1
|
Courjaret RJ, Wagner II LE, Ammouri RR, Yule DI, Machaca K. Ca2+ tunneling architecture and function are important for secretion. J Cell Biol 2025; 224:e202402107. [PMID: 39499286 PMCID: PMC11540855 DOI: 10.1083/jcb.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.
Collapse
Affiliation(s)
- Raphael J. Courjaret
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Larry E. Wagner II
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahaf R. Ammouri
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Khaled Machaca
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Hogan PG. The quest to map STIM1 activation in granular detail. Cell Calcium 2024; 123:102946. [PMID: 39226840 DOI: 10.1016/j.ceca.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
The conformational change in STIM1 that communicates sensing of ER calcium-store depletion from the STIM ER-luminal domain to the STIM cytoplasmic region and ultimately to ORAI channels in the plasma membrane is broadly understood. However, the structural basis for the STIM luminal-domain dimerization that drives the conformational change has proven elusive. A recently published study has approached this question via molecular dynamics simulations. The report pinpoints STIM residues that may be part of a luminal-domain dimerization interface, and provides unexpected insight into how torsional movements of the STIM luminal domains might trigger release of the cytoplasmic SOAR/CAD domain from its resting tethers to the STIM CC1 segments.
Collapse
Affiliation(s)
- Patrick G Hogan
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92037, USA; Program in Immunology, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chen Y, Liu P, Zhong Z, Zhang H, Sun A, Wang Y. STIM1 functions as a proton sensor to coordinate cytosolic pH with store-operated calcium entry. J Biol Chem 2024; 300:107924. [PMID: 39454952 PMCID: PMC11626807 DOI: 10.1016/j.jbc.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidines within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Collapse
Affiliation(s)
- Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziyi Zhong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Sallinger M, Humer C, Ong HL, Narayanasamy S, Lin QT, Fahrner M, Grabmayr H, Berlansky S, Choi S, Schmidt T, Maltan L, Atzgerstorfer L, Niederwieser M, Frischauf I, Romanin C, Stathopulos PB, Ambudkar I, Leitner R, Bonhenry D, Schindl R. Essential role of N-terminal SAM regions in STIM1 multimerization and function. Proc Natl Acad Sci U S A 2024; 121:e2318874121. [PMID: 38753510 PMCID: PMC11127010 DOI: 10.1073/pnas.2318874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Christina Humer
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Sasirekha Narayanasamy
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Qi Tong Lin
- Department of Physiology and Pharmacology, Western University, London, ONN6A5C1, Canada
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Sascha Berlansky
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Sean Choi
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Tony Schmidt
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| | - Lena Maltan
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Lara Atzgerstorfer
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Martin Niederwieser
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ONN6A5C1, Canada
| | - Indu Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Romana Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Linz4040, Austria
| | - Daniel Bonhenry
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-AlzetteL1511, Luxembourg
| | - Rainer Schindl
- Department of Medical Physics and Biophysics, Medical University of Graz, Graz8010, Austria
| |
Collapse
|
5
|
Fröhlich M, Söllner J, Derler I. Insights into the dynamics of the Ca2+ release-activated Ca2+ channel pore-forming complex Orai1. Biochem Soc Trans 2024; 52:747-760. [PMID: 38526208 DOI: 10.1042/bst20230815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.
Collapse
Affiliation(s)
- Maximilian Fröhlich
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Julia Söllner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
6
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
7
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
8
|
Tang W, Peng J, Chen L, Yu C, Wang Y, Zou F, Zheng G, Meng X. Lead inhibits microglial cell migration via suppression of store-operated calcium entry. Toxicol Lett 2024; 393:69-77. [PMID: 38281554 DOI: 10.1016/j.toxlet.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.
Collapse
Affiliation(s)
- Wei Tang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiawen Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Changhui Yu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yuhao Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Durham RJ, Jayaraman V. Single-Molecule FRET Analyses of NMDA Receptors. Methods Mol Biol 2024; 2799:225-242. [PMID: 38727910 PMCID: PMC11164542 DOI: 10.1007/978-1-0716-3830-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Zhou Y, Jennette MR, Ma G, Kazzaz SA, Baraniak JH, Nwokonko RM, Groff ML, Velasquez-Reynel M, Huang Y, Wang Y, Gill DL. An apical Phe-His pair defines the Orai1-coupling site and its occlusion within STIM1. Nat Commun 2023; 14:6921. [PMID: 37903816 PMCID: PMC10616141 DOI: 10.1038/s41467-023-42254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.
Collapse
Affiliation(s)
- Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Michelle R Jennette
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sarah A Kazzaz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - James H Baraniak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mallary L Groff
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Marcela Velasquez-Reynel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Liu P, Yang Z, Wang Y, Sun A. Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference. Int J Mol Sci 2023; 24:13188. [PMID: 37685995 PMCID: PMC10487555 DOI: 10.3390/ijms241713188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause-effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood. In this review, we first discussed STIM1-dependent signaling in cardiomyocytes and metabolic changes in cardiac hypertrophy and diabetic cardiomyopathy. Second, we provided examples of the involvement of STIM1 in energy metabolism to discuss the emerging role of STIM1 in the regulation of energy substrate preference in metabolic cardiac diseases and speculated the corresponding underlying molecular mechanisms of the crosstalk between STIM1 and cardiac energy substrate preference. Finally, we briefly discussed and presented future perspectives on the possibility of targeting STIM1 to rescue cardiac metabolic diseases. Taken together, STIM1 emerges as a key player in regulating cardiac energy substrate preference, and revealing the underlying molecular mechanisms by which STIM1 mediates cardiac energy metabolism could be helpful to find novel targets to prevent or treat cardiac metabolic diseases.
Collapse
Affiliation(s)
- Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuli Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Berna-Erro A, Sanchez-Collado J, Nieto-Felipe J, Macias-Diaz A, Redondo PC, Smani T, Lopez JJ, Jardin I, Rosado JA. The Ca 2+ Sensor STIM in Human Diseases. Biomolecules 2023; 13:1284. [PMID: 37759684 PMCID: PMC10526185 DOI: 10.3390/biom13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Jose Sanchez-Collado
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Alvaro Macias-Diaz
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Pedro C. Redondo
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio, University of Seville, Spanish National Research Council (CSIC), 41004 Seville, Spain
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| |
Collapse
|
13
|
Yu T, Li X, Luo Q, Liu H, Jin J, Li S, He J. S417 in the CC3 region of STIM1 is critical for STIM1-Orai1 binding and CRAC channel activation. Life Sci Alliance 2023; 6:e202201623. [PMID: 36690443 PMCID: PMC9873985 DOI: 10.26508/lsa.202201623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a universal Ca2+ influx pathway that is important for the function of many cell types. SOCE is controlled by the interaction of the ER Ca2+ sensor STIM1 with the plasma membrane Ca2+ channel Orai1. S417 is located in the third coiled-coil (CC3) domain of the C-terminus of STIM1. We found that single-point mutation of this residue (S417G) abolished STIM1 C-terminus interactions with Orai1. Mutation of S417 also abolished CAD-Orai1 binding and Orai1 channel activation, eliminated STIM1 puncta formation, and co-localization with Orai1 and SOCE. 2-APB was found to restore the binding of the STIM1 C-terminus mutant (S417G) to Orai1 and dose-dependently activate Orai1 channel. Both CBD and NBD of Orai1 are required for 2-APB-induced coupling between the Orai1 and STIM1 C-terminus mutant (S417G) and CRAC channel activation. We also demonstrated that 2-APB led to delayed activation of Orai1-K85E channel, although Orai1-K85E obviously impairs 2-APB-induced STIM1 C-terminus mutant (S417G)-Orai1 coupling. Our results suggest S417 in the CC3 domain of STIM1 is essential for STIM1-Orai1 binding and CRAC channel activation.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Luo
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Liu
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjie Li
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun He
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Cohen HA, Zomot E, Nataniel T, Militsin R, Palty R. The SOAR of STIM1 interacts with plasma membrane lipids to form ER-PM contact sites. Cell Rep 2023; 42:112238. [PMID: 36906853 DOI: 10.1016/j.celrep.2023.112238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Depletion of Ca2+ from the endoplasmic reticulum (ER) causes the ER Ca2+ sensor STIM1 to form membrane contact sites (MCSs) with the plasma membrane (PM). At the ER-PM MCS, STIM1 binds to Orai channels to induce cellular Ca2+ entry. The prevailing view of this sequential process is that STIM1 interacts with the PM and with Orai1 using two separate modules: a C-terminal polybasic domain (PBD) for the interaction with PM phosphoinositides and the STIM-Orai activation region (SOAR) for the interaction with Orai channels. Here, using electron and fluorescence microscopy and protein-lipid interaction assays, we show that oligomerization of the SOAR promotes direct interaction with PM phosphoinositides to trap STIM1 at ER-PM MCSs. The interaction depends on a cluster of conserved lysine residues within the SOAR and is co-regulated by the STIM1 coil-coiled 1 and inactivation domains. Collectively, our findings uncover a molecular mechanism for formation and regulation of ER-PM MCSs by STIM1.
Collapse
Affiliation(s)
- Hadas Achildiev Cohen
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elia Zomot
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Tomer Nataniel
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ruslana Militsin
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Raz Palty
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
15
|
Horvath F, Berlansky S, Maltan L, Grabmayr H, Fahrner M, Derler I, Romanin C, Renger T, Krobath H. Swing-out opening of stromal interaction molecule 1. Protein Sci 2023; 32:e4571. [PMID: 36691702 PMCID: PMC9929737 DOI: 10.1002/pro.4571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Stromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+ ) concentration. STIM1 activation involves a large-scale conformational transition that exposes a STIM1 domain termed "CAD/SOAR", - which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled-coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled-coil contacts. Based on our model, we provide a detailed analysis of the CC1-CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain-swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single-point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced-sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1-CAD/SOAR detachment.
Collapse
Affiliation(s)
- Ferdinand Horvath
- Department for Theoretical BiophysicsJohannes Kepler University LinzLinzAustria
| | - Sascha Berlansky
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | - Lena Maltan
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | - Herwig Grabmayr
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | - Marc Fahrner
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | - Isabella Derler
- Institute of BiophysicsJohannes Kepler University LinzLinzAustria
| | | | - Thomas Renger
- Department for Theoretical BiophysicsJohannes Kepler University LinzLinzAustria
| | - Heinrich Krobath
- Department for Theoretical BiophysicsJohannes Kepler University LinzLinzAustria
| |
Collapse
|
16
|
Gamage TH, Grabmayr H, Horvath F, Fahrner M, Misceo D, Louch WE, Gunnes G, Pullisaar H, Reseland JE, Lyngstadaas SP, Holmgren A, Amundsen SS, Rathner P, Cerofolini L, Ravera E, Krobath H, Luchinat C, Renger T, Müller N, Romanin C, Frengen E. A single amino acid deletion in the ER Ca 2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation. Sci Signal 2023; 16:eadd0509. [PMID: 36749824 DOI: 10.1126/scisignal.add0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Ferdinand Horvath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Helen Pullisaar
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Petr Rathner
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Institut für Analytische Chemie, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Linda Cerofolini
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Claudio Luchinat
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Thomas Renger
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Norbert Müller
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic
- Institute of Biochemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| |
Collapse
|
17
|
Yuan X, Tang B, Chen Y, Zhou L, Deng J, Han L, Zhai Y, Zhou Y, Gill DL, Lu C, Wang Y. Celastrol inhibits store operated calcium entry and suppresses psoriasis. Front Pharmacol 2023; 14:1111798. [PMID: 36817139 PMCID: PMC9928759 DOI: 10.3389/fphar.2023.1111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis. Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging. Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| |
Collapse
|
18
|
Sirko C, Novello MJ, Stathopulos PB. An S-glutathiomimetic Provides Structural Insights into Stromal Interaction Molecule-1 Regulation. J Mol Biol 2022; 434:167874. [PMID: 36332662 DOI: 10.1016/j.jmb.2022.167874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.
Collapse
Affiliation(s)
- Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Matthew J Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada.
| |
Collapse
|
19
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
20
|
Shrestha N, Hye-Ryong Shim A, Maneshi MM, See-Wai Yeung P, Yamashita M, Prakriya M. Mapping interactions between the CRAC activation domain and CC1 regulating the activity of the ER Ca 2+ sensor STIM1. J Biol Chem 2022; 298:102157. [PMID: 35724962 PMCID: PMC9304783 DOI: 10.1016/j.jbc.2022.102157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a widely expressed protein that functions as the endoplasmic reticulum (ER) Ca2+ sensor and activator of Orai1 channels. In resting cells with replete Ca2+ stores, an inhibitory clamp formed by the coiled-coil 1 (CC1) domain interacting with the CRAC-activation domain (CAD) of STIM1 helps keep STIM1 in a quiescent state. Following depletion of ER Ca2+ stores, the brake is released, allowing CAD to extend away from the ER membrane and enabling it to activate Orai1 channels. However, the molecular determinants of CC1-CAD interactions that enforce the inhibitory clamp are incompletely understood. Here, we performed Ala mutagenesis in conjunction with live-cell FRET analysis to examine residues in CC1 and CAD that regulate the inhibitory clamp. Our results indicate that in addition to previously identified hotspots in CC1⍺1 and CC3, several hydrophobic residues in CC2 and the apex region of CAD are critical for CC1-CAD interactions. Mutations in these residues loosen the CC1-CAD inhibitory clamp to release CAD from CC1 in cells with replete Ca2+ stores. By contrast, altering the hydrophobic residues L265 and L273 strengthens the clamp to prevent STIM1 activation. Inclusion of the inactivation domain of STIM1 helps stabilize CC1-CAD interaction in several mutants to prevent spontaneous STIM1 activation. In addition, R426C, a human disease-linked mutation in CC3, affects the clamp but also impairs Orai1 binding to inhibit CRAC channel activation. These results identify the CC2, apex, and inactivation domain regions of STIM1 as important determinants of STIM1 activation.
Collapse
Affiliation(s)
- Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ann Hye-Ryong Shim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Priscilla See-Wai Yeung
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
21
|
Kodakandla G, West SJ, Wang Q, Tewari R, Zhu MX, Akimzhanov AM, Boehning D. Dynamic S-acylation of the ER-resident protein stromal interaction molecule 1 (STIM1) is required for store-operated Ca2+ entry. J Biol Chem 2022; 298:102303. [PMID: 35934052 PMCID: PMC9463532 DOI: 10.1016/j.jbc.2022.102303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release–activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a stimulus-dependent manner and essential for its function as a calcium channel. Here using the acyl resin–assisted capture assay, we show that STIM1 is also rapidly S-acylated at cysteine 437 upon ER calcium store depletion. Using a combination of live cell imaging and electrophysiology approaches with a mutant STIM1 protein, which could not be S-acylated, we determined that the S-acylation of STIM1 is required for the assembly of STIM1 into puncta with Orai1 and full CRAC channel function. Together with the S-acylation of Orai1, our data suggest that stimulus-dependent S-acylation of CRAC channel components Orai1 and STIM1 is a critical mechanism facilitating the CRAC channel assembly and function.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Savannah J West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ritika Tewari
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA.
| |
Collapse
|
22
|
Jennette MR, Baraniak JH, Zhou Y, Gill DL. The unfolding and activation of STIM1 in store-operated calcium signal generation. Cell Calcium 2022; 102:102537. [DOI: 10.1016/j.ceca.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
|
23
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
24
|
Abstract
Harnessing single-molecule FRET illuminates the structural changes necessary for a protein to fine-tune the influx of calcium when reserves inside a cell run low.
Collapse
Affiliation(s)
- Marc Fahrner
- Institute of Biophysics, Johannes Kepler University LinzLinzAustria
| | | |
Collapse
|