized WM degeneration; PCA patients had reductions in connections to bilateral posterior parietal, occipital, and temporal areas. Topological analysis showed the non-amnestic but not the amnestic group had more connected components than controls, indicating persistently lower connectivity. Longer disease duration and cognitive impairment were associated with more connected components and fewer cycles in individuals' brain graphs. Discussion We have previously reported syndromic differences in GM degeneration and tau accumulation between AD syndromes; here we find corresponding differences in WM tracts connecting syndrome-specific epicenters. Determining the reasons for selective WM degeneration in non-amnestic AD is a research priority that will require integration of knowledge from neuroimaging, biomarker, autopsy, and functional genetic studies. Furthermore, longitudinal studies to determine the chronology of WM vs. GM degeneration will be key to assessing evidence for WM-mediated tau spread.
Collapse
Affiliation(s)
- Jeffrey S. Phillips
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Moo K. Chung
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hamsanandini Radhakrishnan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A. Cook
- Penn Image Computing and Science Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James C. Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A. Q. Cousins
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanaz Arezoumandan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Memory Center, University of Pennsylvania Health System, Philadelphia, PA, United States
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Wang Q, Schindler SE, Chen G, Mckay NS, McCullough A, Flores S, Liu J, Sun Z, Wang S, Wang W, Hassenstab J, Cruchaga C, Perrin RJ, Fagan AM, Morris JC, Wang Y, Benzinger TLS. Investigating White Matter Neuroinflammation in Alzheimer Disease Using Diffusion-Based Neuroinflammation Imaging. Neurology 2024; 102:e208013. [PMID: 38315956 PMCID: PMC10890836 DOI: 10.1212/wnl.0000000000208013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/13/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of β-amyloid (Aβ) 42/Aβ40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aβ42/Aβ40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aβ42/Aβ40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aβ42/Aβ40 was found in individuals with positive CSF Aβ42/Aβ40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.
Collapse
Affiliation(s)
- Qing Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne E Schindler
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Gengsheng Chen
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Nicole S Mckay
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Austin McCullough
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Shaney Flores
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Zhexian Sun
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Sicheng Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Wenshang Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jason Hassenstab
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Carlos Cruchaga
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Richard J Perrin
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Anne M Fagan
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Yong Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Liu SW, Ma XT, Yu S, Weng XF, Li M, Zhu J, Liu CF, Hu H. Bridging Reduced Grip Strength and Altered Executive Function: Specific Brain White Matter Structural Changes in Patients with Alzheimer's Disease. Clin Interv Aging 2024; 19:93-107. [PMID: 38250174 PMCID: PMC10799618 DOI: 10.2147/cia.s438782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Objective To investigate the correlation between specific fiber tracts and grip strength and cognitive function in patients with Alzheimer's disease (AD) by fixel-based analysis (FBA). Methods AD patients were divided into AD with low grip strength (AD-LGS, n=29) and AD without low grip strength (AD-nLGS, n=25), along with 31 normal controls (NC). General data, neuropsychological tests, grip strength and cranial magnetic resonance imaging (MRI) scans were collected. FBA evaluated white matter (WM) fiber metrics, including fiber density (FD), fiber cross-sectional (FC), and fiber density and cross-sectional area (FDC). The mean fiber indicators of the fiber tracts of interest (TOI) were extracted in cerebral region of significant statistical differences in FBA to further compare the differences between groups and analyze the correlation between fiber properties and neuropsychological test scores. Results Compared to AD-nLGS group, AD-LGS group showed significant reductions in FDC in several cerebral regions. In AD patients, FDC values of bilateral uncinate fasciculus and left superior longitudinal fasciculus were positively correlated with Clock Drawing Test scores, while FDC of splenium of corpus callosum, bilateral anterior cingulate tracts, forceps major, and bilateral inferior longitudinal fasciculus were positively correlated with the Executive Factor Score of Memory and Executive Screening scale scores. Conclusion Reduced grip strength in AD patients is associated with extensive impairment of WM structural integrity. Changes in FDC of specific WM fiber tracts related to executive function play a significant mediating role in the reduction of grip strength in AD patients.
Collapse
Affiliation(s)
- Shan-Wen Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Xiao-Ting Ma
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Shuai Yu
- Department of Neurology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, People’s Republic of China
| | - Xiao-Fen Weng
- Department of Geriatric Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, People’s Republic of China
| | - Meng Li
- Department of Imaging, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Jiangtao Zhu
- Department of Imaging, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Hua Hu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| |
Collapse
|
12
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
13
|
Hirschfeld LR, Deardorff R, Chumin EJ, Wu YC, McDonald BC, Cao S, Risacher SL, Yi D, Byun MS, Lee JY, Kim YK, Kang KM, Sohn CH, Nho K, Saykin AJ, Lee DY. White matter integrity is associated with cognition and amyloid burden in older adult Koreans along the Alzheimer's disease continuum. Alzheimers Res Ther 2023; 15:218. [PMID: 38102714 PMCID: PMC10725037 DOI: 10.1186/s13195-023-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥ 55 years, including 276 cognitively normal older adults (CN), 142 with mild cognitive impairment (MCI), and 87 AD patients, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS Compared to CN, AD and MCI subjects showed significantly higher RD, MD, and AxD values (all p-values < 0.001) and significantly lower FA values (left p ≤ 0.002, right p ≤ 0.015) after Bonferroni adjustment for multiple comparisons. Most tests of cognition and mood (p < 0.001) as well as higher medial temporal amyloid burden (p < 0.001) were associated with poorer WM integrity in the CBH after Bonferroni adjustment. CONCLUSION These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.
Collapse
Affiliation(s)
- Lauren R Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brenna C McDonald
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
14
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Patel T, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563970. [PMID: 37961594 PMCID: PMC10634844 DOI: 10.1101/2023.10.26.563970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tark Patel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. RESEARCH SQUARE 2023:rs.3.rs-3454358. [PMID: 37961627 PMCID: PMC10635319 DOI: 10.21203/rs.3.rs-3454358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Martinie O, Karan P, Traverse E, Mercier C, Descoteaux M, Robert MT. The Challenge of Diffusion Magnetic Resonance Imaging in Cerebral Palsy: A Proposed Method to Identify White Matter Pathways. Brain Sci 2023; 13:1386. [PMID: 37891755 PMCID: PMC10605121 DOI: 10.3390/brainsci13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral palsy (CP), a neuromotor disorder characterized by prenatal brain lesions, leads to white matter alterations and sensorimotor deficits. However, the CP-related diffusion neuroimaging literature lacks rigorous and consensual methodology for preprocessing and analyzing data due to methodological challenges caused by the lesion extent. Advanced methods are available to reconstruct diffusion signals and can update current advances in CP. Our study demonstrates the feasibility of analyzing diffusion CP data using a standardized and open-source pipeline. Eight children with CP (8-12 years old) underwent a single diffusion magnetic resonance imaging (MRI) session on a 3T scanner (Achieva 3.0T (TX), Philips Healthcare Medical Systems, Best, The Netherlands). Exclusion criteria were contraindication to MRI and claustrophobia. Anatomical and diffusion images were acquired. Data were corrected and analyzed using Tractoflow 2.3.0 version, an open-source and robust tool. The tracts were extracted with customized procedures based on existing atlases and freely accessed standardized libraries (ANTs, Scilpy). DTI, CSD, and NODDI metrics were computed for each tract. Despite lesion heterogeneity and size, we successfully reconstructed major pathways, except for a participant with a larger lesion. Our results highlight the feasibility of identifying and quantifying subtle white matter pathways. Ultimately, this will increase our understanding of the clinical symptoms to provide precision medicine and optimize rehabilitation.
Collapse
Affiliation(s)
- Ophélie Martinie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Philippe Karan
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Elodie Traverse
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Descoteaux
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Maxime T. Robert
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Klimecki OM, Liebscher M, Gaubert M, Hayek D, Zarucha A, Dyrba M, Bartels C, Buerger K, Butryn M, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Glanz W, Hetzer S, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Spruth EJ, Spottke A, Teipel SJ, Wiltfang J, Wolfsgruber S, Yakupov R, Düzel E, Jessen F, Wagner M, Roeske S, Wirth M. Long-term environmental enrichment is associated with better fornix microstructure in older adults. Front Aging Neurosci 2023; 15:1170879. [PMID: 37711996 PMCID: PMC10498282 DOI: 10.3389/fnagi.2023.1170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Sustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer's disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults. Methods N = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status. Results Reported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized β = 0.117, p = 0.033) and lower MD (β = -0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = -0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts. Conclusion Our findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.
Collapse
Affiliation(s)
- Olga M Klimecki
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Malo Gaubert
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neuroradiology, Rennes University Hospital Centre Hospitalier Universitaire (CHU), Rennes, France
| | - Dayana Hayek
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexis Zarucha
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- Magnetic Resonance (MR)-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Silka Dawn Freiesleben
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Peters
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and United Kingdom Dementia Research Institute (UK DRI), Edinburgh, United Kingdom
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
18
|
Garnier-Crussard A, Cotton F, Krolak-Salmon P, Chételat G. White matter hyperintensities in Alzheimer's disease: Beyond vascular contribution. Alzheimers Dement 2023; 19:3738-3748. [PMID: 37027506 DOI: 10.1002/alz.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023]
Abstract
White matter hyperintensities (WMH), frequently seen in older adults, are usually considered vascular lesions, and participate in the vascular contribution to cognitive impairment and dementia. However, emerging evidence highlights the heterogeneity of WMH pathophysiology, suggesting that non-vascular mechanisms could also be involved, notably in Alzheimer's disease (AD). This led to the alternative hypothesis that in AD, part of WMH may be secondary to AD-related processes. The current perspective brings together the arguments from different fields of research, including neuropathology, neuroimaging and fluid biomarkers, and genetics, in favor of this alternative hypothesis. Possible underlying mechanisms leading to AD-related WMH, such as AD-related neurodegeneration or neuroinflammation, are discussed, as well as implications for diagnostic criteria and management of AD. We finally discuss ways to test this hypothesis and remaining challenges. Acknowledging the heterogeneity of WMH and the existence of AD-related WMH may improve personalized diagnosis and care of patients.
Collapse
Affiliation(s)
- Antoine Garnier-Crussard
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - François Cotton
- Radiology Department, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CREATIS, INSERM U1044, CNRS UMR 5220, UCBL1, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
| |
Collapse
|
19
|
Tian J, Raghavan S, Reid RI, Przybelski SA, Lesnick TG, Gebre RK, Graff-Radford J, Schwarz CG, Lowe VJ, Kantarci K, Knopman DS, Petersen RC, Jack CR, Vemuri P. White Matter Degeneration Pathways Associated With Tau Deposition in Alzheimer Disease. Neurology 2023; 100:e2269-e2278. [PMID: 37068958 PMCID: PMC10259272 DOI: 10.1212/wnl.0000000000207250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The dynamics of white matter (WM) changes are understudied in Alzheimer disease (AD). Our goal was to study the association between flortaucipir PET and WM health using neurite orientation dispersion and density imaging (NODDI) and evaluate its association with cognitive performance. Specifically, we focused on NODDI's Neurite Density Index (NDI), which aids in capturing axonal degeneration in WM and has greater specificity than single-shell diffusion MRI methods. METHOD We estimated regional flortaucipir PET standard uptake value ratios (SUVRs) from 3 regions corresponding to Braak stage I, III/IV, and V/VI to capture the spatial distribution pattern of the 3R/4R tau in AD. Then, we evaluated the associations between these measurements and NDIs in 29 candidate WM tracts using Pearson correlation and multiple regression models. RESULTS Based on 223 participants who were amyloid positive (mean age of 78 years and 57.0% male, 119 cognitively unimpaired, 56 mild cognitive impairment, and 48 dementia), the results showed that WM tracts NDI decreased with increasing regional Braak tau SUVRs. Of all the significant WM tracts, the uncinate fasciculus (r = -0.274 for Braak I, -0.311 for Braak III/IV, and -0.292 for Braak V/VI, p < 0.05) and cingulum adjoining hippocampus (r = -0.274, -0.288, -0.233, p < 0.05), both tracts anatomically connected to areas of early tau deposition, were consistently found to be within the top 5 distinguishing WM tracts associated with flortaucipir SUVRs. The increase in tau deposition measurable outside the medial temporal lobes in Braak III-VI was associated with a decrease in NDI in the middle and inferior temporal WM tracts. For cognitive performance, WM NDI had similar coefficients of determination (r 2 = 31%) as regional Braak flortaucipir SUVRs (29%), and together WM NDI and regional Braak flortaucipir SUVRs explained 46% of the variance in cognitive performance. DISCUSSION We found spatially dependent WM degeneration associated with regional flortaucipir SUVRs in Braak stages, suggesting a spatial pattern in WM damage. NDI, a specific marker of axonal density, provides complementary information about disease staging and progression in addition to tau deposition. Measurements of WM changes are important for the mechanistic understanding of multifactorial pathways through which AD causes cognitive dysfunction.
Collapse
Affiliation(s)
- Jianqiao Tian
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Sheelakumari Raghavan
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Robert I Reid
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Scott A Przybelski
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Timothy G Lesnick
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Robel K Gebre
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Christopher G Schwarz
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Val J Lowe
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Kejal Kantarci
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - David S Knopman
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Clifford R Jack
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Radiology (J.T., S.R., R.K.G., C.G.S., V.J.L., K.K., C.R.J., P.V.), Mayo Clinic; Mayo Clinic Graduate School of Biomedical Sciences (J.T.); and Department of Information Technology (R.I.R.), Department of Quantitative Health Sciences (S.A.P., T.G.L.), and Department of Neurology (J.G.-R., D.S.K., R.C.P.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
20
|
Hirschfeld LR, Deardorff R, Chumin EJ, Wu YC, McDonald BC, Cao S, Risacher SL, Yi D, Byun MS, Lee JY, Kim YK, Kang KM, Sohn CH, Nho K, Saykin AJ, Lee DY. White matter integrity is associated with cognition and amyloid burden in older adult Koreans along the Alzheimer's disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.05.23288147. [PMID: 37066317 PMCID: PMC10104207 DOI: 10.1101/2023.04.05.23288147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥55 years, including 276 cognitively normal older adults (CN), 142 mild cognitive impairment (MCI), and 87 AD, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS Compared to CN, AD and MCI subjects showed decreased WM integrity in the bilateral CBH. Cognition, mood, and higher amyloid burden were also associated with poorer WM integrity in the CBH. CONCLUSION These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Brenna C McDonald
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea, 03080
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea, 03080
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea, 07061
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea, 07061
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea, 03080
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea, 03080
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Indiana University School of Informatics and Computing, Indianapolis, IN USA, 46202
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea, 03080
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea, 03080
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
| |
Collapse
|
21
|
Chen Q, Abrigo J, Deng M, Shi L, Wang YX, Chu WCW. Diffusion Changes in Hippocampal Cingulum in Early Biologically Defined Alzheimer's Disease. J Alzheimers Dis 2023; 91:1007-1017. [PMID: 36530082 DOI: 10.3233/jad-220671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diagnosis of Alzheimer's disease (AD) was recently shifted from clinical to biological construct to reflect underlying neuropathological status, where amyloid deposition designated patients to the Alzheimer's continuum, and additional tau positivity represented AD. OBJECTIVE To investigate white matter (WM) alteration in the brain of patients in the Alzheimer's continuum. METHODS A total of 236 subjects across the clinical and biological spectra of AD were included and stratified by normal/abnormal (-/+) amyloid (A) and tau (T) status based on positron emission tomography results, yielding five groups: A-T-cognitively normal (CN), A+T-CN, A+T+ CN, A+T+ mild cognitive impairment, and A+T+ AD. WM alteration was measured by diffusion tensor imaging (DTI). Group differences, correlation of DTI measures with amyloid and tau, and diagnostic performance of such measures were evaluated. RESULTS Compared with A-T-CN, widespread WM alteration was observed in the Alzheimer's continuum, including hippocampal cingulum (CGH), cingulum of the cingulate gyrus, and uncinate fasciculus. Diffusion changes measured by regional mean fractional anisotropy (FA) in the bilateral CGH were first detected in the A+T+ CN group and associated with tau burden in the Alzheimer's continuum (p < 0.001). For discrimination between A+T+ CN and A-T-CN groups, CGH FA achieved accuracy, sensitivity, and specificity of 74%, 58%, and 78% for right CGH and 57%, 83%, and 47% respectively for left CGH. CONCLUSION WM alteration is widespread in the Alzheimer's continuum. Diffusion alteration in CGH occurred early and was correlated with tau pathology, thus may be a promising biomarker in preclinical AD.
Collapse
Affiliation(s)
- Qianyun Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Chiu Wing Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
22
|
Lissaman R, Lancaster TM, Parker GD, Graham KS, Lawrence AD, Hodgetts CJ. Tract-specific differences in white matter microstructure between young adult APOE ε4 carriers and non-carriers: A replication and extension study. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507069 PMCID: PMC9726682 DOI: 10.1016/j.ynirp.2022.100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) ε4 allele - the strongest common genetic risk factor for AD - showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-β and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age range = 19-33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE ε4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE ε4-related differences in PHCB HMOA. Our findings indicate that young adult APOE ε4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-β accumulation and/or tau spread.
Collapse
Affiliation(s)
- Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- School of Psychology, University of Bath, Bath, England, United Kingdom
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kim S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Carl J. Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham, England, United Kingdom
| |
Collapse
|
23
|
Hansen JY, Shafiei G, Vogel JW, Smart K, Bearden CE, Hoogman M, Franke B, van Rooij D, Buitelaar J, McDonald CR, Sisodiya SM, Schmaal L, Veltman DJ, van den Heuvel OA, Stein DJ, van Erp TGM, Ching CRK, Andreassen OA, Hajek T, Opel N, Modinos G, Aleman A, van der Werf Y, Jahanshad N, Thomopoulos SI, Thompson PM, Carson RE, Dagher A, Misic B. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat Commun 2022; 13:4682. [PMID: 35948562 PMCID: PMC9365855 DOI: 10.1038/s41467-022-32420-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Numerous brain disorders demonstrate structural brain abnormalities, which are thought to arise from molecular perturbations or connectome miswiring. The unique and shared contributions of these molecular and connectomic vulnerabilities to brain disorders remain unknown, and has yet to be studied in a single multi-disorder framework. Using MRI morphometry from the ENIGMA consortium, we construct maps of cortical abnormalities for thirteen neurodevelopmental, neurological, and psychiatric disorders from N = 21,000 participants and N = 26,000 controls, collected using a harmonised processing protocol. We systematically compare cortical maps to multiple micro-architectural measures, including gene expression, neurotransmitter density, metabolism, and myelination (molecular vulnerability), as well as global connectomic measures including number of connections, centrality, and connection diversity (connectomic vulnerability). We find a relationship between molecular vulnerability and white-matter architecture that drives cortical disorder profiles. Local attributes, particularly neurotransmitter receptor profiles, constitute the best predictors of both disorder-specific cortical morphology and cross-disorder similarity. Finally, we find that cross-disorder abnormalities are consistently subtended by a small subset of network epicentres in bilateral sensory-motor, inferior temporal lobe, precuneus, and superior parietal cortex. Collectively, our results highlight how local molecular attributes and global connectivity jointly shape cross-disorder cortical abnormalities.
Collapse
Affiliation(s)
- Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jacob W Vogel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Smart
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Martine Hoogman
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Carrie R McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, & Center for the Neurobiology of Leaning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, USA
| | - Christopher R K Ching
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Nils Opel
- Institute of Translational Psychiatry, University of Münster, Münster, Germany & Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Gemma Modinos
- Department of Psychosis Studies & MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, Groningen, The Netherlands
| | - Ysbrand van der Werf
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Neda Jahanshad
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sophia I Thomopoulos
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
24
|
Dewenter A, Jacob MA, Cai M, Gesierich B, Hager P, Kopczak A, Biel D, Ewers M, Tuladhar AM, de Leeuw FE, Dichgans M, Franzmeier N, Duering M. Disentangling the effects of Alzheimer's and small vessel disease on white matter fibre tracts. Brain 2022; 146:678-689. [PMID: 35859352 PMCID: PMC9924910 DOI: 10.1093/brain/awac265] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease and cerebral small vessel disease are the two leading causes of cognitive decline and dementia and coexist in most memory clinic patients. White matter damage as assessed by diffusion MRI is a key feature in both Alzheimer's and cerebral small vessel disease. However, disease-specific biomarkers of white matter alterations are missing. Recent advances in diffusion MRI operating on the fixel level (fibre population within a voxel) promise to advance our understanding of disease-related white matter alterations. Fixel-based analysis allows derivation of measures of both white matter microstructure, measured by fibre density, and macrostructure, measured by fibre-bundle cross-section. Here, we evaluated the capacity of these state-of-the-art fixel metrics to disentangle the effects of cerebral small vessel disease and Alzheimer's disease on white matter integrity. We included three independent samples (total n = 387) covering genetically defined cerebral small vessel disease and age-matched controls, the full spectrum of biomarker-confirmed Alzheimer's disease including amyloid- and tau-PET negative controls and a validation sample with presumed mixed pathology. In this cross-sectional analysis, we performed group comparisons between patients and controls and assessed associations between fixel metrics within main white matter tracts and imaging hallmarks of cerebral small vessel disease (white matter hyperintensity volume, lacune and cerebral microbleed count) and Alzheimer's disease (amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume). Our results showed that (i) fibre density was reduced in genetically defined cerebral small vessel disease and strongly associated with cerebral small vessel disease imaging hallmarks; (ii) fibre-bundle cross-section was mainly associated with brain volume; and (iii) both fibre density and fibre-bundle cross-section were reduced in the presence of amyloid, but not further exacerbated by abnormal tau deposition. Fixel metrics were only weakly associated with amyloid- and tau-PET. Taken together, our results in three independent samples suggest that fibre density captures the effect of cerebral small vessel disease, while fibre-bundle cross-section is largely determined by neurodegeneration. The ability of fixel-based imaging markers to capture distinct effects on white matter integrity can propel future applications in the context of precision medicine.
Collapse
Affiliation(s)
- Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Mina A Jacob
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Paul Hager
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Institute for AI and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Marco Duering
- Correspondence to: Marco Duering Medical Image Analysis Center (MIAC AG) Marktgasse 8 CH-4051 Basel Switzerland E-mail:
| | | |
Collapse
|
25
|
Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Zapata-Martín del Campo CM, Maldonado JC. Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Front Neurosci 2022; 16:904816. [PMID: 35645713 PMCID: PMC9134113 DOI: 10.3389/fnins.2022.904816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | | | | | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Jose C. Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
26
|
Benitez A, Jensen JH, Thorn K, Dhiman S, Fountain-Zaragoza S, Rieter WJ, Spampinato MV, Hamlett ED, Nietert PJ, Falangola MDF, Helpern JA. Greater diffusion restriction in white matter in Preclinical Alzheimer's disease. Ann Neurol 2022; 91:864-877. [PMID: 35285067 DOI: 10.1002/ana.26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The Alzheimer's Continuum is biologically defined by beta-amyloid deposition which, at the earliest stages, is superimposed upon white matter degeneration in aging. However, the extent to which these co-occurring changes are characterized is relatively under-explored. The goal of this study was to use Diffusional Kurtosis Imaging (DKI) and biophysical modeling to detect and describe amyloid-related white matter changes in preclinical Alzheimer's disease (AD). METHODS Cognitively unimpaired participants ages 45-85 completed brain MRI, amyloid PET (florbetapir), neuropsychological testing, and other clinical measures at baseline in a cohort study. We tested whether beta amyloid-negative (AB-) and -positive (AB+) participants differed on DKI-based conventional (i.e. Fractional Anisotropy [FA], Mean Diffusivity [MD], Mean Kurtosis [MK]) and modeling (i.e. Axonal Water Fraction [AWF], extra-axonal radial diffusivity [De,⊥ ]) metrics, and whether these metrics were associated with other biomarkers. RESULTS We found significantly greater diffusion restriction (higher FA/AWF, lower MD/ De,⊥ ) in white matter in AB+ than AB- (partial η2 = 0.08-0.19), more notably in the extra-axonal space within primarily late-myelinating tracts. Diffusion metrics predicted amyloid status incrementally over age (AUC=0.84) with modest yet selective associations, where AWF (a marker of axonal density) correlated with speed/executive functions and neurodegeneration, whereas De,⊥ (a marker of gliosis/myelin repair) correlated with amyloid deposition and white matter hyperintensity volume. INTERPRETATION These results support prior evidence of a non-monotonic change in diffusion behavior, where an early increase in diffusion restriction is hypothesized to reflect inflammation and myelin repair prior to an ensuing decrease in diffusion restriction, indicating glial and neuronal degeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreana Benitez
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kathryn Thorn
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie Fountain-Zaragoza
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - William J Rieter
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria de Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
27
|
Volumetric Segmentation of White Matter Tracts with Label Embedding. Neuroimage 2022; 250:118934. [PMID: 35091078 DOI: 10.1016/j.neuroimage.2022.118934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Convolutional neural networks have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). However, the segmentation can still be difficult for challenging WM tracts with thin bodies or complicated shapes; the segmentation is even more problematic in challenging scenarios with reduced data quality or domain shift between training and test data, which can be easily encountered in clinical settings. In this work, we seek to improve the segmentation of WM tracts, especially for challenging WM tracts in challenging scenarios. In particular, our method is based on volumetric WM tract segmentation, where voxels are directly labeled without performing tractography. To improve the segmentation, we exploit the characteristics of WM tracts that different tracts can cross or overlap and revise the network design accordingly. Specifically, because multiple tracts can co-exist in a voxel, we hypothesize that the different tract labels can be correlated. The tract labels at a single voxel are concatenated as a label vector, the length of which is the number of tract labels. Due to the tract correlation, this label vector can be projected into a lower-dimensional space-referred to as the embedded space-for each voxel, which allows the segmentation network to solve a simpler problem. By predicting the coordinate in the embedded space for the tracts at each voxel and subsequently mapping the coordinate to the label vector with a reconstruction module, the segmentation result can be achieved. To facilitate the learning of the embedded space, an auxiliary label reconstruction loss is integrated with the segmentation accuracy loss during network training, and network training and inference are end-to-end. Our method was validated on two dMRI datasets under various settings. The results show that the proposed method improves the accuracy of WM tract segmentation, and the improvement is more prominent for challenging tracts in challenging scenarios.
Collapse
|
28
|
Newmaster KT, Kronman FA, Wu YT, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat 2022; 15:787601. [PMID: 35095432 PMCID: PMC8794814 DOI: 10.3389/fnana.2021.787601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Fae A Kronman
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
29
|
Lin CP, Frigerio I, Boon BDC, Zhou Z, Rozemuller AJM, Bouwman FH, Schoonheim MM, van de Berg WDJ, Jonkman LE. OUP accepted manuscript. Brain 2022; 145:2869-2881. [PMID: 35259207 PMCID: PMC9420016 DOI: 10.1093/brain/awac093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cognitive deficits in Alzheimer’s disease, specifically amnestic (memory dominant) deficits, are associated with cholinergic degeneration in the basal forebrain. The cholinergic nucleus within the basal forebrain, the nucleus basalis of Meynert, exhibits local atrophy and reduced cortical tract integrity on MRI, and reveals amyloid-β and phosphorylated-tau pathology at autopsy. To understand the pathophysiology of nucleus basalis of Meynert atrophy and its neocortical projections in Alzheimer’s disease, we used a combined post-mortem in situ MRI and histopathology approach. A total of 19 Alzheimer’s disease (10 amnestic and nine non-amnestic) and nine non-neurological control donors underwent 3 T T1-weighted MRI for anatomical delineation and volume assessment of the nucleus basalis of Meynert, and diffusion-weighted imaging for microstructural assessment of the nucleus and its projections. At subsequent brain autopsy, tissue dissection and immunohistochemistry were performed for amyloid-β, phosphorylated-tau and choline acetyltransferase. Compared to controls, we observed an MRI-derived volume reduction and altered microstructural integrity of the nucleus basalis of Meynert in Alzheimer’s disease donors. Furthermore, decreased cholinergic cell density was associated with reduced integrity of the nucleus and its tracts to the temporal lobe, specifically to the temporal pole of the superior temporal gyrus, and the parahippocampal gyrus. Exploratory post hoc subgroup analyses indicated that cholinergic cell density could be associated with cortical tract alterations in amnestic Alzheimer’s disease donors only. Our study illustrates that in Alzheimer’s disease, cholinergic degeneration in the nucleus basalis of Meynert may contribute to damaged cortical projections, specifically to the temporal lobe, leading to cognitive deterioration.
Collapse
Affiliation(s)
- Chen Pei Lin
- Correspondence to: Chen-Pei Lin De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands E-mail:
| | - Irene Frigerio
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Baayla D C Boon
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Neurology, Alzheimer centrum Amsterdam, Amsterdam, The Netherlands
| | - Zihan Zhou
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Zhejiang, China
| | - Annemieke J M Rozemuller
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Neurology, Alzheimer centrum Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|