1
|
Robbins C, Eles J, Zheng XS, Kozai T, Cui XT, Vazquez A. Longitudinal changes in electrophysiology and widefield calcium imaging following electrode implantation. J Neural Eng 2024; 21:066043. [PMID: 39693772 DOI: 10.1088/1741-2552/ada0eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024]
Abstract
Objective. Intracortical microelectrode arrays often fail to deliver reliable signal quality over chronic recordings, and the effect of an implanted recording array on local neural circuits is not completely understood.Approach. In this work we examined the degree of correlation and the spatial dependence of that relationship between widefield calcium imaging and electrophysiology in awake mice from 4 to 44 d post-implantation. Both correlation maps and spike-triggered averaging (STA) are used to characterize the relationship.Main results. We find that calcium imaging and electrophysiological signal are highly correlated in all animals, however, spatial variability in the correlation is affected by inherent correlation in the calcium imaging signal. Some animals exhibit a high degree of apparent neuronal synchrony in the vicinity of the probe at 4 d, while more diversity of response is detected at later time points.Significance. Degree of synchrony appears to be related to the acute injury response to the implanted electrode, with later time points displaying less synchrony. STA may be used to uncover the diverse cortical connections of spiking units.
Collapse
Affiliation(s)
- Constance Robbins
- Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America
| | - James Eles
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| | - X Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| | - Takashi Kozai
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15260, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Center for Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, United States of America
- Neuroscience Institute at Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15260, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15260, United States of America
| |
Collapse
|
2
|
Matveev P, Li AJ, Ye Z, Bowen AJ, Opitz-Araya X, Ting JT, Steinmetz NA. Simultaneous mesoscopic measurement and manipulation of mouse cortical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621418. [PMID: 39553945 PMCID: PMC11565959 DOI: 10.1101/2024.11.01.621418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dynamics of activity across the cerebral cortex at the mesoscopic scale - coordinated fluctuations of local populations of neurons - are essential to perception and cognition and relevant to computations like sensorimotor integration and goal-directed task engagement. However, understanding direct causal links between population dynamics and behavior requires the ability to manipulate mesoscale activity and observe the effect of manipulation across multiple brain regions simultaneously. Here, we develop a novel system enabling simultaneous recording and manipulation of activity across the dorsal cortex of awake mice, compatible with large-scale electrophysiology from any region across the brain. Transgenic mice expressing the GCaMP calcium sensor are injected systemically with an adeno-associated virus driving expression of the ChrimsonR excitatory opsin. This strategy drives expression of the blue-excited calcium indicator, GCaMP, in excitatory neurons and red-excited Chrimson opsin in inhibitory neurons. We demonstrate widefield single-photon calcium imaging and simultaneous galvo-targeted laser stimulation over the entire dorsal cortical surface. The light channels of the imaging and the opsin do not interfere. We characterize the spatial and temporal resolution of the method, which is suitable for targeting specific cortical regions and specific time windows in behavioral tasks. The preparation is stable over many months and thus well-suited for long-term behavioral experiments. This technique allows for studying the effect of cortical perturbations on cortex-wide activity, on subcortical spiking activity, and on behavior, and for designing systems to control cortical activity in closed-loop.
Collapse
|
3
|
Ottenhoff MC, Verwoert M, Goulis S, Wagner L, van Dijk JP, Kubben PL, Herff C. Global motor dynamics - Invariant neural representations of motor behavior in distributed brain-wide recordings. J Neural Eng 2024; 21:056034. [PMID: 39383883 DOI: 10.1088/1741-2552/ad851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.Motor-related neural activity is more widespread than previously thought, as pervasive brain-wide neural correlates of motor behavior have been reported in various animal species. Brain-wide movement-related neural activity have been observed in individual brain areas in humans as well, but it is unknown to what extent global patterns exist.Approach.Here, we use a decoding approach to capture and characterize brain-wide neural correlates of movement. We recorded invasive electrophysiological data from stereotactic electroencephalographic electrodes implanted in eight epilepsy patients who performed both an executed and imagined grasping task. Combined, these electrodes cover the whole brain, including deeper structures such as the hippocampus, insula and basal ganglia. We extract a low-dimensional representation and classify movement from rest trials using a Riemannian decoder.Main results.We reveal global neural dynamics that are predictive across tasks and participants. Using an ablation analysis, we demonstrate that these dynamics remain remarkably stable under loss of information. Similarly, the dynamics remain stable across participants, as we were able to predict movement across participants using transfer learning.Significance.Our results show that decodable global motor-related neural dynamics exist within a low-dimensional space. The dynamics are predictive of movement, nearly brain-wide and present in all our participants. The results broaden the scope to brain-wide investigations, and may allow combining datasets of multiple participants with varying electrode locations or calibrationless neural decoder.
Collapse
Affiliation(s)
- Maarten C Ottenhoff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Maxime Verwoert
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Sophocles Goulis
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Louis Wagner
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
| | - Johannes P van Dijk
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
- Department of Orthodontics, Ulm University, Ulm, Germany
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter L Kubben
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Herff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Carandini M. Sensory choices as logistic classification. Neuron 2024; 112:2854-2868.e1. [PMID: 39013468 PMCID: PMC11377159 DOI: 10.1016/j.neuron.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement it by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.
Collapse
Affiliation(s)
- Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1 6BT, UK.
| |
Collapse
|
5
|
Ciceri S, Oude Lohuis MN, Rottschäfer V, Pennartz CMA, Avitabile D, van Gaal S, Olcese U. The Neural and Computational Architecture of Feedback Dynamics in Mouse Cortex during Stimulus Report. eNeuro 2024; 11:ENEURO.0191-24.2024. [PMID: 39260892 PMCID: PMC11444237 DOI: 10.1523/eneuro.0191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024] Open
Abstract
Conscious reportability of visual input is associated with a bimodal neural response in the primary visual cortex (V1): an early-latency response coupled to stimulus features and a late-latency response coupled to stimulus report or detection. This late wave of activity, central to major theories of consciousness, is thought to be driven by the prefrontal cortex (PFC), responsible for "igniting" it. Here we analyzed two electrophysiological studies in mice performing different stimulus detection tasks and characterized neural activity profiles in three key cortical regions: V1, posterior parietal cortex (PPC), and PFC. We then developed a minimal network model, constrained by known connectivity between these regions, reproducing the spatiotemporal propagation of visual- and report-related activity. Remarkably, while PFC was indeed necessary to generate report-related activity in V1, this occurred only through the mediation of PPC. PPC, and not PFC, had the final veto in enabling the report-related late wave of V1 activity.
Collapse
Affiliation(s)
- Simone Ciceri
- Institute for Theoretical Physics, Utrecht University, Utrecht 3584CC, Netherlands
| | - Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden 2333CA, Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam 1098XG, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Daniele Avitabile
- Amsterdam Center for Dynamics and Computation, Mathematics Department, Vrije Universiteit Amsterdam, Amsterdam 1081HV, Netherlands
- Mathneuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis 06902, France
- Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081HV, Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018WT, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| |
Collapse
|
6
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
7
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural & perceptual contrast sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566605. [PMID: 38014014 PMCID: PMC10680635 DOI: 10.1101/2023.11.10.566605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lateral inhibition is a central principle for sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. Much work on the role of inhibition in sensory systems has focused on visual cortex; however, the neurons, computations, and mechanisms underlying cortical lateral inhibition remain debated, and its importance for visual perception remains unknown. Here, we tested how lateral inhibition from PV or SST neurons in mouse primary visual cortex (V1) modulates neural and perceptual sensitivity to stimulus contrast. Lateral inhibition from PV neurons reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from SST neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model identified spatially extensive lateral projections from SST neurons as the key factor, and we confirmed this with anatomy and direct subthreshold measurements of a larger spatial footprint for SST versus PV lateral inhibition. Together, these results define cell-type specific computational roles for lateral inhibition in V1, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
|
8
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kılıç K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. NEUROPHOTONICS 2024; 11:034310. [PMID: 38881627 PMCID: PMC11177117 DOI: 10.1117/1.nph.11.3.034310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Significance Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensorGRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
Affiliation(s)
- Patrick R. Doran
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Rockwell P. Tang
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Dora Balog
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Bernhard Zimmerman
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Emily A. Martin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Harrison P. Fisher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Grace Chabbott
- Boston University, Undergraduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Joel Herbert
- Boston University, Undergraduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Bradley C. Rauscher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - John X. Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Ichun Anderson Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Gilad A. Wide-field imaging in behaving mice as a tool to study cognitive function. NEUROPHOTONICS 2024; 11:033404. [PMID: 38384657 PMCID: PMC10879934 DOI: 10.1117/1.nph.11.3.033404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Cognitive functions are mediated through coordinated and dynamic neuronal responses that involve many different areas across the brain. Therefore, it is of high interest to simultaneously record neuronal activity from as many brain areas as possible while the subject performs a cognitive behavioral task. One of the emerging tools to achieve a mesoscopic field of view is wide-field imaging of cortex-wide dynamics in mice. Wide-field imaging is cost-effective, user-friendly, and enables obtaining cortex-wide signals from mice performing complex and demanding cognitive tasks. Importantly, wide-field imaging offers an unbiased cortex-wide observation that sheds light on overlooked cortical regions and highlights parallel processing circuits. Recent wide-field imaging studies have shown that multi-area cortex-wide patterns, rather than just a single area, are involved in encoding cognitive functions. The optical properties of wide-field imaging enable imaging of different brain signals, such as layer-specific, inhibitory subtypes, or neuromodulation signals. Here, I review the main advantages of wide-field imaging in mice, review the recent literature, and discuss future directions of the field. It is expected that wide-field imaging in behaving mice will continue to gain popularity and aid in understanding the mesoscale dynamics underlying cognitive function.
Collapse
Affiliation(s)
- Ariel Gilad
- Hebrew University of Jerusalem, Institute for Medical Research Israel-Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
10
|
Rao RPN. A sensory-motor theory of the neocortex. Nat Neurosci 2024; 27:1221-1235. [PMID: 38937581 DOI: 10.1038/s41593-024-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024]
Abstract
Recent neurophysiological and neuroanatomical studies suggest a close interaction between sensory and motor processes across the neocortex. Here, I propose that the neocortex implements active predictive coding (APC): each cortical area estimates both latent sensory states and actions (including potentially abstract actions internal to the cortex), and the cortex as a whole predicts the consequences of actions at multiple hierarchical levels. Feedback from higher areas modulates the dynamics of state and action networks in lower areas. I show how the same APC architecture can explain (1) how we recognize an object and its parts using eye movements, (2) why perception seems stable despite eye movements, (3) how we learn compositional representations, for example, part-whole hierarchies, (4) how complex actions can be planned using simpler actions, and (5) how we form episodic memories of sensory-motor experiences and learn abstract concepts such as a family tree. I postulate a mapping of the APC model to the laminar architecture of the cortex and suggest possible roles for cortico-cortical and cortico-subcortical pathways.
Collapse
Affiliation(s)
- Rajesh P N Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Carandini M. Sensory choices as logistic classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576029. [PMID: 38979189 PMCID: PMC11230223 DOI: 10.1101/2024.01.17.576029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.
Collapse
Affiliation(s)
- Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1 6BT, UK
| |
Collapse
|
12
|
Steinfeld R, Tacão-Monteiro A, Renart A. Differential representation of sensory information and behavioral choice across layers of the mouse auditory cortex. Curr Biol 2024; 34:2200-2211.e6. [PMID: 38733991 DOI: 10.1016/j.cub.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.
Collapse
Affiliation(s)
- Raphael Steinfeld
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| | - André Tacão-Monteiro
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
13
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol 2024; 34:1940-1952.e5. [PMID: 38640924 PMCID: PMC11080572 DOI: 10.1016/j.cub.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA.
| | - Autumn O Mitchell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Rachel K Parker
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. Cell Rep 2024; 43:114017. [PMID: 38578827 DOI: 10.1016/j.celrep.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness, suprathreshold stimuli evoke perceptions; under anesthesia, perceptions are abolished; and during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perceptions. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia as well as during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely, in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is reliably elicited by external visual stimuli.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Luo
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Helen Chung
- The College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego Contreras
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Oude Lohuis MN, Marchesi P, Olcese U, Pennartz CMA. Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. Nat Neurosci 2024; 27:758-771. [PMID: 38307971 DOI: 10.1038/s41593-023-01564-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Pietro Marchesi
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
16
|
Brezovec BE, Berger AB, Hao YA, Chen F, Druckmann S, Clandinin TR. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr Biol 2024; 34:710-726.e4. [PMID: 38242122 DOI: 10.1016/j.cub.2023.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Locomotion engages widely distributed networks of neurons. However, our understanding of the spatial architecture and temporal dynamics of the networks that underpin walking remains incomplete. We use volumetric two-photon imaging to map neural activity associated with walking across the entire brain of Drosophila. We define spatially clustered neural signals selectively associated with changes in either forward or angular velocity, demonstrating that neurons with similar behavioral selectivity are clustered. These signals reveal distinct topographic maps in diverse brain regions involved in navigation, memory, sensory processing, and motor control, as well as regions not previously linked to locomotion. We identify temporal trajectories of neural activity that sweep across these maps, including signals that anticipate future movement, representing the sequential engagement of clusters with different behavioral specificities. Finally, we register these maps to a connectome and identify neural networks that we propose underlie the observed signals, setting a foundation for subsequent circuit dissection. Overall, our work suggests a spatiotemporal framework for the emergence and execution of complex walking maneuvers and links this brain-wide neural activity to single neurons and local circuits.
Collapse
Affiliation(s)
- Bella E Brezovec
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
18
|
Oryshchuk A, Sourmpis C, Weverbergh J, Asri R, Esmaeili V, Modirshanechi A, Gerstner W, Petersen CCH, Crochet S. Distributed and specific encoding of sensory, motor, and decision information in the mouse neocortex during goal-directed behavior. Cell Rep 2024; 43:113618. [PMID: 38150365 DOI: 10.1016/j.celrep.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Goal-directed behaviors involve coordinated activity in many cortical areas, but whether the encoding of task variables is distributed across areas or is more specifically represented in distinct areas remains unclear. Here, we compared representations of sensory, motor, and decision information in the whisker primary somatosensory cortex, medial prefrontal cortex, and tongue-jaw primary motor cortex in mice trained to lick in response to a whisker stimulus with mice that were not taught this association. Irrespective of learning, properties of the sensory stimulus were best encoded in the sensory cortex, whereas fine movement kinematics were best represented in the motor cortex. However, movement initiation and the decision to lick in response to the whisker stimulus were represented in all three areas, with decision neurons in the medial prefrontal cortex being more selective, showing minimal sensory responses in miss trials and motor responses during spontaneous licks. Our results reconcile previous studies indicating highly specific vs. highly distributed sensorimotor processing.
Collapse
Affiliation(s)
- Anastasiia Oryshchuk
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christos Sourmpis
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julie Weverbergh
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reza Asri
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alireza Modirshanechi
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institut National de la Santé et de la Recherche Médicale (INSERM), 6900 Lyon, France.
| |
Collapse
|
19
|
Yiling Y, Klon-Lipok J, Singer W. Joint encoding of stimulus and decision in monkey primary visual cortex. Cereb Cortex 2024; 34:bhad420. [PMID: 37955641 PMCID: PMC10793581 DOI: 10.1093/cercor/bhad420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
We investigated whether neurons in monkey primary visual cortex (V1) exhibit mixed selectivity for sensory input and behavioral choice. Parallel multisite spiking activity was recorded from area V1 of awake monkeys performing a delayed match-to-sample task. The monkeys had to make a forced choice decision of whether the test stimulus matched the preceding sample stimulus. The population responses evoked by the test stimulus contained information about both the identity of the stimulus and with some delay but before the onset of the motor response the forthcoming choice. The results of subspace identification analysis indicate that stimulus-specific and decision-related information coexists in separate subspaces of the high-dimensional population activity, and latency considerations suggest that the decision-related information is conveyed by top-down projections.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Barreiro AK, Fontenele AJ, Ly C, Raju PC, Gautam SH, Shew WL. Sensory input to cortex encoded on low-dimensional periphery-correlated subspaces. PNAS NEXUS 2024; 3:pgae010. [PMID: 38250515 PMCID: PMC10798852 DOI: 10.1093/pnasnexus/pgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
As information about the world is conveyed from the sensory periphery to central neural circuits, it mixes with complex ongoing cortical activity. How do neural populations keep track of sensory signals, separating them from noisy ongoing activity? Here, we show that sensory signals are encoded more reliably in certain low-dimensional subspaces. These coding subspaces are defined by correlations between neural activity in the primary sensory cortex and upstream sensory brain regions; the most correlated dimensions were best for decoding. We analytically show that these correlation-based coding subspaces improve, reaching optimal limits (without an ideal observer), as noise correlations between cortex and upstream regions are reduced. We show that this principle generalizes across diverse sensory stimuli in the olfactory system and the visual system of awake mice. Our results demonstrate an algorithm the cortex may use to multiplex different functions, processing sensory input in low-dimensional subspaces separate from other ongoing functions.
Collapse
Affiliation(s)
- Andrea K Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA
| | - Antonio J Fontenele
- Department of Physics, UA Integrative Systems Neuroscience, University of Arkansas, Fayetteville, AR 72701, USA
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Prashant C Raju
- Department of Physics, UA Integrative Systems Neuroscience, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shree Hari Gautam
- Department of Physics, UA Integrative Systems Neuroscience, University of Arkansas, Fayetteville, AR 72701, USA
| | - Woodrow L Shew
- Department of Physics, UA Integrative Systems Neuroscience, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
21
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
22
|
Do J, Jung MW, Lee D. Automating licking bias correction in a two-choice delayed match-to-sample task to accelerate learning. Sci Rep 2023; 13:22768. [PMID: 38123637 PMCID: PMC10733387 DOI: 10.1038/s41598-023-49862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Animals often display choice bias, or a preference for one option over the others, which can significantly impede learning new tasks. Delayed match-to-sample (DMS) tasks with two-alternative choices of lickports on the left and right have been widely used to study sensory processing, working memory, and associative memory in head-fixed animals. However, extensive training time, primarily due to the animals' biased licking responses, limits their practical utility. Here, we present the implementation of an automated side bias correction system in an olfactory DMS task, where the lickport positions and the ratio of left- and right-rewarded trials are dynamically adjusted to counterbalance mouse's biased licking responses during training. The correction algorithm moves the preferred lickport farther away from the mouse's mouth and the non-preferred lickport closer, while also increasing the proportion of non-preferred side trials when biased licking occurs. We found that adjusting lickport distances and the proportions of left- versus right-rewarded trials effectively reduces the mouse's side bias. Further analyses reveal that these adjustments also correlate with subsequent improvements in behavioral performance. Our findings suggest that the automated side bias correction system is a valuable tool for enhancing the applicability of behavioral tasks involving two-alternative lickport choices.
Collapse
Affiliation(s)
- Jongrok Do
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea.
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
23
|
Kulkarni S, Saha M, Slosberg J, Singh A, Nagaraj S, Becker L, Zhang C, Bukowski A, Wang Z, Liu G, Leser JM, Kumar M, Bakhshi S, Anderson MJ, Lewandoski M, Vincent E, Goff LA, Pasricha PJ. Age-associated changes in lineage composition of the enteric nervous system regulate gut health and disease. eLife 2023; 12:RP88051. [PMID: 38108810 PMCID: PMC10727506 DOI: 10.7554/elife.88051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical CenterBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Monalee Saha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alpana Singh
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Sushma Nagaraj
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Laren Becker
- Division of Gastroenterology, Stanford University – School of MedicineStanfordUnited States
| | - Chengxiu Zhang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alicia Bukowski
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Zhuolun Wang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Guosheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Mithra Kumar
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Shriya Bakhshi
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Matthew J Anderson
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Mark Lewandoski
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Elizabeth Vincent
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University – School of MedicineBaltimoreUnited States
- Kavli Neurodiscovery Institute, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | | |
Collapse
|
24
|
Imani E, Radkani S, Hashemi A, Harati A, Pourreza H, Moazami Goudarzi M. Distributed Coding of Evidence Accumulation across the Mouse Brain Using Microcircuits with a Diversity of Timescales. eNeuro 2023; 10:ENEURO.0282-23.2023. [PMID: 37863657 PMCID: PMC10626503 DOI: 10.1523/eneuro.0282-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
The gradual accumulation of noisy evidence for or against options is the main step in the perceptual decision-making process. Using brain-wide electrophysiological recording in mice (Steinmetz et al., 2019), we examined neural correlates of evidence accumulation across brain areas. We demonstrated that the neurons with drift-diffusion model (DDM)-like firing rate activity (i.e., evidence-sensitive ramping firing rate) were distributed across the brain. Exploring the underlying neural mechanism of evidence accumulation for the DDM-like neurons revealed different accumulation mechanisms (i.e., single and race) both within and across the brain areas. Our findings support the hypothesis that evidence accumulation is happening through multiple integration mechanisms in the brain. We further explored the timescale of the integration process in the single and race accumulator models. The results demonstrated that the accumulator microcircuits within each brain area had distinct properties in terms of their integration timescale, which were organized hierarchically across the brain. These findings support the existence of evidence accumulation over multiple timescales. Besides the variability of integration timescale across the brain, a heterogeneity of timescales was observed within each brain area as well. We demonstrated that this variability reflected the diversity of microcircuit parameters, such that accumulators with longer integration timescales had higher recurrent excitation strength.
Collapse
Affiliation(s)
- Elaheh Imani
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Setayesh Radkani
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Ahad Harati
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hamidreza Pourreza
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | | |
Collapse
|
25
|
Coughlin B, Muñoz W, Kfir Y, Young MJ, Meszéna D, Jamali M, Caprara I, Hardstone R, Khanna A, Mustroph ML, Trautmann EM, Windolf C, Varol E, Soper DJ, Stavisky SD, Welkenhuysen M, Dutta B, Shenoy KV, Hochberg LR, Mark Richardson R, Williams ZM, Cash SS, Paulk AC. Modified Neuropixels probes for recording human neurophysiology in the operating room. Nat Protoc 2023; 18:2927-2953. [PMID: 37697108 DOI: 10.1038/s41596-023-00871-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/08/2023] [Indexed: 09/13/2023]
Abstract
Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.
Collapse
Affiliation(s)
- Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Richard Hardstone
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Arjun Khanna
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University Medical Center, New York, NY, USA
| | - Charlie Windolf
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Computer Science and Engineering, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dan J Soper
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sergey D Stavisky
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | | | - Krishna V Shenoy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wang Y, Chen Z, Ma G, Wang L, Liu Y, Qin M, Fei X, Wu Y, Xu M, Zhang S. A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing. Nat Commun 2023; 14:5213. [PMID: 37626171 PMCID: PMC10457336 DOI: 10.1038/s41467-023-40985-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Interhemispheric communication through the corpus callosum is required for both sensory and cognitive processes. Impaired transcallosal inhibition causing interhemispheric imbalance is believed to underlie visuospatial bias after frontoparietal cortical damage, but the synaptic circuits involved remain largely unknown. Here, we show that lesions in the mouse anterior cingulate area (ACA) cause severe visuospatial bias mediated by a transcallosal inhibition loop. In a visual-change-detection task, ACA callosal-projection neurons (CPNs) were more active with contralateral visual field changes than with ipsilateral changes. Unilateral CPN inactivation impaired contralateral change detection but improved ipsilateral detection by altering interhemispheric interaction through callosal projections. CPNs strongly activated contralateral parvalbumin-positive (PV+) neurons, and callosal-input-driven PV+ neurons preferentially inhibited ipsilateral CPNs, thus mediating transcallosal inhibition. Unilateral PV+ neuron activation caused a similar behavioral bias to contralateral CPN activation and ipsilateral CPN inactivation, and bilateral PV+ neuron activation eliminated this bias. Notably, restoring interhemispheric balance by activating contralesional PV+ neurons significantly improved contralesional detection in ACA-lesioned animals. Thus, a frontal transcallosal inhibition loop comprising CPNs and callosal-input-driven PV+ neurons mediates interhemispheric balance in visuospatial processing, and enhancing contralesional transcallosal inhibition restores interhemispheric balance while also reversing lesion-induced bias.
Collapse
Affiliation(s)
- Yanjie Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaonan Chen
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guofen Ma
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lizhao Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmei Liu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiang Fei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Siyu Zhang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
28
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Temporal weighting of cortical and subcortical spikes reveals stimulus dependent differences in their contributions to behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554473. [PMID: 37662213 PMCID: PMC10473714 DOI: 10.1101/2023.08.23.554473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with V1 supporting perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports perception of many of the same visual features traditionally associated with V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to perception of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near perceptual threshold while we presented white noise patterns of optogenetic stimulation to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in SC are critical for detection of both luminance or contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK, but no sign of a comparable modulation for luminance detection. The data suggest that perception of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually-guided behaviors.
Collapse
|
29
|
Coen P, Sit TPH, Wells MJ, Carandini M, Harris KD. Mouse frontal cortex mediates additive multisensory decisions. Neuron 2023; 111:2432-2447.e13. [PMID: 37295419 PMCID: PMC10957398 DOI: 10.1016/j.neuron.2023.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
The brain can combine auditory and visual information to localize objects. However, the cortical substrates underlying audiovisual integration remain uncertain. Here, we show that mouse frontal cortex combines auditory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (secondary motor cortex) additively encodes visual and auditory signals, consistent with the mice's behavioral strategy. An accumulator model applied to these sensory representations reproduced the observed choices and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence across sensory cortices, providing a signal that is transformed into a binary decision by a downstream accumulator.
Collapse
Affiliation(s)
- Philip Coen
- UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy P H Sit
- Sainsbury-Wellcome Center, University College London, London, UK
| | - Miles J Wells
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
30
|
Tobin WF, Weston MC. Distinct Features of Interictal Activity Predict Seizure Localization and Burden in a Mouse Model of Childhood Epilepsy. J Neurosci 2023; 43:5076-5091. [PMID: 37290938 PMCID: PMC10324994 DOI: 10.1523/jneurosci.2205-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
The epileptic brain is distinguished by spontaneous seizures and interictal epileptiform discharges (IEDs). Basic patterns of mesoscale brain activity outside of seizures and IEDs are also frequently disrupted in the epileptic brain and likely influence disease symptoms, but are poorly understood. We aimed to quantify how interictal brain activity differs from that in healthy individuals, and identify what features of interictal activity influence seizure occurrence in a genetic mouse model of childhood epilepsy. Neural activity across the majority of the dorsal cortex was monitored with widefield Ca2+ imaging in mice of both sexes expressing a human Kcnt1 variant (Kcnt1m/m ) and wild-type controls (WT). Ca2+ signals during seizures and interictal periods were classified according to their spatiotemporal features. We identified 52 spontaneous seizures, which emerged and propagated within a consistent set of susceptible cortical areas, and were predicted by a concentration of total cortical activity within the emergence zone. Outside of seizures and IEDs, similar events were detected in Kcnt1m/m and WT mice, suggesting that the spatial structure of interictal activity is similar. However, the rate of events whose spatial profile overlapped with where seizures and IEDs emerged was increased, and the characteristic global intensity of cortical activity in individual Kcnt1m/m mice predicted their epileptic activity burden. This suggests that cortical areas with excessive interictal activity are vulnerable to seizures, but epilepsy is not an inevitable outcome. Global scaling of the intensity of cortical activity below levels found in the healthy brain may provide a natural mechanism of seizure protection.SIGNIFICANCE STATEMENT Defining the scope and structure of an epilepsy-causing gene variant's effects on mesoscale brain activity constitutes a major contribution to our understanding of how epileptic brains differ from healthy brains, and informs the development of precision epilepsy therapies. We provide a clear roadmap for measuring how severely brain activity deviates from normal, not only in pathologically active areas, but across large portions of the brain and outside of epileptic activity. This will indicate where and how activity needs to be modulated to holistically restore normal function. It also has the potential to reveal unintended off-target treatment effects and facilitate therapy optimization to deliver maximal benefit with minimal side-effect potential.
Collapse
Affiliation(s)
- William F Tobin
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405
| | - Matthew C Weston
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405
- Fralin Biomedical Research Institute and School of Neuroscience, Virginia Polytechnic and State University, Roanoke, VA 24016
| |
Collapse
|
31
|
Baker CM, Gong Y. Identifying properties of pattern completion neurons in a computational model of the visual cortex. PLoS Comput Biol 2023; 19:e1011167. [PMID: 37279242 DOI: 10.1371/journal.pcbi.1011167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Neural ensembles are found throughout the brain and are believed to underlie diverse cognitive functions including memory and perception. Methods to activate ensembles precisely, reliably, and quickly are needed to further study the ensembles' role in cognitive processes. Previous work has found that ensembles in layer 2/3 of the visual cortex (V1) exhibited pattern completion properties: ensembles containing tens of neurons were activated by stimulation of just two neurons. However, methods that identify pattern completion neurons are underdeveloped. In this study, we optimized the selection of pattern completion neurons in simulated ensembles. We developed a computational model that replicated the connectivity patterns and electrophysiological properties of layer 2/3 of mouse V1. We identified ensembles of excitatory model neurons using K-means clustering. We then stimulated pairs of neurons in identified ensembles while tracking the activity of the entire ensemble. Our analysis of ensemble activity quantified a neuron pair's power to activate an ensemble using a novel metric called pattern completion capability (PCC) based on the mean pre-stimulation voltage across the ensemble. We found that PCC was directly correlated with multiple graph theory parameters, such as degree and closeness centrality. To improve selection of pattern completion neurons in vivo, we computed a novel latency metric that was correlated with PCC and could potentially be estimated from modern physiological recordings. Lastly, we found that stimulation of five neurons could reliably activate ensembles. These findings can help researchers identify pattern completion neurons to stimulate in vivo during behavioral studies to control ensemble activation.
Collapse
Affiliation(s)
- Casey M Baker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
32
|
Akitake B, Douglas HM, LaFosse PK, Beiran M, Deveau CE, O'Rawe J, Li AJ, Ryan LN, Duffy SP, Zhou Z, Deng Y, Rajan K, Histed MH. Amplified cortical neural responses as animals learn to use novel activity patterns. Curr Biol 2023; 33:2163-2174.e4. [PMID: 37148876 DOI: 10.1016/j.cub.2023.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make decisions and guide behavior. Past work has found diverse, or limited, changes in the primary sensory cortex in response to learning, suggesting that the key computations might occur in downstream regions. Alternatively, sensory cortical changes may be central to learning. We studied cortical learning by using controlled inputs we insert: we trained mice to recognize entirely novel, non-sensory patterns of cortical activity in the primary visual cortex (V1) created by optogenetic stimulation. As animals learned to use these novel patterns, we found that their detection abilities improved by an order of magnitude or more. The behavioral change was accompanied by large increases in V1 neural responses to fixed optogenetic input. Neural response amplification to novel optogenetic inputs had little effect on existing visual sensory responses. A recurrent cortical model shows that this amplification can be achieved by a small mean shift in recurrent network synaptic strength. Amplification would seem to be desirable to improve decision-making in a detection task; therefore, these results suggest that adult recurrent cortical plasticity plays a significant role in improving behavioral performance during learning.
Collapse
Affiliation(s)
- Bradley Akitake
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah M Douglas
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K LaFosse
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Beiran
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ciana E Deveau
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan O'Rawe
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna J Li
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Ryan
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel P Duffy
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhishang Zhou
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanting Deng
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanaka Rajan
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark H Histed
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
34
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540656. [PMID: 37292587 PMCID: PMC10245750 DOI: 10.1101/2023.05.22.540656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness stimuli evoke perceptions; under anesthesia perceptions are abolished; during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perception. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia and during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is elicited by specifically by external visual stimuli.
Collapse
|
35
|
Quintana D, Bounds HA, Brown J, Wang M, Bhatla N, Wiegert JS, Adesnik H. Dissociating instructive from permissive roles of brain circuits with reversible neural activity manipulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540397. [PMID: 37214966 PMCID: PMC10197619 DOI: 10.1101/2023.05.11.540397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Neuroscientists rely on targeted perturbations and lesions to causally map functions in the brain1. Yet, since the brain is highly interconnected, manipulation of one area can impact behavior through indirect effects on many other brain regions, complicating the interpretation of such results2,3. On the other hand, the often-observed recovery of behavior performance after lesion can cast doubt on whether the lesioned area was ever directly involved4,5. Recent studies have highlighted how the results of acute and irreversible inactivation can directly conflict4-6, making it unclear whether a brain area is instructive or merely permissive in a specific brain function. To overcome this challenge, we developed a three-stage optogenetic approach which leverages the ability to precisely control the temporal period of regional inactivation with either brief or sustained illumination. Using a visual detection task, we found that acute optogenetic inactivation of the primary visual cortex (V1) suppressed task performance if cortical inactivation was intermittent across trials within each behavioral session. However, when we inactivated V1 for entire behavioral sessions, animals quickly recovered performance in just one to two days. Most importantly, after returning these recovered animals to intermittent cortical inactivation, they quickly reverted to failing on optogenetic inactivation trials. These data support a revised model where the cortex is the default circuit that instructs perceptual performance in basic sensory tasks. More generally, this novel, temporally controllable optogenetic perturbation paradigm can be broadly applied to brain circuits and specific cell types to assess whether they are instructive or merely permissive in a brain function or behavior.
Collapse
Affiliation(s)
- Daniel Quintana
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Hayley A Bounds
- Department of Molecular and Cell Biology, University of California, Berkeley
- The Helen Wills Neuroscience Institute
| | - Jennifer Brown
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - May Wang
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Nikhil Bhatla
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - J Simon Wiegert
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley
- The Helen Wills Neuroscience Institute
| |
Collapse
|
36
|
Musall S, Sun XR, Mohan H, An X, Gluf S, Li SJ, Drewes R, Cravo E, Lenzi I, Yin C, Kampa BM, Churchland AK. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat Neurosci 2023; 26:495-505. [PMID: 36690900 PMCID: PMC9991922 DOI: 10.1038/s41593-022-01245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions.
Collapse
Affiliation(s)
- Simon Musall
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany.
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany.
| | - Xiaonan R Sun
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hemanth Mohan
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Steven Gluf
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Rhonda Drewes
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Emma Cravo
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Chaoqun Yin
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Björn M Kampa
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
- JARA Brain, Institute for Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| | - Anne K Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Nietz AK, Streng ML, Popa LS, Carter RE, Flaherty EB, Aronson JD, Ebner TJ. To be and not to be: wide-field Ca2+ imaging reveals neocortical functional segmentation combines stability and flexibility. Cereb Cortex 2023:7024718. [PMID: 36734268 DOI: 10.1093/cercor/bhac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 02/04/2023] Open
Abstract
The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.
Collapse
Affiliation(s)
- Angela K Nietz
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Martha L Streng
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| |
Collapse
|
38
|
Bimbard C, Sit TPH, Lebedeva A, Reddy CB, Harris KD, Carandini M. Behavioral origin of sound-evoked activity in mouse visual cortex. Nat Neurosci 2023; 26:251-258. [PMID: 36624279 PMCID: PMC9905016 DOI: 10.1038/s41593-022-01227-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/31/2022] [Indexed: 01/10/2023]
Abstract
Sensory cortices can be affected by stimuli of multiple modalities and are thus increasingly thought to be multisensory. For instance, primary visual cortex (V1) is influenced not only by images but also by sounds. Here we show that the activity evoked by sounds in V1, measured with Neuropixels probes, is stereotyped across neurons and even across mice. It is independent of projections from auditory cortex and resembles activity evoked in the hippocampal formation, which receives little direct auditory input. Its low-dimensional nature starkly contrasts the high-dimensional code that V1 uses to represent images. Furthermore, this sound-evoked activity can be precisely predicted by small body movements that are elicited by each sound and are stereotyped across trials and mice. Thus, neural activity that is apparently multisensory may simply arise from low-dimensional signals associated with internal state and behavior.
Collapse
Affiliation(s)
- Célian Bimbard
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy P H Sit
- Sainsbury Wellcome Centre, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charu B Reddy
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
39
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Peters AJ, Marica AM, Fabre JMJ, Harris KD, Carandini M. Visuomotor learning promotes visually evoked activity in the medial prefrontal cortex. Cell Rep 2022; 41:111487. [PMID: 36261004 PMCID: PMC9631115 DOI: 10.1016/j.celrep.2022.111487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is necessary for executing many learned associations between stimuli and movement. It is unclear, however, how activity in the mPFC evolves across learning, and how this activity correlates with sensory stimuli and the learned movements they evoke. To address these questions, we record cortical activity with widefield calcium imaging while mice learned to associate a visual stimulus with a forelimb movement. After learning, the mPFC shows stimulus-evoked activity both during task performance and during passive viewing, when the stimulus evokes no action. This stimulus-evoked activity closely tracks behavioral performance across training, with both exhibiting a marked increase between days when mice first learn the task, followed by a steady increase with further training. Electrophysiological recordings localized this activity to the secondary motor and anterior cingulate cortex. We conclude that learning a visuomotor task promotes a route for visual information to reach the prefrontal cortex.
Collapse
Affiliation(s)
- Andrew J Peters
- UCL Institute of Ophthalmology, University College London, London, UK.
| | | | - Julie M J Fabre
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
41
|
Yang W, Tipparaju SL, Chen G, Li N. Thalamus-driven functional populations in frontal cortex support decision-making. Nat Neurosci 2022; 25:1339-1352. [PMID: 36171427 PMCID: PMC9534763 DOI: 10.1038/s41593-022-01171-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Neurons in frontal cortex exhibit diverse selectivity representing sensory, motor and cognitive variables during decision-making. The neural circuit basis for this complex selectivity remains unclear. We examined activity mediating a tactile decision in mouse anterior lateral motor cortex in relation to the underlying circuits. Contrary to the notion of randomly mixed selectivity, an analysis of 20,000 neurons revealed organized activity coding behavior. Individual neurons exhibited prototypical response profiles that were repeatable across mice. Stimulus, choice and action were coded nonrandomly by distinct neuronal populations that could be delineated by their response profiles. We related distinct selectivity to long-range inputs from somatosensory cortex, contralateral anterior lateral motor cortex and thalamus. Each input connects to all functional populations but with differing strength. Task selectivity was more strongly dependent on thalamic inputs than cortico-cortical inputs. Our results suggest that the thalamus drives subnetworks within frontal cortex coding distinct features of decision-making.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Lee JJ, Krumin M, Harris KD, Carandini M. Task specificity in mouse parietal cortex. Neuron 2022; 110:2961-2969.e5. [PMID: 35963238 PMCID: PMC9616730 DOI: 10.1016/j.neuron.2022.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Parietal cortex is implicated in a variety of behavioral processes, but it is unknown whether and how its individual neurons participate in multiple tasks. We trained head-fixed mice to perform two visual decision tasks involving a steering wheel or a virtual T-maze and recorded from the same parietal neurons during these two tasks. Neurons that were active during the T-maze task were typically inactive during the steering-wheel task and vice versa. Recording from the same neurons in the same apparatus without task stimuli yielded the same specificity as in the task, suggesting that task specificity depends on physical context. To confirm this, we trained some mice in a third task combining the steering wheel context with the visual environment of the T-maze. This hybrid task engaged the same neurons as those engaged in the steering-wheel task. Thus, participation by neurons in mouse parietal cortex is task specific, and this specificity is determined by physical context.
Collapse
Affiliation(s)
- Julie J Lee
- UCL Institute of Ophthalmology, University College London, Gower Street, London WC1E 6AE, UK.
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, Gower Street, London WC1E 6AE, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, Gower Street, London WC1E 6AE, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, Gower Street, London WC1E 6AE, UK
| |
Collapse
|
43
|
Oude Lohuis MN, Marchesi P, Pennartz CMA, Olcese U. Functional (ir)Relevance of Posterior Parietal Cortex during Audiovisual Change Detection. J Neurosci 2022; 42:5229-5245. [PMID: 35641187 PMCID: PMC9236290 DOI: 10.1523/jneurosci.2150-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The posterior parietal cortex (PPC) plays a key role in integrating sensory inputs from different modalities to support adaptive behavior. Neuronal activity in PPC reflects perceptual decision-making across behavioral tasks, but the mechanistic involvement of PPC is unclear. In an audiovisual change detection task, we tested the hypothesis that PPC is required to arbitrate between the noisy inputs from the two different modalities and help decide in which modality a sensory change occurred. In trained male mice, we found extensive single-neuron and population-level encoding of task-relevant visual and auditory stimuli, trial history, as well as upcoming behavioral responses. However, despite these rich neural correlates, which would theoretically be sufficient to solve the task, optogenetic inactivation of PPC did not affect visual or auditory performance. Thus, despite neural correlates faithfully tracking sensory variables and predicting behavioral responses, PPC was not relevant for audiovisual change detection. This functional dissociation questions the role of sensory- and task-related activity in parietal associative circuits during audiovisual change detection. Furthermore, our results highlight the necessity to dissociate functional correlates from mechanistic involvement when exploring the neural basis of perception and behavior.SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) is active during many daily tasks, but capturing its function has remained challenging. Specifically, it is proposed to function as an integration hub for multisensory inputs. Here, we tested the hypothesis that, rather than classical cue integration, mouse PPC is involved in the segregation and discrimination of sensory modalities. Surprisingly, although neural activity tracked current and past sensory stimuli and reflected the ongoing decision-making process, optogenetic inactivation did not affect task performance. Thus, we show an apparent redundancy of sensory and task-related activity in mouse PPC. These results narrow down the function of parietal circuits, as well as direct the search for those neural dynamics that causally drive perceptual decision-making.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, SILS, University of Amsterdam, Amsterdam 1098XH, The Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1018WS, The Netherlands
| | - Pietro Marchesi
- Cognitive and Systems Neuroscience Group, SILS, University of Amsterdam, Amsterdam 1098XH, The Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1018WS, The Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, SILS, University of Amsterdam, Amsterdam 1098XH, The Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1018WS, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, SILS, University of Amsterdam, Amsterdam 1098XH, The Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1018WS, The Netherlands
| |
Collapse
|
44
|
Osaki H, Kanaya M, Ueta Y, Miyata M. Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex. Nat Commun 2022; 13:3622. [PMID: 35768422 PMCID: PMC9243138 DOI: 10.1038/s41467-022-31272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception, a somatic discriminative aspect of pain, is, like touch, represented in the primary somatosensory cortex (S1), but the separation and interaction of the two modalities within S1 remain unclear. Here, we show spatially distinct tactile and nociceptive processing in the granular barrel field (BF) and adjacent dysgranular region (Dys) in mouse S1. Simultaneous recordings of the multiunit activity across subregions revealed that Dys neurons are more responsive to noxious input, whereas BF neurons prefer tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities seem to converge on individual layer 5 neurons of each region, but to a different extent. Overall, these findings show layer-specific processing of nociceptive and tactile information between Dys and BF. We further demonstrated that Dys activity, but not BF activity, is critically involved in pain-like behavior. These findings provide new insights into the role of pain processing in S1. The processing of nociception in the somatosensory cortex (S1) has yet to be fully understood. Here, the authors demonstrate that the dysgranular region in S1 has an affinity for nociception and is critically involved in pain-like behavior.
Collapse
Affiliation(s)
- Hironobu Osaki
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan. .,Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Moeko Kanaya
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
45
|
Arlt C, Barroso-Luque R, Kira S, Bruno CA, Xia N, Chettih SN, Soares S, Pettit NL, Harvey CD. Cognitive experience alters cortical involvement in goal-directed navigation. eLife 2022; 11:76051. [PMID: 35735909 PMCID: PMC9259027 DOI: 10.7554/elife.76051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Neural activity in the mammalian cortex has been studied extensively during decision tasks, and recent work aims to identify under what conditions cortex is actually necessary for these tasks. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same navigation decision task, revealing past learning as a critical determinant of whether cortex is necessary for goal-directed navigation. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multiarea calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron–neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in goal-directed navigation.
Collapse
Affiliation(s)
- Charlotte Arlt
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Shinichiro Kira
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carissa A Bruno
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ningjing Xia
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Selmaan N Chettih
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sofia Soares
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Noah L Pettit
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
46
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
47
|
Grün S, Li J, McNaughton B, Petersen C, McCormick D, Robson D, Buzsáki G, Harris K, Sejnowski T, Mrsic-Flogel T, Lindén H, Roland PE. Emerging principles of spacetime in brains: Meeting report on spatial neurodynamics. Neuron 2022; 110:1894-1898. [PMID: 35709696 DOI: 10.1016/j.neuron.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
How do neurons and networks of neurons interact spatially? Here, we overview recent discoveries revealing how spatial dynamics of spiking and postsynaptic activity efficiently expose and explain fundamental brain and brainstem mechanisms behind detection, perception, learning, and behavior.
Collapse
Affiliation(s)
- Sonja Grün
- Institute for Neuroscience and Medicine (INM-6, INM-10) & Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbH, Jülich, Germany; SystemTheoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Li
- Systems Neuroscience and Neuroengineering, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruce McNaughton
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| | | | - David McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Drew Robson
- Systems Neuroscience and Neuroengineering, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Kenneth Harris
- Institute of Neurology, University College London, London, UK
| | | | | | - Henrik Lindén
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Per E Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Oude Lohuis MN, Pie JL, Marchesi P, Montijn JS, de Kock CPJ, Pennartz CMA, Olcese U. Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nat Commun 2022; 13:2864. [PMID: 35606448 PMCID: PMC9126973 DOI: 10.1038/s41467-022-30600-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity. How primary sensory cortices contribute to decision making remains poorly understood. Here the authors report that increasing task demands extend the temporal window in which the primary visual cortex is required for detecting identical stimuli.
Collapse
|
49
|
Measuring Stimulus-Evoked Neurophysiological Differentiation in Distinct Populations of Neurons in Mouse Visual Cortex. eNeuro 2022; 9:ENEURO.0280-21.2021. [PMID: 35022186 PMCID: PMC8856714 DOI: 10.1523/eneuro.0280-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis—quantifying distinct patterns of neurophysiological activity—has been proposed as an “inside-out” approach that addresses this question. This methodology contrasts with “outside-in” approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.
Collapse
|
50
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|