1
|
Wang Y, Ding S, Gao F, Jia Y, Wang X. Revealing the core active pharmaceutical ingredients and targets of Jie-gu capsules for fracture treatment through network pharmacology and mendelian randomization. Medicine (Baltimore) 2024; 103:e40798. [PMID: 39654220 PMCID: PMC11630937 DOI: 10.1097/md.0000000000040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Jie-gu capsules are widely used for the treatment of fractures in China. However, the core active pharmaceutical ingredients of Jie-gu capsules and the potential mechanisms for treating fractures remain unclear. This study aims to preliminarily elucidate the potential mechanisms of Jie-gu capsules in the treatment of fractures through network pharmacology and mendelian randomization methods. Data of fracture patients were obtained from the GEO database (GSE93215), and the active pharmaceutical ingredients and therapeutic targets of Jie-gu capsules were retrieved from the TCMSP and TCMID databases to identify the intersection genes. Subsequently, a protein-protein interaction network of the intersection genes was constructed using the STRING database. Then, GO and KEGG analyses were conducted on the intersection genes. In addition, mendelian randomization was employed to identify core targets. Finally, molecular docking techniques were used to perform molecular docking of the core active pharmaceutical ingredients and core targets for Jie-gu capsules in the treatment of fractures. In this study, a total of 65 intersection genes involved in Jie-gu capsule treatment of fractures were identified. GO and KEGG results indicated that these 65 intersection genes were primarily associated with biological processes such as response to tumor necrosis factor and are involved in signaling pathways, especially the regulation of the MAPK signaling pathway. We identified 5 core active ingredients of Jie-gu capsules (quercetin, baicalein, kaempferol, luteolin, and succinic acid). Mendelian randomization confirmed 2 core targets (ALOX12 and EGF). Molecular docking results demonstrated that the core active pharmaceutical ingredients (quercetin, baicalein, kaempferol, luteolin, and succinic acid) exhibit high affinities with the core targets (ALOX12 and EGF). This study has unveiled the core active pharmaceutical ingredients and potential action targets of the Jie-gu capsules in treating fractures, offering valuable insights for subsequent foundational research and the development of new medications.
Collapse
Affiliation(s)
- Ying Wang
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shuang Ding
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Feng Gao
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yuyan Jia
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xukai Wang
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01039-y. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Guo XX, Chang XJ, Pu Q, Li AL, Li J, Li XY. Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing. Front Med (Lausanne) 2024; 11:1441196. [PMID: 39351004 PMCID: PMC11439666 DOI: 10.3389/fmed.2024.1441196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To analyze the therapeutic effect and mechanism of Urolithin A (UA) on delayed corneal epithelial wound healing. Methods The C57BL/6 mice were continuously exposed to hyperosmotic stress (HS) for 7 days followed by the removal of central corneal epithelium to establish a delayed corneal epithelial wound healing model in vivo. In vitro, the human corneal epithelial cell line (HCE-T) was also incubated under HS. UA was administered in vivo and in vitro to study its effects on corneal epithelial cells. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to detect the level of cell senescence. Transcriptome sequencing (RNA-seq) was conducted to elucidate the molecular mechanism underlying the effect of UA on corneal epithelial repair. Additionally, the expression of senescence-related and ferroptosis-related genes and the levels of lipid peroxides (LPO) and malondialdehyde (MDA) were measured. Results Hyperosmotic stress (HS) significantly increased the proportion of SA-β-gal staining positive cells in corneal epithelial cells and upregulated the expression of p16 and p21 (p < 0.0001). Topical application of UA decreased the accumulation of senescent cells in corneal epithelial wounds and promoted epithelial wound healing. The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). Inhibition of ferroptosis significantly prevented cellular senescence in HS-induced HCE-T cells. Conclusion In this study, UA promoted HS-induced delayed epithelial wound healing by reducing the senescence of corneal epithelial cells through the inhibition of ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Daldrup-Link HE, Suryadevara V, Tanyildizi Y, Nernekli K, Tang JH, Meade TJ. Musculoskeletal imaging of senescence. Skeletal Radiol 2024; 53:1879-1887. [PMID: 38329533 PMCID: PMC11303117 DOI: 10.1007/s00256-024-04585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA.
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Yasemin Tanyildizi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Jian-Hong Tang
- Department of Chemistry, Northwestern University, Evanston, USA
| | - Thomas J Meade
- Department of Chemistry, Northwestern University, Evanston, USA
| |
Collapse
|
6
|
Ogrodnik M, Carlos Acosta J, Adams PD, d'Adda di Fagagna F, Baker DJ, Bishop CL, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer LJ, Passos JF, Ring NAR, Redl H, Robbins PD, Rodier F, Scharffetter-Kochanek K, Sedivy JM, Sikora E, Witwer K, von Zglinicki T, Yun MH, Grillari J, Demaria M. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 2024; 187:4150-4175. [PMID: 39121846 DOI: 10.1016/j.cell.2024.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza," Pavia, Italy
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Steet SW, Rochester, MN 55905, USA
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesus Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Diana Jurk
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - João F Passos
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Nadja A R Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada
| | - Karin Scharffetter-Kochanek
- Department f Dermatology and Allergic Diseases, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - John M Sedivy
- Department of Molecular, Cellular Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kenneth Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA; The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, UK
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, BOKU University, Vienna, Austria.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
7
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
8
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
9
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
10
|
Saul D, Doolittle ML, Rowsey JL, Froemming MN, Kosinsky RL, Vos SJ, Ruan M, LeBrasseur NK, Chandra A, Pignolo RJ, Passos JF, Farr JN, Monroe DG, Khosla S. Osteochondroprogenitor cells and neutrophils expressing p21 and senescence markers modulate fracture repair. J Clin Invest 2024; 134:e179834. [PMID: 38753433 PMCID: PMC11178538 DOI: 10.1172/jci179834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ versus p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Madison L. Doolittle
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitchell N. Froemming
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Robyn L. Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Stephanie J. Vos
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Ming Ruan
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Abhishek Chandra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J. Pignolo
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Joshua N. Farr
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - David G. Monroe
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundeep Khosla
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Khosla S. A pipeline for senolytics. J Clin Invest 2024; 134:e180558. [PMID: 38690734 PMCID: PMC11060745 DOI: 10.1172/jci180558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
There is intense interest in identifying compounds that selectively kill senescent cells, termed senolytics, for ameliorating age-related comorbidities. However, screening for senolytic compounds currently relies on primary cells or cell lines where senescence is induced in vitro. Given the complexity of senescent cells across tissues and diseases, this approach may not target the senescent cells that develop under specific conditions in vivo. In this issue of the JCI, Lee et al. describe a pipeline for high-throughput drug screening of senolytic compounds where senescence was induced in vivo and identify the HSP90 inhibitor XL888 as a candidate senolytic to treat idiopathic pulmonary fibrosis.
Collapse
|
12
|
Fan Y, Zhang W, Huang X, Fan M, Shi C, Zhao L, Pi G, Zhang H, Ni S. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice. Nat Commun 2024; 15:2939. [PMID: 38580630 PMCID: PMC10997778 DOI: 10.1038/s41467-024-47317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.
Collapse
Affiliation(s)
- Yonggang Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Weixin Zhang
- Zhejiang Chinese Medicine University, Hangzhou, 310053, PR China
| | - Xiusheng Huang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Mingzhe Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Chenhao Shi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Lantian Zhao
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Guofu Pi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Huafeng Zhang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Shuangfei Ni
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China.
| |
Collapse
|
13
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
14
|
Adhikari M, Kaur J, Sabol HM, Anloague A, Khan S, Kurihara N, Diaz-delCastillo M, Andreasen CM, Barnes CL, Stambough JB, Palmieri M, Reyes-Castro O, Ambrogini E, Almeida M, O’Brien CA, Nookaw I, Delgado-Calle J. Single-cell Transcriptome Analysis Identifies Senescent Osteocytes as Contributors to Bone Destruction in Breast Cancer Metastasis. RESEARCH SQUARE 2024:rs.3.rs-4047486. [PMID: 38558984 PMCID: PMC10980159 DOI: 10.21203/rs.3.rs-4047486/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.
Collapse
Affiliation(s)
- Manish Adhikari
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Japneet Kaur
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Hayley M. Sabol
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Aric Anloague
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Sharmin Khan
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, US
| | | | - Christina Møller Andreasen
- Molecular Bone Histology lab, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathologyogy, Odense University Hospital, Odense University Hospital, Odense, Denmark
| | - C. Lowry Barnes
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Jeffrey B. Stambough
- Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Michela Palmieri
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
| | - Charles A. O’Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Intawat Nookaw
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Jesus Delgado-Calle
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, US
| |
Collapse
|
15
|
Saul D, Doolittle ML, Rowsey JL, Froemming MN, Kosinsky RL, Vos SJ, Ruan M, LeBrasseur N, Chandra A, Pignolo R, Passos JF, Farr JN, Monroe DG, Khosla S. Osteochondroprogenitor cells and neutrophils expressing p21 and senescence markers modulate fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578420. [PMID: 38370844 PMCID: PMC10871229 DOI: 10.1101/2024.02.01.578420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.
Collapse
|
16
|
Zou NY, Liu R, Huang M, Jiao YR, Wei J, Jiang Y, He WZ, Huang M, Xu YL, Liu L, Sun YC, Yang M, Guo Q, Huang Y, Su T, Xiao Y, Wang WS, Zeng C, Lei GH, Luo XH, Li CJ. Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing. Bone Res 2024; 12:6. [PMID: 38267422 PMCID: PMC10808101 DOI: 10.1038/s41413-023-00309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.
Collapse
Affiliation(s)
- Nan-Yu Zou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yi-Li Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu-Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Wei-Shan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
17
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Lee H, Sahin GS, Chen CW, Sonthalia S, Cañas SM, Oktay HZ, Duckworth AT, Brawerman G, Thompson PJ, Hatzoglou M, Eizirik DL, Engin F. Stress-induced β cell early senescence confers protection against type 1 diabetes. Cell Metab 2023; 35:2200-2215.e9. [PMID: 37949065 PMCID: PMC10842515 DOI: 10.1016/j.cmet.2023.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
During the progression of type 1 diabetes (T1D), β cells are exposed to significant stress and, therefore, require adaptive responses to survive. The adaptive mechanisms that can preserve β cell function and survival in the face of autoimmunity remain unclear. Here, we show that the deletion of the unfolded protein response (UPR) genes Atf6α or Ire1α in β cells of non-obese diabetic (NOD) mice prior to insulitis generates a p21-driven early senescence phenotype and alters the β cell secretome that significantly enhances the leukemia inhibitory factor-mediated recruitment of M2 macrophages to islets. Consequently, M2 macrophages promote anti-inflammatory responses and immune surveillance that cause the resolution of islet inflammation, the removal of terminally senesced β cells, the reduction of β cell apoptosis, and protection against T1D. We further demonstrate that the p21-mediated early senescence signature is conserved in the residual β cells of T1D patients. Our findings reveal a previously unrecognized link between β cell UPR and senescence that, if leveraged, may represent a novel preventive strategy for T1D.
Collapse
Affiliation(s)
- Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shreyash Sonthalia
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sandra Marín Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hulya Zeynep Oktay
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gabriel Brawerman
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
19
|
Saul D, Jurk D, Doolittle ML, Kosinsky RL, Monroe DG, LeBrasseur NK, Robbins PD, Niedernhofer LJ, Khosla S, Passos JF. Distinct secretomes in p16- and p21- positive senescent cells across tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569858. [PMID: 38106149 PMCID: PMC10723333 DOI: 10.1101/2023.12.05.569858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Senescent cells drive age-related tissue dysfunction via the induction of a chronic senescenceassociated secretory phenotype (SASP). The cyclin-dependent kinase inhibitors p21Cip1 and p16Ink4a have long served as markers of cellular senescence. However, their individual roles remain incompletely elucidated. Thus, we conducted a comprehensive examination of multiple single-cell RNA sequencing (scRNA-seq) datasets spanning both murine and human tissues during aging. Our analysis revealed that p21Cip1 and p16Ink4a transcripts demonstrate significant heterogeneity across distinct cell types and tissues, frequently exhibiting a lack of co-expression. Moreover, we identified tissue-specific variations in SASP profiles linked to p21Cip1 or p16Ink4a expression. Our study underscores the extraordinary diversity of cellular senescence and the SASP, emphasizing that these phenomena are inherently cell- and tissue-dependent. However, a few SASP factors consistently contribute to a shared "core" SASP. These findings highlight the need for a more nuanced investigation of senescence across a wide array of biological contexts.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Madison L. Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Hu Y, Lian Q, Cao F, Hou X, Li H, Xing L, Wang M, Tian F, Zhang L. Estrogen deficiency impedes fracture healing despite eliminating the excessive absorption of the posterior callus in a semi-fixed distal tibial fracture mouse model. BMC Musculoskelet Disord 2023; 24:803. [PMID: 37817119 PMCID: PMC10563296 DOI: 10.1186/s12891-023-06929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Treatment of distal tibial fractures is a challenge due to their specific anatomical location. However, there is no appropriate mouse model to simulate a clinical distal tibial fracture for basic research. The aim of this investigation was to evaluate the feasibility of simulating a clinical fracture of the distal tibia of mice and to investigate the effect of ovariectomy (OVX)-induced osteoporosis on fracture healing in this model. METHODS Sixty female 8-week-old C57BL/6 mice were randomly divided into two groups, either sham or OVX. A semi-fixation distal tibia fracture was established in the right tibia after 8 weeks of OVX. The right tibias were collected at 7, 14, 21, and 28 days post fracture. RESULTS In the semi-fixation distal tibia fracture model, the posterior callus in the sham group showed excessive bone resorption and lower bone mass phenotype compared with the anterior site; a similar trend was not found in the OVX group. At 28 days post fracture, the posterior callus was more mineralized than the anterior callus in the OVX group. Although the fracture healing of the sham group showed a special phenotype in this mode, the progress and quality of fracture healing were still better than those of the OVX group. CONCLUSION A semi-fixed distal tibial closed fracture mouse model was successfully established. In this model, excess bone resorption of the posterior callus impaired normal fracture healing, but not in OVX-induced osteoporotic bone. Although the stress shielding effect was not observed in the OVX group, impaired bone healing caused by OVX was still present. Our results suggest that this fracture model may have potential for studies on distal tibial fractures and stress shielding.
Collapse
Affiliation(s)
- Yunpeng Hu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Qiangqiang Lian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Hetong Li
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Lei Xing
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China
| | - Mengqin Wang
- Emergency Department, JST, The Fourth Clinical Hospital of Peking University, Beijing, P. R. China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P. R. China.
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P. R. China.
- Department of Orthopedic Surgery, Emergency General Hospital, Xibahenanli29, Chaoyang Dis, Beijing, 100028, P. R. China.
| |
Collapse
|
22
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
23
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Abstract
Senescence is a complex cell state characterized by stable cell cycle arrest and a unique secretory pattern known as the senescence-associated secretory phenotype (SASP). The SASP factors, which are heterogeneous and tissue specific, normally include chemokines, cytokines, growth factors, adhesion molecules, and lipid components that can lead to multiple age-associated disorders by eliciting local and systemic consequences. The skeleton is a highly dynamic organ that changes constantly in shape and composition. Senescent cells in bone and bone marrow produce diverse SASP factors that induce alterations of the skeleton through paracrine effects. Herein, we refer to bone cell-associated SASP as "bone-SASP." In this review, we describe current knowledge of cellular senescence and SASP, focusing on the role of senescent cells in mediating bone pathologies during natural aging and premature aging syndromes. We also summarize the role of cellular senescence and the bone-SASP in glucocorticoids-induced bone damage. In addition, we discuss the role of bone-SASP in the development of osteoarthritis, highlighting the mechanisms by which bone-SASP drives subchondral bone changes in metabolic syndrome-associated osteoarthritis.
Collapse
Affiliation(s)
- Ching-Lien Fang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Ross Building, Room 209, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Espinoza SE, Khosla S, Baur JA, de Cabo R, Musi N. Drugs Targeting Mechanisms of Aging to Delay Age-Related Disease and Promote Healthspan: Proceedings of a National Institute on Aging Workshop. J Gerontol A Biol Sci Med Sci 2023; 78:53-60. [PMID: 37325957 PMCID: PMC10272987 DOI: 10.1093/gerona/glad034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 06/17/2023] Open
Abstract
The geroscience hypothesis posits that by targeting key hallmarks of aging we may simultaneously prevent or delay several age-related diseases and thereby increase healthspan, or life span spent free of significant disease and disability. Studies are underway to examine several possible pharmacological interventions for this purpose. As part of a National Institute on Aging workshop on the development of function-promoting therapies, scientific content experts provided literature reviews and state-of-the-field assessments for the studies of senolytics, nicotinamide adenine dinucleotide (NAD+) boosters, and metformin. Cellular senescence increases with age, and preclinical studies demonstrate that the use of senolytic drugs improves healthspan in rodents. Human studies using senolytics are in progress. NAD+ and its phosphorylated form, NADP+, play vital roles in metabolism and cellular signaling. Increasing NAD+ by supplementation with precursors including nicotinamide riboside and nicotinamide mononucleotide appears to extend healthspan in model organisms, but human studies are limited and results are mixed. Metformin is a biguanide widely used for glucose lowering, which is believed to have pleiotropic effects targeting several hallmarks of aging. Preclinical studies suggest it improves life span and healthspan, and observational studies suggest benefits for the prevention of several age-related diseases. Clinical trials are underway to examine metformin for healthspan and frailty prevention. Preclinical and emerging clinical studies suggest there is potential to improve healthspan through the use of pharmacologic agents reviewed. However, much further research is needed to demonstrate benefits and general safety for wider use, the appropriate target populations, and longer-term outcomes.
Collapse
Affiliation(s)
- Sara E Espinoza
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio
- Geriatric Research, Education & Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Experimental Gerontology Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
26
|
Mattia L, Gossiel F, Walsh JS, Eastell R. Effect of age and gender on serum growth differentiation factor 15 and its relationship to bone density and bone turnover. Bone Rep 2023; 18:101676. [PMID: 37090856 PMCID: PMC10113774 DOI: 10.1016/j.bonr.2023.101676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Senescent cells and senescence-associated secretory phenotype (SASP) proteins are involved in age-related bone loss. Growth differentiation factor 15 (GDF 15), a stress-responsive cytokine member of the transforming growth factor-β (TGF-β) superfamily, is one of the key SASP proteins. It is strongly associated with age and higher levels correlate with frailty and are detected in several conditions and diseases. It also modulates appetite and body weight through the binding to its receptor glial cell- derived neurotrophic factor family receptor alpha- like (GFRAL) in the brainstem. The GDF 15 involvement in bone metabolism has been studied in several murine models, however, it is still unclear in humans. Therefore, this study aims to determine whether GDF 15 is associated with bone mineral density (BMD) and bone turnover, and to establish the effect of age and gender on its levels. Serum GDF 15 was measured with an ELISA from R&D Systems in 180 healthy women and men from the "XtremeCT study", divided into three age groups which represent different stages of skeletal development (16-18, 30-32, over 70 years). We also measured bone resorption marker C-terminal telopeptide of type I collagen (CTX) and bone formation markers N-terminal propeptide of type I collagen (PINP), osteocalcin (OC) and bone alkaline phosphatase (BAP) using iSYS-IDS analyser. Parathyroid hormone (PTH), 25hydroxyvitamin D (25OH-vitamin D), Insulin-like Growth Factor I (IGF-1), estradiol and testosterone were measured using the Cobas automated analyser (Roche Diagnostics). We assessed BMD at spine and total hip by dual-energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HRpQCT) of the radius and tibia. Univariate analysis of variance with the post-hoc Sheffe test and multiple linear regression has been used to assess the effect of age and gender. Spearman's rank correlation was used to evaluate the associations between GDF 15 and the other variables. We found GDF 15 levels significantly associated with age (p < 0.001) and gender (p = 0.008), with a significant gender ∗ age interaction (p < 0.001). Significantly higher levels of GDF 15 were found in subjects aged over 70 compared with the younger people (p < 0.001) and significantly higher levels were detected in men. We did not find any significant correlation between GDF 15 and bone turnover markers (BTMs), BMD, HRpQCT measures and hormones in any of the age groups. In conclusion, age and gender are determinants of GDF15 and much higher levels are found in older people and in men. Since no association was found between GDF 15 and bone health measures, we hypothesize that the effect of GDF 15 on bone might be exert by other tissue, such as muscle.
Collapse
Affiliation(s)
- Lorenza Mattia
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Jennifer S. Walsh
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Lorenz EC, Hickson LJ, Khairallah P, Najafi B, Kennedy CC. Cellular Senescence and Frailty in Transplantation. CURRENT TRANSPLANTATION REPORTS 2023; 10:51-59. [PMID: 37576589 PMCID: PMC10414789 DOI: 10.1007/s40472-023-00393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/28/2023]
Abstract
Purpose of review To summarizes the literature on cellular senescence and frailty in solid-organ transplantation and highlight the emerging role of senotherapeutics as a treatment for cellular senescence. Recent findings Solid-organ transplant patients are aging. Many factors contribute to aging acceleration in this population, including cellular senescence. Senescent cells accumulate in tissues and secrete proinflammatory and profibrotic proteins which result in tissue damage. Cellular senescence contributes to age-related diseases and frailty. Our understanding of the role cellular senescence plays in transplant-specific complications such as allograft immunogenicity and infections is expanding. Promising treatments, including senolytics, senomorphics, cell-based regenerative therapies, and behavioral interventions, may reduce cellular senescence abundance and frailty in patients with solid-organ transplants. Summary Cellular senescence and frailty contribute to adverse outcomes in solid-organ transplantation. Continued pursuit of understanding the role cellular senescence plays in transplantation may lead to improved senotherapeutic approaches and better graft and patient outcomes.
Collapse
Affiliation(s)
| | - LaTonya J. Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | | | - Bijan Najafi
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Texas
| | - Cassie C. Kennedy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Farr JN, Saul D, Doolittle ML, Kaur J, Rowsey JL, Vos SJ, Froemming MN, Lagnado AB, Zhu Y, Weivoda M, Ikeno Y, Pignolo RJ, Niedernhofer LJ, Robbins PD, Jurk D, Passos JF, LeBrasseur NK, Tchkonia T, Kirkland JL, Monroe DG, Khosla S. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J Clin Invest 2023; 133:e162519. [PMID: 36809340 PMCID: PMC10104901 DOI: 10.1172/jci162519] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.
Collapse
Affiliation(s)
- Joshua N. Farr
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Stephanie J. Vos
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Anthony B. Lagnado
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Megan Weivoda
- Department of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yuji Ikeno
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Robert J. Pignolo
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | - David G. Monroe
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| |
Collapse
|
29
|
Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, Fang CL, Cao X, Wan M. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab 2023; 35:667-684.e6. [PMID: 37019080 PMCID: PMC10127143 DOI: 10.1016/j.cmet.2023.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yiru Gu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sahran Amin
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiekang Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ching-Lien Fang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
31
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
32
|
Khosla S. Senescent cells, senolytics and tissue repair: the devil may be in the dosing. NATURE AGING 2023; 3:139-141. [PMID: 37118118 PMCID: PMC10148948 DOI: 10.1038/s43587-023-00365-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Gugala Z. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2022; 104:2047-2052. [PMID: 36476737 DOI: 10.2106/jbjs.22.00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
35
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
36
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 397] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Shen J, Li YZ, Yao S, Zhu ZW, Wang X, Sun HH, Ji WF. Hu’po Anshen Decoction Accelerated Fracture-Healing in a Rat Model of Traumatic Brain Injury Through Activation of PI3K/AKT Pathway. Front Pharmacol 2022; 13:952696. [PMID: 35924045 PMCID: PMC9341486 DOI: 10.3389/fphar.2022.952696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Hu’po Anshen decoction (HPASD) is a traditional Chinese medicine formula comprising five herbal medicines for the treatment of concussion and fracture healing, but its pharmacological mechanism is still unclear. Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS) was used to analyze the main active components of HPASD. Rats were randomly assigned to fracture group, fracture combined with traumatic brain injury (TBI) group (FBI) and FBI combined with HPASD treatment group (FBIH). Rats in the FBIH group were given oral doses of HPASD (2.4 g/kg, 4.8 g/kg and 9.6 g/kg) for 14 or 21 consecutive days. The fracture callus formation and fracture sites were determined by radiographic analysis and micron-scale computed tomography (micro-CT) analysis. Hematoxylin and eosin (H&E) staining and a three-point bending test were applied to assess histological lesions and biomechanical properties, respectively. The levels of cytokines-/protein-related to bone formation and differentiation as well as PI3K/AKT pathway-related proteins were determined by Enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), or western blot assays, respectively. UPLC-Q/TOF-MS-based serum metabolomic analysis was also performed to investigate the therapeutic effects of HPASD in the treatment of FBI. UPLC/Q-TOF MS analysis showed the chemical components in HPASD, including flavonoids, amino acids, saponins, and phenylpropanoid constituents, etc. HPASD dose-dependently promoted callus formation, increased bone density, improved mechanical parameters and morphological scores, and facilitated the expressions of VEGF, PDGF, bFGF, VEGFA, CoL1A1, RUNX2, BMP2, and Aggrecan, inhibited the expression of MMP13, and activated PI3K/AKT pathway. Metabolomics analysis revealed abnormalities of malate-aspartate shuttle and glucose-alanine. HPASD accelerates fracture healing by promoting bone formation and regulating the malate-aspartate shuttle and glucose-alanine cycle, which might be associated with the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jing Shen
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Ze Li
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Yao
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhou-Wei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Hui Sun
- Department of Orthopaedics, LanXi People's Hospital, Jinhua, China
- *Correspondence: Hui-Hui Sun, ; Wei-Feng Ji,
| | - Wei-Feng Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hui-Hui Sun, ; Wei-Feng Ji,
| |
Collapse
|
38
|
Beerman I, Basisty N, de Cabo R. Short-term senolytic treatment: a paradigm to promote fracture repair during aging. J Clin Invest 2022; 132:e158871. [PMID: 35426369 PMCID: PMC9012278 DOI: 10.1172/jci158871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased age is blamed for a wide range of bone physiological changes, and although the underlying mechanisms affecting the decreased capacity for fracture healing are not fully understood, they are clearly linked to changes at the cellular level. Recent evidence suggests potential roles of senescent cells in response to most tissue injuries, including bone fractures. In this issue of the JCI, Liu, Zhang, and co-authors showed that a senolytic drug cocktail cleared senescent cells from the callus and improved bone fracture repair in aged mice. Understanding how senescent cells emerge at fracture sites and how their timely removal improves fracture healing should provide insights for effective therapeutic approaches in old age.
Collapse
|
39
|
Liu J, Zhang J, Lin X, Boyce BF, Zhang H, Xing L. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. J Clin Invest 2022; 132:e148073. [PMID: 35426372 PMCID: PMC9012290 DOI: 10.1172/jci148073] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence plays an important role in human diseases, including osteoporosis and osteoarthritis. Senescent cells (SCs) produce the senescence-associated secretory phenotype to affect the function of neighboring cells and SCs themselves. Delayed fracture healing is common in the elderly and is accompanied by reduced mesenchymal progenitor cells (MPCs). However, the contribution of cellular senescence to fracture healing in the aged has not to our knowledge been studied. Here, we used C57BL/6J 4-month-old young and 20-month-old aged mice and demonstrated a rapid increase in SCs in the fracture callus of aged mice. The senolytic drugs dasatinib plus quercetin enhanced fracture healing in aged mice. Aged callus SCs inhibited the growth and proliferation of callus-derived MPCs (CaMPCs) and expressed high levels of TGF-β1. TGF-β-neutralizing Ab prevented the inhibitory effects of aged callus SCs on CaMPCs and promoted fracture healing in aged mice, which was associated with increased CaMPCs and proliferating cells. Thus, fracture triggered a significant cellular senescence in the callus cells of aged mice, which inhibited MPCs by expressing TGF-β1. Short-term administration of dasatinib plus quercetin depleted callus SCs and accelerated fracture healing in aged mice. Senolytic drugs represent a promising therapy, while TGF-β1 signaling is a molecular mechanism for fractures in the elderly via SCs.
Collapse
Affiliation(s)
- Jiatong Liu
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Jun Zhang
- Plastic Surgery Center, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
40
|
Arora D, Robey PG. Recent updates on the biological basis of heterogeneity in bone marrow stromal cells/skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:3-16. [PMID: 35837340 PMCID: PMC9255791 DOI: 10.12336/biomatertransl.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrowderived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other "mesenchymal stem/stromal cells", and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.
Collapse
Affiliation(s)
- Deepika Arora
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Department of Commerce, Gaithersburg, MD, USA
- Department of Biotechnology, School of Biological Engineering & Life Sciences, Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Meerut, India
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
41
|
Saul D, Leite Barros L, Wixom AQ, Gellhaus B, Gibbons HR, Faubion WA, Kosinsky RL. Cell Type-Specific Induction of Inflammation-Associated Genes in Crohn’s Disease and Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063082. [PMID: 35328501 PMCID: PMC8955412 DOI: 10.3390/ijms23063082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Based on the rapid increase in incidence of inflammatory bowel disease (IBD), the identification of susceptibility genes and cell populations contributing to this condition is essential. Previous studies suggested multiple genes associated with the susceptibility of IBD; however, due to the analysis of whole-tissue samples, the contribution of individual cell populations remains widely unresolved. Single-cell RNA sequencing (scRNA-seq) provides the opportunity to identify underlying cellular populations. We determined the enrichment of Crohn’s disease (CD)-induced genes in a publicly available Crohn’s disease scRNA-seq dataset and detected the strongest induction of these genes in innate lymphoid cells (ILC1), highly activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial cells. Notably, these genes were highly enriched in IBD-associated neoplasia, as well as sporadic colorectal cancer (CRC). Indeed, the same six cell populations displayed an upregulation of CD-induced genes in a CRC scRNA-seq dataset. Finally, after integrating and harmonizing the CD and CRC scRNA-seq data, we demonstrated that these six cell types display a gradual increase in gene expression levels from a healthy state to an inflammatory and tumorous state. Together, we identified cell populations that specifically upregulate CD-induced genes in CD and CRC patients and could, therefore, contribute to inflammation-associated tumor development.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany;
- Correspondence: (D.S.); (R.L.K.)
| | - Luísa Leite Barros
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
- Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - Benjamin Gellhaus
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany;
| | - Hunter R. Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - William A. Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
- Correspondence: (D.S.); (R.L.K.)
| |
Collapse
|
42
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
43
|
Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest 2022; 132:154888. [PMID: 35104801 PMCID: PMC8803328 DOI: 10.1172/jci154888] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental aging mechanism that is currently the focus of considerable interest as a pathway that could be targeted to ameliorate aging across multiple tissues, including the skeleton. There is now substantial evidence that senescent cells accumulate in the bone microenvironment with aging and that targeting these cells prevents age-related bone loss, at least in mice. Cellular senescence also plays important roles in mediating the skeletal fragility associated with diabetes mellitus, radiation, and chemotherapy. As such, there are ongoing efforts to develop "senolytic" drugs that kill senescent cells by targeting key survival mechanisms in these cells without affecting normal cells. Because senescent cells accumulate across tissues with aging, senolytics offer the attractive possibility of treating multiple age-related comorbidities simultaneously.
Collapse
|
44
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
45
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|