1
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Wang X, Wang J, Peng H, Zuo L, Wang H. Role of immune cell interactions in alcohol-associated liver diseases. LIVER RESEARCH 2024; 8:72-82. [DOI: 10.1016/j.livres.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Nakamura Y, Niho S, Shimizu Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells 2024; 13:893. [PMID: 38891026 PMCID: PMC11172081 DOI: 10.3390/cells13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosing interstitial lung diseases (FILDs), e.g., due to idiopathic pulmonary fibrosis (IPF), are chronic progressive diseases with a poor prognosis. The management of these diseases is challenging and focuses mainly on the suppression of progression with anti-fibrotic drugs. Therefore, novel FILD treatments are needed. In recent years, cell-based therapy with various stem cells has been investigated for FILD, and the use of mesenchymal stem cells (MSCs) has been widely reported and clinical studies are also ongoing. Induced pluripotent stem cells (iPSCs) have also been reported to have an anti-fibrotic effect in FILD; however, these have not been as well studied as MSCs in terms of the mechanisms and side effects. While MSCs show a potent anti-fibrotic effect, the possibility of quality differences between donors and a stable supply in the case of donor shortage or reduced proliferative capacity after cell passaging needs to be considered. The application of iPSC-derived cells has the potential to overcome these problems and may lead to consistent quality of the cell product and stable product supply. This review provides an overview of iPSCs and FILD, followed by the current status of cell-based therapy for FILD, and then discusses the possibilities and perspectives of FILD therapy with iPSC-derived cells.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
- Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| |
Collapse
|
4
|
Sugimoto C, Fujita H, Wakao H. Mice Generated with Induced Pluripotent Stem Cells Derived from Mucosal-Associated Invariant T Cells. Biomedicines 2024; 12:137. [PMID: 38255242 PMCID: PMC10813358 DOI: 10.3390/biomedicines12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells, a burgeoning member of innate-like T cells abundant in humans and implicated in many diseases, remains obscure. To explore this, mice with a rearranged T cell receptor (TCR) α or β locus, specific for MAIT cells, were generated via induced pluripotent stem cells derived from MAIT cells and were designated Vα19 and Vβ8 mice, respectively. Both groups of mice expressed large numbers of MAIT cells. The MAIT cells from these mice were activated by cytokines and an agonist to produce IFN-γ and IL-17. While Vβ8 mice showed resistance in a cancer metastasis model, Vα19 mice did not. Adoptive transfer of MAIT cells from the latter into the control mice, however, recapitulated the resistance. These mice present an implication for understanding the role of MAIT cells in health and disease and in developing treatments for the plethora of diseases in which MAIT cells are implicated.
Collapse
Affiliation(s)
| | | | - Hiroshi Wakao
- Host Defense Division, Research Centre for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan; (C.S.)
| |
Collapse
|
5
|
Shimizu Y, Sugimoto C, Wakao H. Potential of MAIT cells to modulate asthma. Allergol Int 2024; 73:40-47. [PMID: 37567833 DOI: 10.1016/j.alit.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Despite recent advances in asthma treatments, the search for novel therapies remains necessary because there are still patients with recurrent asthma exacerbations and poor responses to the existing treatments. Since group 2 innate lymphoid cells (ILC2) play a pivotal role in asthma by triggering and exacerbating type 2 inflammation, controlling ILC2s function is key to combating severe asthma. Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans and are activated both in a T cell receptor-dependent and -independent manner. MAIT cells are composed of MAIT1 and MAIT17 based on the expression of transcription factors T-bet and RORγt, respectively. MAIT cells play pivotal roles in host defense against pathogens and in tissue repair and are essential for the maintenance of immunity and hemostasis. Our recent studies revealed that MAIT cells inhibit both ILC2 proliferation and functions in a mouse model of airway inflammation. MAIT cells may alleviate airway inflammation in two ways, by promoting airway epithelial cell barrier repair and by repressing ILC2s. Therefore, reagents that promote MAIT cell-mediated suppression of ILC2 proliferation and function, or designer MAIT cells (genetically engineered to suppress ILC2s or promote repair of airway damage), may be effective therapeutic agents for severe asthma.
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan; Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Tochigi, Japan; Regenerative Center, Dokkyo Medical University Hospital, Tochigi, Japan.
| | - Chie Sugimoto
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Wakao
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Sugimoto C, Fujita H, Wakao H. A flow-cytometry-based assay to assess the cytolytic activity against tumor cells by combination of mouse MAIT cells and natural killer cells. STAR Protoc 2023; 4:102620. [PMID: 39491553 PMCID: PMC10628808 DOI: 10.1016/j.xpro.2023.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/05/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells responsible for mucosal immunity in the respiratory and intestinal tracts. Here we present a flow-cytometry-based assay to measure the cytolytic activity of murine MAIT cells and natural killer (NK) cells. We describe steps for differentiating MAIT-like cells from the induced pluripotent stem cells prepared from MAIT cells (reMAIT cells), NK cell isolation, co-culture with target tumor cells, and staining to distinguish dead cells from live cells. For complete details on the use and execution of this protocol, please refer to Sugimoto et al. (2022).1.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan.
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan.
| |
Collapse
|
7
|
Kumar V, Bauer C, Stewart JH. TIME Is Ticking for Cervical Cancer. BIOLOGY 2023; 12:941. [PMID: 37508372 PMCID: PMC10376148 DOI: 10.3390/biology12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cervical cancer (CC) is a major health problem among reproductive-age females and comprises a leading cause of cancer-related deaths. Human papillomavirus (HPV) is the major risk factor associated with CC incidence. However, lifestyle is also a critical factor in CC pathogenesis. Despite HPV vaccination introduction, the incidence of CC is increasing worldwide. Therefore, it becomes critical to understand the CC tumor immune microenvironment (TIME) to develop immune cell-based vaccination and immunotherapeutic approaches. The current article discusses the immune environment in the normal cervix of adult females and its role in HPV infection. The subsequent sections discuss the alteration of different immune cells comprising CC TIME and their targeting as future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| |
Collapse
|
8
|
Li YR, Zhou K, Wilson M, Kramer A, Zhu Y, Dawson N, Yang L. Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther 2023; 31:631-646. [PMID: 36463401 PMCID: PMC10014234 DOI: 10.1016/j.ymthe.2022.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR β chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niels Dawson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 2023; 141:846-855. [PMID: 36327161 PMCID: PMC10023718 DOI: 10.1182/blood.2022016205] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sjoukje J. C. van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology Program, Sloan Kettering Institute, New York, NY
| | | |
Collapse
|
10
|
Jin G, Chang Y, Harris J, Bao X. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective. Cells Tissues Organs 2023; 212:439-467. [PMID: 36599319 PMCID: PMC10318121 DOI: 10.1159/000528838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jackson Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
11
|
Labuz D, Cacioppo J, Li K, Aubé J, Leung DT. Enhancing Mucosal-Associated Invariant T Cell Function and Expansion with Human Selective Serum. Immunohorizons 2023; 7:116-124. [PMID: 36651819 PMCID: PMC10026854 DOI: 10.4049/immunohorizons.2200082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are promising innate-like lymphocytes with potential for use in anti-tumor immunotherapy. Existing MAIT cell expansion protocols are associated with potentially decremental phenotypic changes, including increased frequency of CD4+ MAIT cells and higher inhibitory receptor expression. In this study, we compared the effect on expansion of human MAIT cells of a serum replacement, Physiologix XF SR (Phx), with traditional serum FBS for supplementing RPMI 1640 media. Using flow cytometry, we found that Phx supported a significantly higher proliferative capacity for MAIT cells and resulted in a lower frequency of CD4+ MAIT cells, which have been associated with reduced Th1 effector and cytolytic functions. We saw that culturing MAIT cells in Phx led to better survival of MAIT cells and lower frequency of PD-1+ MAIT cells than FBS-supplemented media. Functionally, we saw that Phx supplementation was associated with a higher frequency of IFN-γ+ MAIT cells after stimulation with Escherichia coli than FBS-supplemented RPMI. In conclusion, we show that MAIT cells cultured in Phx have higher proliferative capacity, lower expression of inhibitory receptors, and higher capacity to produce IFN-γ after E. coli stimulation than FBS-supplemented RPMI. This work shows that expanding MAIT cells with Phx compared with FBS-supplemented RPMI results in a more functionally desirable MAIT cell for future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Daniel Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Jackson Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel T. Leung
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
12
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
13
|
Harnessing the Power of Mucosal-Associated Invariant T (MAIT) Cells in Cancer Cell Therapy. Biomedicines 2022; 10:biomedicines10123160. [PMID: 36551916 PMCID: PMC9775134 DOI: 10.3390/biomedicines10123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a burgeoning type of the innate-like T cells, play a crucial role in maintaining immune homeostasis, particularly in host defense. Although many studies have implied the use of MAIT cells in tumor immunity, whether MAIT cells are pro-tumor or anti-tumor has remained elusive, as in the case for other innate-like T cells that possess dichotomous roles in tumor immunity. Although this difficulty persists where endogenous MAIT cells are the target for therapeutic intervention, the advent of induced pluripotent stem-cell-derived MAIT cells (reMAIT cells) will make it possible to harness these cells for immune cell therapy. In this review, we will discuss possible roles of MAIT cells in tumor immunity and the potential of reMAIT cells to treat tumors.
Collapse
|
14
|
Increased Number of Mucosal-Associated Invariant T Cells Is Associated with the Inhibition of Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232315309. [PMID: 36499635 PMCID: PMC9739562 DOI: 10.3390/ijms232315309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide health concern. The disease may involve immune cells including T cells, but little is known about the role(s) of the innate-like T cells in the liver. Furthermore, the most abundant innate-like T cells in the human liver are mucosal-associated invariant T (MAIT) cells, but the involvement of MAIT cells in NAFLD remains largely unexplored because of their paucity in mice. In this study, we used a novel mouse line, Vα19, in which the number of MAIT cells is equivalent to or greater than that in humans. Compared with the control mice, Vα19 mice fed a high-fat diet (HFD) exhibited a reduction in lipid accumulation, NAFLD activity score, and transcripts relevant to lipogenesis. In addition, serum triglyceride and non-esterified fatty acids were lower in Vα19 mice fed normal chow or HFD. In contrast, the Vα19 mice showed little or no change in glucose tolerance, insulin sensitivity, inflammation in adipose tissues, or intestinal permeability compared with the controls, irrespective of diet. These results suggest that the presence of MAIT cells is associated with reduced lipogenesis and lipid accumulation in the liver; however, further studies are needed to clarify the role of MAIT cells in hepatic lipid metabolism.
Collapse
|
15
|
Shimizu Y, Horigane-Konakai Y, Ishii Y, Sugimoto C, Wakao H. Mucosal-associated invariant T cells repress group 2 innate lymphoid cells in Alternaria alternata-induced model of allergic airway inflammation. Front Immunol 2022; 13:1005226. [PMID: 36458017 PMCID: PMC9706205 DOI: 10.3389/fimmu.2022.1005226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 08/13/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a blossoming member of the innate-like T cells, play a pivotal role in host defense through engaging the mucosal immunity. Although it has been suggested that MAIT cells are somehow implicated in the allergic airway inflammation mediated by group 2 innate lymphoid cells (ILC2s) such as asthma, the precise role(s) of MAIT cells in such inflammation has remained elusive. To explore the possible roles of MAIT cells in the inflammation, we examined whether MAIT cells suppressed the production of T helper (Th) 2 and inflammatory cytokines from ILC2s, and constrained the proliferation of ILC2s, both of which are prerequisite for airway inflammation. Given that laboratory mice are poor at MAIT cells, a novel mouse line rich in MAIT cells was used. We found that mice rich in MAIT cells showed alleviated airway inflammation as evidenced by reduced infiltration of the immune cells and hyperplasia in goblet cells in the lung concomitant with compromised production of Th2 and inflammatory cytokines, while wild type mice exhibited severe inflammation upon challenge with the fungal extracts. In vitro coculture experiments using purified ILC2s and MAIT cells unrevealed that cytokine-stimulated MAIT cells suppressed ILC2s to produce the cytokines as well as to proliferate most likely via production of IFN-γ. Furthermore, reconstitution of the allergic airway inflammation in the highly immunocompromised mice showed that ILC2-mediated inflammation was alleviated in mice that received MAIT cells along with ILC2s. We concluded that MAIT cells played a crucial role in suppressing the cytokine-producing capacity of ILC2s and ILC2 proliferation, that ultimately led to decrease in the allergic airway inflammation. The results open up a novel therapeutic horizon in ILC2-mediated inflammatory diseases by modulating MAIT cell activity.
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, Japan
- Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Mibu, Tochigi, Japan
| | - Yukiko Horigane-Konakai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yoshii Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
16
|
Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. eLife 2022; 11:70848. [PMID: 35379387 PMCID: PMC8983048 DOI: 10.7554/elife.70848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells belong to a family of innate-like T cells that bridge innate and adaptive immunities. Although MAIT cells have been implicated in tumor immunity, it currently remains unclear whether they function as tumor-promoting or inhibitory cells. Therefore, we herein used induced pluripotent stem cell (iPSC) technology to investigate this issue. Murine MAIT cells were reprogrammed into iPSCs and redifferentiated towards MAIT-like cells (m-reMAIT cells). m-reMAIT cells were activated by an agonist in the presence and absence of antigen-presenting cells and MR1-tetramer, a reagent to detect MAIT cells. This activation accompanied protein tyrosine phosphorylation and the production of T helper (Th)1, Th2, and Th17 cytokines and inflammatory chemokines. Upon adoptive transfer, m-reMAIT cells migrated to different organs with maturation in mice. Furthermore, m-reMAIT cells inhibited tumor growth in the lung metastasis model and prolonged mouse survival upon tumor inoculation through the NK cell-mediated reinforcement of cytolytic activity. Collectively, the present results demonstrated the utility and role of m-reMAIT cells in tumor immunity and provide insights into the function of MAIT cells in immunity.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Yukie Murakami
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Eisuke Ishii
- Department of Dermatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|