1
|
Lu J, Hu Z, Jiang H, Wen Z, Li H, Li J, Zeng K, Xie Y, Chen H, Su XZ, Cai C, Yu X. Dual nature of type I interferon responses and feedback regulations by SOCS1 dictate malaria mortality. J Adv Res 2024:S2090-1232(24)00370-9. [PMID: 39181199 DOI: 10.1016/j.jare.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Type I interferon (IFN-I, IFN-α/β), precisely controlled by multiple regulators, including suppressor of cytokine signaling 1 (SOCS1), is critical for host defense against pathogens. However, the impact of IFN-α/β on malaria parasite infections, beneficial or detrimental, remains controversial. OBJECTIVES The contradictory results are suspected to arise from differences in parasite species and host genetic backgrounds. To date, no prior study has employed a comparative approach utilizing two parasite models to investigate the underlying mechanisms of IFN-I response. Moreover, whether and how SOCS1 involves in the distinct IFN-α/β dynamics is still unclear. METHODS Here we perform single-cell RNA sequencing analyses (scRNA-seq) to dissect the dynamics of IFN-α/β responses against P. yoelii 17XL (17XL) and P. berghei ANKA (PbANKA) infections; conduct flow cytometry analysis and functional depletion to identify key cellular players induced by IFN-I; and establish mathematical models to explore the mechanisms underlying the differential IFN-I dynamics regulated by SOCS1. RESULTS 17XL stimulates an early protective but insufficient toll-like receptor 7 (TLR7)-interferon regulatory factor 7 (IRF7)-dependent IFN-α/β response, resulting in CD11ahiCD49dhiCD4+ T cell activation to enhance anti-malarial immunity. On the contrary, a late IFN-α/β induction through toll-like receptor 9 (TLR9)-IRF7/ stimulator of interferon genes (STING)- interferon regulatory factor 3 (IRF3) dependent pathways expands programmed cell death protein 1 (PD-1)+CD8+ T cells and impairs host immunity during PbANKA infection. Furthermore, functional assay and mathematical modeling show that SOCS1 significantly suppresses IFN-α/β production via negative feedback and incoherent feed-forward loops (I1-FFL). Additionally, differential activation patterns of various transcriptional factors (TFs) synergistically regulate the distinct IFN-I responses. CONCLUSION This study reveals the dual functions of IFN-I in anti-malarial immunity: Early IFN-α/β enhances immune responses against Plasmodium infection by promoting CD11ahiCD49dhiCD4+ T cell, while late IFN-α/β suppresses these response by expanding PD-1+CD8+ T cells. Moreover, both the SOCS1-related network motifs and TFs activation patterns contribute to determine distinct dynamics of IFN-I responses. Hence, our findings suggest therapies targeting SOCS1- or TFs-regulated IFN-I dynamics could be an efficacious approach for preventing malaria and enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Jiansen Lu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiqiang Hu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Huaji Jiang
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zebin Wen
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongyu Li
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361000, China
| | - Ke Zeng
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingchao Xie
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huadan Chen
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, Qinghai 810000, China.
| | - Xiao Yu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
2
|
Peters MAE, King AA, Wale N. Red blood cell dynamics during malaria infection challenge the assumptions of mathematical models of infection dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575051. [PMID: 38260611 PMCID: PMC10802624 DOI: 10.1101/2024.01.10.575051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For decades, mathematical models have been used to understand the course and outcome of malaria infections (i.e., infection dynamics) and the evolutionary dynamics of the parasites that cause them. A key conclusion of these models is that red blood cell (RBC) availability is a fundamental driver of infection dynamics and parasite trait evolution. The extent to which this conclusion holds will in part depend on model assumptions about the host-mediated processes that regulate RBC availability i.e., removal of uninfected RBCs and supply of RBCs. Diverse mathematical functions have been used to describe host-mediated RBC supply and clearance, but it remains unclear whether they adequately capture the dynamics of RBC supply and clearance during infection. Here, we use a unique dataset, comprising time-series measurements of erythrocyte (i.e., mature RBC) and reticulocyte (i.e., newly supplied RBC) densities during Plasmodium chabaudi malaria infection, and a quantitative data-transformation scheme to elucidate whether RBC dynamics conform to common model assumptions. We found that RBC clearance and supply are not well described by mathematical functions commonly used to model these processes. Furthermore, the temporal dynamics of both processes vary with parasite growth rate in a manner again not captured by existing models. Together, these finding suggest that new model formulations are required if we are to explain and ultimately predict the within-host population dynamics and evolution of malaria parasites.
Collapse
|
3
|
Pak D, Kamiya T, Greischar MA. Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence. Evolution 2024; 78:1287-1301. [PMID: 38581661 DOI: 10.1093/evolut/qpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
Collapse
Affiliation(s)
- Damie Pak
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| | - Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
- HRB Clinical Research Facility, University of Galway, Ireland
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| |
Collapse
|
4
|
Herbert Mainero A, Spence PJ, Reece SE, Kamiya T. The impact of innate immunity on malaria parasite infection dynamics in rodent models. Front Immunol 2023; 14:1171176. [PMID: 37646037 PMCID: PMC10461630 DOI: 10.3389/fimmu.2023.1171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
Decades of research have probed the molecular and cellular mechanisms that control the immune response to malaria. Yet many studies offer conflicting results on the functional impact of innate immunity for controlling parasite replication early in infection. We conduct a meta-analysis to seek consensus on the effect of innate immunity on parasite replication, examining three different species of rodent malaria parasite. Screening published studies that span four decades of research we collate, curate, and statistically analyze infection dynamics in immune-deficient or -augmented mice to identify and quantify general trends and reveal sources of disagreement among studies. Additionally, we estimate whether host factors or experimental methodology shape the impact of immune perturbations on parasite burden. First, we detected meta-analytic mean effect sizes (absolute Cohen's h) for the difference in parasite burden between treatment and control groups ranging from 0.1475 to 0.2321 across parasite species. This range is considered a small effect size and translates to a modest change in parasitaemia of roughly 7-12% on average at the peak of infection. Second, we reveal that variation across studies using P. chabaudi or P. yoelii is best explained by stochasticity (due to small sample sizes) rather than by host factors or experimental design. Third, we find that for P. berghei the impact of immune perturbation is increased when young or female mice are used and is greatest when effector molecules (as opposed to upstream signalling molecules) are disrupted (up to an 18% difference in peak parasitaemia). Finally, we find little evidence of publication bias suggesting that our results are robust. The small effect sizes we observe, across three parasite species, following experimental perturbations of the innate immune system may be explained by redundancy in a complex biological system or by incomplete (or inappropriate) data reporting for meta-analysis. Alternatively, our findings might indicate a need to re-evaluate the efficiency with which innate immunity controls parasite replication early in infection. Testing these hypotheses is necessary to translate understanding from model systems to human malaria.
Collapse
Affiliation(s)
- Alejandra Herbert Mainero
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tsukushi Kamiya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
- HRB, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Greischar MA, Childs LM. Extraordinary parasite multiplication rates in human malaria infections. Trends Parasitol 2023; 39:626-637. [PMID: 37336700 DOI: 10.1016/j.pt.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
For pathogenic organisms, faster rates of multiplication promote transmission success, the potential to harm hosts, and the evolution of drug resistance. Parasite multiplication rates (PMRs) are often quantified in malaria infections, given the relative ease of sampling. Using modern and historical human infection data, we show that established methods return extraordinarily - and implausibly - large PMRs. We illustrate how inflated PMRs arise from two facets of malaria biology that are far from unique: (i) some developmental ages are easier to sample than others; (ii) the distribution of developmental ages changes over the course of infection. The difficulty of accurately quantifying PMRs demonstrates a need for robust methods and a subsequent re-evaluation of what is known even in the well-studied system of malaria.
Collapse
Affiliation(s)
- Megan A Greischar
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Lauren M Childs
- Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Henschen AE, Vinkler M, Langager MM, Rowley AA, Dalloul RA, Hawley DM, Adelman JS. Rapid adaptation to a novel pathogen through disease tolerance in a wild songbird. PLoS Pathog 2023; 19:e1011408. [PMID: 37294834 DOI: 10.1371/journal.ppat.1011408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 06/11/2023] Open
Abstract
Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.
Collapse
Affiliation(s)
- Amberleigh E Henschen
- Department of Biological Sciences, University of Memphis; Memphis, Tennessee, United States of America
- Department of Natural Resource Ecology and Management, Iowa State University; Ames, Iowa, United States of America
| | - Michal Vinkler
- Department of Zoology, Charles University; Prague, Czech Republic
| | - Marissa M Langager
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Allison A Rowley
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia; Athens, Georgia, United States of America
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - James S Adelman
- Department of Biological Sciences, University of Memphis; Memphis, Tennessee, United States of America
- Department of Natural Resource Ecology and Management, Iowa State University; Ames, Iowa, United States of America
| |
Collapse
|
7
|
Kamiya T, Paton DG, Catteruccia F, Reece SE. Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences. Trends Parasitol 2022; 38:1031-1040. [PMID: 36209032 PMCID: PMC9815470 DOI: 10.1016/j.pt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France; HRB Clinical Research Facility, National University of Ireland, Galway, Ireland; Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Douglas G Paton
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity Outbred Mice in Immunology. Curr Protoc 2022; 2:e547. [PMID: 36066328 PMCID: PMC9612550 DOI: 10.1002/cpz1.547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Jeffrey Frelinger
- University of Arizona, Valley Fever Center for Excellence, Tucson, Arizona
- Department of Microbiology and Immunology, University of North Carolina System, Chapel Hill, North Carolina
| | - Adam Buntzman
- University of Arizona, BIO5 Institute, Valley Fever Center for Excellence, Tucson, Arizona
| |
Collapse
|