1
|
Pullano G, Alvarez-Zuzek LG, Colizza V, Bansal S. Characterizing US Spatial Connectivity and Implications for Geographical Disease Dynamics and Metapopulation Modeling: Longitudinal Observational Study. JMIR Public Health Surveill 2025; 11:e64914. [PMID: 39965190 PMCID: PMC11856803 DOI: 10.2196/64914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Background Human mobility is expected to be a critical factor in the geographic diffusion of infectious diseases, and this assumption led to the implementation of social distancing policies during the early fight against the COVID-19 emergency in the United States. Yet, because of substantial data gaps in the past, what still eludes our understanding are the following questions: (1) How does mobility contribute to the spread of infection within the United States at local, regional, and national scales? (2) How do seasonality and shifts in behavior affect mobility over time? (3) At what geographic level is mobility homogeneous across the United States? Objective This study aimed to address the questions that are critical for developing accurate transmission models, predicting the spatial propagation of disease across scales, and understanding the optimal geographical and temporal scale for the implementation of control policies. Methods We analyzed high-resolution mobility data from mobile app usage from SafeGraph Inc, mapping daily connectivity between the US counties to grasp spatial clustering and temporal stability. Integrating this into a spatially explicit transmission model, we replicated SARS-CoV-2's first wave invasion, assessing mobility's spatiotemporal impact on disease predictions. Results Analysis from 2019 to 2021 showed that mobility patterns remained stable, except for a decline in April 2020 due to lockdowns, which reduced daily movements from 45 million to approximately 25 million nationwide. Despite this reduction, intercounty connectivity remained seasonally stable, largely unaffected during the early COVID-19 phase, with a median Spearman coefficient of 0.62 (SD 0.01) between daily connectivity and gravity networks., We identified 104 geographic clusters of US counties with strong internal mobility connectivity and weaker links to counties outside these clusters. These clusters were stable over time, largely overlapping state boundaries (normalized mutual information=0.82) and demonstrating high temporal stability (normalized mutual information=0.95). Our findings suggest that intercounty connectivity is relatively static and homogeneous at the substate level. Furthermore, while county-level, daily mobility data best captures disease invasion, static mobility data aggregated to the cluster level also effectively models spatial diffusion. Conclusions Our work demonstrates that intercounty mobility was negligibly affected outside the lockdown period in April 2020, explaining the broad spatial distribution of COVID-19 outbreaks in the United States during the early phase of the pandemic. Such geographically dispersed outbreaks place a significant strain on national public health resources and necessitate complex metapopulation modeling approaches for predicting disease dynamics and control design. We thus inform the design of such metapopulation models to balance high disease predictability with low data requirements.
Collapse
Affiliation(s)
- Giulia Pullano
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, 20057-1229, United States, 1 202 687 9256
| | | | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Shweta Bansal
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, 20057-1229, United States, 1 202 687 9256
| |
Collapse
|
2
|
Taube JC, Susswein Z, Colizza V, Bansal S. Characterizing US contact patterns relevant to respiratory transmission from a pandemic to baseline: Analysis of a large cross-sectional survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306450. [PMID: 38712118 PMCID: PMC11071567 DOI: 10.1101/2024.04.26.24306450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Contact plays a critical role in infectious disease transmission. Characterizing heterogeneity in contact patterns across individuals, time, and space is necessary to inform accurate estimates of transmission risk, particularly to explain superspreading, predict age differences in vulnerability, and inform social distancing policies. Current respiratory disease models often rely on data from the 2008 POLYMOD study conducted in Europe, which is now outdated and potentially unrepresentative of behavior in the US. We seek to understand the variation in contact patterns across time, spatial scales, and demographic and social classifications, and what social behavior looks like at baseline in the absence of an ongoing pandemic. Methods We analyze spatiotemporal non-household contact patterns across 10.7 million survey responses from June 2020 - April 2021 post-stratified on age and gender to correct for sample representation. To characterize spatiotemporal heterogeneity in respiratory contact patterns at the county-week scale, we use generalized additive models. In the absence of non-pandemic US contact data, we employ a regression approach to estimate baseline contact and address this gap. Findings Although contact patterns varied over time during the pandemic, contact is relatively stable after controlling for disease. We find that the mean number of non-household contacts is spatially heterogeneous regardless of disease. There is additional heterogeneity across age, gender, race/ethnicity, and contact setting, with mean contact decreasing with age and lower in women. The contacts of White individuals and contacts at work or social events change the most under increased national incidence. Interpretation We develop the first county-level estimates of non-pandemic contact rates for the US that can fill critical gaps in parameterizing future disease models. Our results identify that spatiotemporal, demographic, and social heterogeneity in contact patterns is highly structured, informing the risk landscape of respiratory infectious disease transmission in the US. Funding Research reported in this publication was supported by the National Institutes of Health under award number R01GM123007 and R35GM153478 (SB).
Collapse
Affiliation(s)
- Juliana C. Taube
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Zachary Susswein
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Cori A, Kucharski A. Inference of epidemic dynamics in the COVID-19 era and beyond. Epidemics 2024; 48:100784. [PMID: 39167954 DOI: 10.1016/j.epidem.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
The COVID-19 pandemic demonstrated the key role that epidemiology and modelling play in analysing infectious threats and supporting decision making in real-time. Motivated by the unprecedented volume and breadth of data generated during the pandemic, we review modern opportunities for analysis to address questions that emerge during a major modern epidemic. Following the broad chronology of insights required - from understanding initial dynamics to retrospective evaluation of interventions, we describe the theoretical foundations of each approach and the underlying intuition. Through a series of case studies, we illustrate real life applications, and discuss implications for future work.
Collapse
Affiliation(s)
- Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom.
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, United Kingdom.
| |
Collapse
|
4
|
Arregui-Garcıa B, Ascione C, Pera A, Wang B, Stocco D, Carlson CJ, Bansal S, Valdano E, Pullano G. Disruption of outdoor activities caused by wildfires increases disease circulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311678. [PMID: 39148844 PMCID: PMC11326313 DOI: 10.1101/2024.08.08.24311678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Although climate change poses a well-established risk to human health, present-day health impacts, particularly those resulting from climate-induced behavioral changes, are under-quantified. Analyzing the U.S. West Coast wildfires of September 2020, we found that poor air quality drives people indoors, increasing the circulation of airborne pathogens like COVID-19. Indoor masking rates as low as 10% can mitigate this risk, offering a clear path to enhance public health responses during wildfires.
Collapse
Affiliation(s)
- Beatriz Arregui-Garcıa
- Instituto de Fisica Interdisciplinary Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Claudio Ascione
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, F75012, Paris, France
| | - Arianna Pera
- Department of Computer Science, IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
| | - Boxuan Wang
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, F75012, Paris, France
- EHESP French School of Public Health, F-35000 Rennes, France
| | - Davide Stocco
- Department of Mathematics, Politecnico di Milano, Via Bonardi 9, I-20133 Milan, Italy (IT)
| | - Colin J. Carlson
- Department of Epidemiology of Microbial Diseases & Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, Connecticut, United States
| | - Shweta Bansal
- Department of Biology, Regents Hall, Georgetown University, 37th and O Streets NW, Washington, DC, 20057-1229, USA
| | - Eugenio Valdano
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, F75012, Paris, France
| | - Giulia Pullano
- Department of Biology, Regents Hall, Georgetown University, 37th and O Streets NW, Washington, DC, 20057-1229, USA
| |
Collapse
|
5
|
Kummer A, Zhang J, Jiang C, Litvinova M, Ventura P, Garcia M, Vespignani A, Wu H, Yu H, Ajelli M. Evaluating Seasonal Variations in Human Contact Patterns and Their Impact on the Transmission of Respiratory Infectious Diseases. Influenza Other Respir Viruses 2024; 18:e13301. [PMID: 38733199 PMCID: PMC11087848 DOI: 10.1111/irv.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Human contact patterns are a key determinant driving the spread of respiratory infectious diseases. However, the relationship between contact patterns and seasonality as well as their possible association with the seasonality of respiratory diseases is yet to be clarified. METHODS We investigated the association between temperature and human contact patterns using data collected through a cross-sectional diary-based contact survey in Shanghai, China, between December 24, 2017, and May 30, 2018. We then developed a compartmental model of influenza transmission informed by the derived seasonal trends in the number of contacts and validated it against A(H1N1)pdm09 influenza data collected in Shanghai during the same period. RESULTS We identified a significant inverse relationship between the number of contacts and the seasonal temperature trend defined as a spline interpolation of temperature data (p = 0.003). We estimated an average of 16.4 (95% PrI: 15.1-17.5) contacts per day in December 2017 that increased to an average of 17.6 contacts (95% PrI: 16.5-19.3) in January 2018 and then declined to an average of 10.3 (95% PrI: 9.4-10.8) in May 2018. Estimates of influenza incidence obtained by the compartmental model comply with the observed epidemiological data. The reproduction number was estimated to increase from 1.24 (95% CI: 1.21-1.27) in December to a peak of 1.34 (95% CI: 1.31-1.37) in January. The estimated median infection attack rate at the end of the season was 27.4% (95% CI: 23.7-30.5%). CONCLUSIONS Our findings support a relationship between temperature and contact patterns, which can contribute to deepen the understanding of the relationship between social interactions and the epidemiology of respiratory infectious diseases.
Collapse
Affiliation(s)
- Allisandra G. Kummer
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and BiostatisticsIndiana University School of Public HealthBloomingtonIndianaUSA
| | - Juanjuan Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Department of Epidemiology, School of Public HealthFudan University, Key Laboratory of Public Health Safety, Ministry of EducationShanghaiChina
| | - Chenyan Jiang
- Shanghai Municipal Center for Disease Control and PreventionShanghaiChina
| | - Maria Litvinova
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and BiostatisticsIndiana University School of Public HealthBloomingtonIndianaUSA
| | - Paulo C. Ventura
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and BiostatisticsIndiana University School of Public HealthBloomingtonIndianaUSA
| | - Marc A. Garcia
- Lerner Center for Public Health Promotion, Aging Studies Institute, Department of Sociology, and Maxwell School of Citizenship & Public AffairsSyracuse UniversitySyracuseNew YorkUSA
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio‐technical SystemsNortheastern UniversityBostonMassachusettsUSA
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and PreventionShanghaiChina
| | - Hongjie Yu
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Department of Epidemiology, School of Public HealthFudan University, Key Laboratory of Public Health Safety, Ministry of EducationShanghaiChina
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and BiostatisticsIndiana University School of Public HealthBloomingtonIndianaUSA
| |
Collapse
|
6
|
Hladish TJ, Pillai AN, Pearson CAB, Toh KB, Tamayo AC, Stoltzfus A, Longini IM. Evaluating targeted COVID-19 vaccination strategies with agent-based modeling. PLoS Comput Biol 2024; 20:e1012128. [PMID: 38820570 PMCID: PMC11230632 DOI: 10.1371/journal.pcbi.1012128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/08/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine supply, starting in late 2020 through early 2022. Our analysis indicates that the best strategy to reduce severe outcomes would be to actively target high disease-risk individuals. This was true in every scenario, although the advantage was greatest for the intermediate vaccine availability assumptions and relatively modest compared to a simple mass vaccination approach under high vaccine availability. Ring vaccination, while generally the most effective strategy for reducing infections, ultimately proved least effective at preventing deaths. We also consider using age group as a practical surrogate measure for actual disease-risk targeting; this approach also outperforms both simple mass distribution and ring vaccination. We find that quantitative effectiveness of a strategy depends on whether effectiveness is assessed after the alpha, delta, or omicron wave. However, these differences in absolute benefit for the strategies do not change the ranking of their performance at preventing severe outcomes across vaccine availability assumptions.
Collapse
Affiliation(s)
- Thomas J Hladish
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Alexander N Pillai
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Carl A B Pearson
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Kok Ben Toh
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Institute of Global Health and Department of Preventive Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Andrea C Tamayo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Arlin Stoltzfus
- Office of Data and Informatics, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Ira M Longini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
7
|
Sabbatini CE, Pullano G, Di Domenico L, Rubrichi S, Bansal S, Colizza V. The impact of spatial connectivity on NPIs effectiveness. BMC Infect Dis 2024; 24:21. [PMID: 38166649 PMCID: PMC10763474 DOI: 10.1186/s12879-023-08900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND France implemented a combination of non-pharmaceutical interventions (NPIs) to manage the COVID-19 pandemic between September 2020 and June 2021. These included a lockdown in the fall 2020 - the second since the start of the pandemic - to counteract the second wave, followed by a long period of nighttime curfew, and by a third lockdown in the spring 2021 against the Alpha wave. Interventions have so far been evaluated in isolation, neglecting the spatial connectivity between regions through mobility that may impact NPI effectiveness. METHODS Focusing on September 2020-June 2021, we developed a regionally-based epidemic metapopulation model informed by observed mobility fluxes from daily mobile phone data and fitted the model to regional hospital admissions. The model integrated data on vaccination and variants spread. Scenarios were designed to assess the impact of the Alpha variant, characterized by increased transmissibility and risk of hospitalization, of the vaccination campaign and alternative policy decisions. RESULTS The spatial model better captured the heterogeneity observed in the regional dynamics, compared to models neglecting inter-regional mobility. The third lockdown was similarly effective to the second lockdown after discounting for immunity, Alpha, and seasonality (51% vs 52% median regional reduction in the reproductive number R0, respectively). The 6pm nighttime curfew with bars and restaurants closed, implemented in January 2021, substantially reduced COVID-19 transmission. It initially led to 49% median regional reduction of R0, decreasing to 43% reduction by March 2021. In absence of vaccination, implemented interventions would have been insufficient against the Alpha wave. Counterfactual scenarios proposing a sequence of lockdowns in a stop-and-go fashion would have reduced hospitalizations and restriction days for low enough thresholds triggering and lifting restrictions. CONCLUSIONS Spatial connectivity induced by mobility impacted the effectiveness of interventions especially in regions with higher mobility rates. Early evening curfew with gastronomy sector closed allowed authorities to delay the third wave. Stop-and-go lockdowns could have substantially lowered both healthcare and societal burdens if implemented early enough, compared to the observed application of lockdown-curfew-lockdown, but likely at the expense of several labor sectors. These findings contribute to characterize the effectiveness of implemented strategies and improve pandemic preparedness.
Collapse
Affiliation(s)
- Chiara E Sabbatini
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | - Giulia Pullano
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Laura Di Domenico
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | - Stefania Rubrichi
- Orange Labs, Sociology and Economics of Networks and Services (SENSE), Chatillon, France
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France.
| |
Collapse
|