1
|
Kolarik AJ, Moore BCJ. Principles governing the effects of sensory loss on human abilities: An integrative review. Neurosci Biobehav Rev 2024; 169:105986. [PMID: 39710017 DOI: 10.1016/j.neubiorev.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Blindness or deafness can significantly influence sensory abilities in intact modalities, affecting communication, orientation and navigation. Explanations for why certain abilities are enhanced and others degraded include: crossmodal cortical reorganization enhances abilities by providing additional neural processing resources; and sensory processing is impaired for tasks where calibration from the normally intact sense is required for good performance. However, these explanations are often specific to tasks or modalities, not accounting for why task-dependent enhancement or degradation are observed. This paper investigates whether sensory systems operate according to a theoretical framework comprising seven general principles (the perceptual restructuring hypothesis) spanning the various modalities. These principles predict whether an ability will be enhanced or degraded following sensory loss. Evidence from a wide range of studies is discussed, to assess the validity of the principles across different combinations of impaired sensory modalities (deafness or blindness) and intact modalities (vision, audition, touch, olfaction). It is concluded that sensory systems do operate broadly according to the principles of the framework, but with some exceptions.
Collapse
Affiliation(s)
- Andrew J Kolarik
- School of Psychology, University of East Anglia, Norwich, United Kingdom; Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.
| | - Brian C J Moore
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Downey JE, Schone HR, Foldes ST, Greenspon C, Liu F, Verbaarschot C, Biro D, Satzer D, Moon CH, Coffman BA, Youssofzadeh V, Fields D, Hobbs TG, Okorokova E, Tyler-Kabara EC, Warnke PC, Gonzalez-Martinez J, Hatsopoulos NG, Bensmaia SJ, Boninger ML, Gaunt RA, Collinger JL. A Roadmap for Implanting Electrode Arrays to Evoke Tactile Sensations Through Intracortical Stimulation. Hum Brain Mapp 2024; 45:e70118. [PMID: 39720868 DOI: 10.1002/hbm.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other BCI studies to ensure the successful placement of stimulation electrodes.
Collapse
Affiliation(s)
- John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Hunter R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen T Foldes
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Charles Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Biro
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vahab Youssofzadeh
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizaveta Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Elizabeth C Tyler-Kabara
- Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, USA
- Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, USA
- Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Liu TT, Granovetter MC, Maallo AMS, Robert S, Fu JZ, Patterson C, Plaut DC, Behrmann M. Cross-sectional and longitudinal changes in category-selectivity in visual cortex following pediatric cortical resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627367. [PMID: 39713452 PMCID: PMC11661110 DOI: 10.1101/2024.12.08.627367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The topographic organization of category-selective responses in human ventral occipitotemporal cortex (VOTC) and its relationship to regions subserving language functions is remarkably uniform across individuals. This arrangement is thought to result from the clustering of neurons responding to similar inputs, constrained by intrinsic architecture and tuned by experience. We examined the malleability of this organization in individuals with unilateral resection of VOTC during childhood for the management of drug-resistant epilepsy. In cross-sectional and longitudinal functional imaging studies, we compared the topography and neural representations of 17 category-selective regions in individuals with a VOTC resection, a 'control patient' with resection outside VOTC, and typically developing matched controls. We demonstrated both adherence to and deviation from the standard topography and uncovered fine-grained competitive dynamics between word- and face-selectivity over time in the single, preserved VOTC. The findings elucidate the nature and extent of cortical plasticity and highlight the potential for remodeling of extrastriate architecture and function.
Collapse
Affiliation(s)
- Tina T. Liu
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA
| | - Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Pediatrics and Neurology, New York University, New York, NY, USA
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sophia Robert
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason Z. Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| |
Collapse
|
4
|
Greenspon CM, Valle G, Shelchkova ND, Hobbs TG, Verbaarschot C, Callier T, Berger-Wolf EI, Okorokova EV, Hutchison BC, Dogruoz E, Sobinov AR, Jordan PM, Weiss JM, Fitzgerald EE, Prasad D, Van Driesche A, He Q, Liu F, Kirsch RF, Miller JP, Lee RC, Satzer D, Gonzalez-Martinez J, Warnke PC, Ajiboye AB, Graczyk EL, Boninger ML, Collinger JL, Downey JE, Miller LE, Hatsopoulos NG, Gaunt RA, Bensmaia SJ. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat Biomed Eng 2024:10.1038/s41551-024-01299-z. [PMID: 39643730 DOI: 10.1038/s41551-024-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode's location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus. Here we report a systematic investigation of the localization and intensity of ICMS-evoked percepts in three participants with cervical spinal cord injury. A retrospective analysis of projected fields showed that they were typically composed of a focal hotspot with diffuse borders, arrayed somatotopically in keeping with their underlying receptive fields and stable throughout the duration of the study. When testing the participants' ability to rapidly localize a single ICMS presentation, individual electrodes typically evoked only weak sensations, making object localization and discrimination difficult. However, overlapping projected fields from multiple electrodes produced more localizable and intense sensations and allowed for a more precise use of a bionic hand.
Collapse
Affiliation(s)
- Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Natalya D Shelchkova
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierri Callier
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ev I Berger-Wolf
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Efe Dogruoz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Patrick M Jordan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E Fitzgerald
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Dillan Prasad
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ashley Van Driesche
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Qinpu He
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jonathan P Miller
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ray C Lee
- Schwab Rehabilitation Hospital, Chicago, IL, USA
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Abidemi B Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Haupt M, Graumann M, Teng S, Kaltenbach C, Cichy R. The transformation of sensory to perceptual braille letter representations in the visually deprived brain. eLife 2024; 13:RP98148. [PMID: 39630852 PMCID: PMC11616995 DOI: 10.7554/elife.98148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting 'hinge' region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.
Collapse
Affiliation(s)
- Marleen Haupt
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Monika Graumann
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
| | - Santani Teng
- Smith-Kettlewell Eye Research InstituteSan FranciscoUnited States
| | - Carina Kaltenbach
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
6
|
Stockbridge MD, Keser Z, Bonilha L, Hillis AE. Microstructural properties in subacute aphasia: concurrent and prospective relationships underpinning recovery. Brain Struct Funct 2024; 229:2207-2217. [PMID: 38969934 PMCID: PMC11611690 DOI: 10.1007/s00429-024-02826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Few investigations examined the relationship between microstructural white matter integrity and subacute post-stroke linguistic performance or the relationship between microstructural integrity and the recovery of language function. We examined two key questions: (1) How does subacute language performance, measured in single words and discourse, relate to the microstructural integrity of key white matter regions of interest in the language network? and (2) Does the integrity of these regions before treatment predict the improvement or resolution of linguistic symptoms immediately and chronically following treatment? METHODS 58 participants within the first three months of stroke were enrolled in a randomized, single-center, double-blind, sham-controlled, study of anodal transcranial direct current stimulation combined with a computer-delivered speech and language naming therapy for subacute aphasia and were asked to complete magnetic resonance imaging at enrollment. Microstructural integrity was evaluated using diffusion tensor imaging processed with atlas-based segmentation. Regression and correlation analyses were conducted. RESULTS A subset of 22 participants received diffusion tensor imaging. Picture naming accuracy significantly correlated with lower mean diffusivity (higher microstructural integrity) in the left posterior inferior temporal gyrus. Recovery of naming performance was predicted by days since stroke and baseline microstructural integrity of the left posterior middle temporal gyrus, arcuate fasciculus, and superior longitudinal fasciculus. Recovery of discourse efficiency was significantly predicted by the same model. CONCLUSIONS This study demonstrates an association between picture naming and discourse and microstructural integrity of the key regions in the language network for patients with subacute post-stroke aphasia. Baseline microstructural integrity significantly predicts language recovery.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street Phipps 4, Suite 446, Baltimore, MD, 21287, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina School of Medicine Columbia, Columbia, SC, 29209, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street Phipps 4, Suite 446, Baltimore, MD, 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
7
|
Striem-Amit E. Can individual differences explain brain plasticity in blindness? Trends Cogn Sci 2024; 28:1059-1062. [PMID: 39443277 PMCID: PMC11620917 DOI: 10.1016/j.tics.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Explaining brain plasticity in blindness is challenging because the early visual cortex (EVC) responds to many different tasks, each type supporting a different explanation. Can individual differences help unify the experimental findings into a coherent theory and clarify the nature of brain plasticity?
Collapse
Affiliation(s)
- Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
8
|
Teng S, Cichy R, Pantazis D, Oliva A. Touch to text: Spatiotemporal evolution of braille letter representations in blind readers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620429. [PMID: 39553970 PMCID: PMC11565808 DOI: 10.1101/2024.10.30.620429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Visual deprivation does not silence the visual cortex, which is responsive to auditory, tactile, and other nonvisual tasks in blind persons. However, the underlying functional dynamics of the neural networks mediating such crossmodal responses remain unclear. Here, using braille reading as a model framework to investigate these networks, we presented sighted (N=13) and blind (N=12) readers with individual visual print and tactile braille alphabetic letters, respectively, during MEG recording. Using time-resolved multivariate pattern analysis and representational similarity analysis, we traced the alphabetic letter processing cascade in both groups of participants. We found that letter representations unfolded more slowly in blind than in sighted brains, with decoding peak latencies ~200 ms later in braille readers. Focusing on the blind group, we found that the format of neural letter representations transformed within the first 500 ms after stimulus onset from a low-level structure consistent with peripheral nerve afferent coding to high-level format reflecting pairwise letter embeddings in a text corpus. The spatiotemporal dynamics of the transformation suggest that the processing cascade proceeds from a starting point in somatosensory cortex to early visual cortex and then to inferotemporal cortex. Together our results give insight into the neural mechanisms underlying braille reading in blind persons and the dynamics of functional reorganization in sensory deprivation.
Collapse
Affiliation(s)
- Santani Teng
- The Smith-Kettlewell Eye Research Institute
- Computer Science and Artificial Intelligence Laboratory, MIT
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität Berlin
| | | | - Aude Oliva
- Computer Science and Artificial Intelligence Laboratory, MIT
| |
Collapse
|
9
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Duymuş H, Verma M, Güçlütürk Y, Öztürk M, Varol AB, Kurt Ş, Gezici T, Akgür BF, Giray İ, Öksüz EE, Farooqui AA. The visual cortex in the blind but not the auditory cortex in the deaf becomes multiple-demand regions. Brain 2024; 147:3624-3637. [PMID: 38864500 PMCID: PMC11449128 DOI: 10.1093/brain/awae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024] Open
Abstract
The fate of deprived sensory cortices (visual regions in the blind and auditory regions in the deaf) exemplifies the extent to which experience can change brain regions. These regions are frequently seen to activate during tasks involving other sensory modalities, leading many authors to infer that these regions have started to process sensory information of other modalities. However, such observations can also imply that these regions are now activating in response to any task event, regardless of the sensory modality. Activating in response to task events, irrespective of the sensory modality involved, is a feature of the multiple-demands (MD) network. This is a set of regions within the frontal and parietal cortices that activate in response to any kind of control demand. Thus, demands as diverse as attention, perceptual difficulty, rule-switching, updating working memory, inhibiting responses, decision-making and difficult arithmetic all activate the same set of regions that are thought to instantiate domain-general cognitive control and underpin fluid intelligence. We investigated whether deprived sensory cortices, or foci within them, become part of the MD network. We tested whether the same foci within the visual regions of the blind and auditory regions of the deaf activated in response to different control demands. We found that control demands related to updating auditory working memory, difficult tactile decisions, time-duration judgments and sensorimotor speed all activated the entire bilateral occipital regions in the blind but not in the sighted. These occipital regions in the blind were the only regions outside the canonical frontoparietal MD regions to show such activation in response to multiple control demands. Furthermore, compared with the sighted, these occipital regions in the blind had higher functional connectivity with frontoparietal MD regions. Early deaf, in contrast, did not activate their auditory regions in response to different control demands, showing that auditory regions do not become MD regions in the deaf. We suggest that visual regions in the blind do not take a new sensory role but become part of the MD network, and this is not a response of all deprived sensory cortices but a feature unique to the visual regions.
Collapse
Affiliation(s)
- Hasan Duymuş
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Mohini Verma
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Yasemin Güçlütürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Mesut Öztürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Ayşe B Varol
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Şehmus Kurt
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Tamer Gezici
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Berhan F Akgür
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - İrem Giray
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Elif E Öksüz
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Ausaf A Farooqui
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
- National Magnetic Resonance Research Center, Bilkent University, Ankara, 06800, Türkiye
| |
Collapse
|
11
|
Maimon A, Wald IY, Snir A, Ben Oz M, Amedi A. Perceiving depth beyond sight: Evaluating intrinsic and learned cues via a proof of concept sensory substitution method in the visually impaired and sighted. PLoS One 2024; 19:e0310033. [PMID: 39321152 PMCID: PMC11423994 DOI: 10.1371/journal.pone.0310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
This study explores spatial perception of depth by employing a novel proof of concept sensory substitution algorithm. The algorithm taps into existing cognitive scaffolds such as language and cross modal correspondences by naming objects in the scene while representing their elevation and depth by manipulation of the auditory properties for each axis. While the representation of verticality utilized a previously tested correspondence with pitch, the representation of depth employed an ecologically inspired manipulation, based on the loss of gain and filtration of higher frequency sounds over distance. The study, involving 40 participants, seven of which were blind (5) or visually impaired (2), investigates the intrinsicness of an ecologically inspired mapping of auditory cues for depth by comparing it to an interchanged condition where the mappings of the two axes are swapped. All participants successfully learned to use the algorithm following a very brief period of training, with the blind and visually impaired participants showing similar levels of success for learning to use the algorithm as did their sighted counterparts. A significant difference was found at baseline between the two conditions, indicating the intuitiveness of the original ecologically inspired mapping. Despite this, participants were able to achieve similar success rates following the training in both conditions. The findings indicate that both intrinsic and learned cues come into play with respect to depth perception. Moreover, they suggest that by employing perceptual learning, novel sensory mappings can be trained in adulthood. Regarding the blind and visually impaired, the results also support the convergence view, which claims that with training, their spatial abilities can converge with those of the sighted. Finally, we discuss how the algorithm can open new avenues for accessibility technologies, virtual reality, and other practical applications.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Computational Psychiatry and Neurotechnology Lab, Ben Gurion University, Be'er Sheva, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Digital Media Lab, University of Bremen, Bremen, Germany
| | - Adi Snir
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Amir Amedi
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| |
Collapse
|
12
|
Chateaux M, Rossel O, Vérité F, Nicol C, Touillet A, Paysant J, Jarrassé N, De Graaf JB. New insights into muscle activity associated with phantom hand movements in transhumeral amputees. Front Hum Neurosci 2024; 18:1443833. [PMID: 39281369 PMCID: PMC11392834 DOI: 10.3389/fnhum.2024.1443833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Muscle activity patterns in the residual arm are systematically present during phantom hand movements (PHM) in transhumeral amputees. However, their characteristics have not been directly investigated yet, leaving their neurophysiological origin poorly understood. This study pioneers a neurophysiological perspective in examining PHM-related muscle activity patterns by characterizing and comparing them with those in the arm, forearm, and hand muscles of control participants executing intact hand movements (IHM) of similar types. Methods To enable rigorous comparison, we developed meta-variables independent of electrode placement, quantifying the phasic profile of recorded surface EMG signals and the specificity of their patterns across electrode sites and movement types. Results Similar to the forearm and hand muscles during IHM, each signal recorded from the residual upper arm during PHM displays a phasic profile, synchronized with the onset and offset of each movement repetition. Furthermore, the PHM-related patterns of phasic muscle activity are specific not only to the type of movement but also to the electrode site, even within the same upper arm muscle, while these muscles exhibit homogeneous activities in intact arms. Discussion Our results suggest the existence of peripheral reorganization, eventually leading to the emergence of independently controlled muscular sub-volumes. This reorganization potentially occurs through the sprouting of severed axons and the recapture of muscle fibers in the residual limb. Further research is imperative to comprehend this mechanism and its relationship with PHM, holding significant implications for the rehabilitation process and myoelectric prosthesis control.
Collapse
Affiliation(s)
| | | | - Fabien Vérité
- ISM, Aix Marseille University, CNRS, Marseille, France
| | | | | | | | - Nathanaël Jarrassé
- U1150 Agathe-ISIR, CNRS, UMR 7222, ISIR/INSERM, Sorbonne University, Paris, France
| | | |
Collapse
|
13
|
Lee GM, Rodríguez Deliz CL, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Developmentally stable representations of naturalistic image structure in macaque visual cortex. Cell Rep 2024; 43:114534. [PMID: 39067025 PMCID: PMC11491121 DOI: 10.1016/j.celrep.2024.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
To determine whether post-natal improvements in form vision result from changes in mid-level visual cortex, we studied neuronal and behavioral responses to texture stimuli that were matched in local spectral content but varied in "naturalistic" structure. We made longitudinal measurements of visual behavior from 16 to 95 weeks of age, and of neural responses from 20 to 56 weeks. We also measured behavioral and neural responses in near-adult animals more than 3 years old. Behavioral sensitivity reached half-maximum around 25 weeks of age, but neural sensitivities remained stable through all ages tested. Neural sensitivity to naturalistic structure was highest in V4, lower in V2 and inferotemporal cortex (IT), and barely discernible in V1. Our results show a dissociation between stable neural performance and improving behavioral performance, which may reflect improved processing capacity in circuits downstream of visual cortex.
Collapse
Affiliation(s)
- Gerick M Lee
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | | - Najib J Majaj
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
14
|
Martin RC, Ding J, Alwani AI, Fung SH, Schnur TT. Recovery of Verbal Working Memory Depends on Left Hemisphere White Matter Tracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608246. [PMID: 39185144 PMCID: PMC11343190 DOI: 10.1101/2024.08.16.608246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Researchers propose that the recovery of language function following stroke depends on the recruitment of perilesional regions in the left hemisphere and/or homologous regions in the right hemisphere (Kiran, 2012). Many investigations of recovery focus on changes in gray matter regions (e.g., Turkeltaub et al., 2011), whereas relatively few examine white matter tracts (e.g., Schlaug et al., 2009) and none address the role of these tracts in the recovery of verbal working memory (WM). The present study addressed these gaps, examining the role of left vs. right hemisphere tracts in the longitudinal recovery of phonological and semantic WM. For 24 individuals with left hemisphere stroke, we assessed WM performance within one week of stroke (acute timepoint) and at more than six months after stroke (chronic timepoint). To address whether recovery depends on the recruitment of left or right hemisphere tracts, we assessed whether changes in WM were related to the integrity of five white matter tracts in the left hemisphere which had been implicated previously in verbal WM and their right hemisphere analogues. Behavioral results showed significant improvement in semantic but not phonological WM from the acute to chronic timepoints. Improvements in semantic WM significantly correlated with tract integrity as measured by functional anisotropy in the left direct segment of the arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The results confirm the role of white matter tracts in language recovery and support the involvement of the left rather than right hemisphere in the recovery of semantic WM.
Collapse
Affiliation(s)
- Randi C Martin
- Psychological Sciences, Rice University, Houston, Texas, USA
| | - Junhua Ding
- Psychology, University of Edinburgh, Edinburgh, UK
| | - Ali I Alwani
- Radiology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Steve H Fung
- Radiology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Tatiana T Schnur
- Physical Medicine and Rehabilitation, University of Texas Health Sciences Center, Houston, Texas, USA
| |
Collapse
|
15
|
Amaral L, Thomas P, Amedi A, Striem-Amit E. Longitudinal stability of individual brain plasticity patterns in blindness. Proc Natl Acad Sci U S A 2024; 121:e2320251121. [PMID: 39078671 PMCID: PMC11317565 DOI: 10.1073/pnas.2320251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/24/2024] [Indexed: 07/31/2024] Open
Abstract
The primary visual cortex (V1) in blindness is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions specific to task demands. This would suggest that reorganized V1 assumes a role like multiple-demand system regions. Alternatively, varying patterns of plasticity in blind V1 may be attributed to individual factors, with different blind individuals recruiting V1 preferentially for different functions. In support of this, we recently showed that V1 functional connectivity (FC) varies greatly across blind individuals. But do these represent stable individual patterns of plasticity, or are they driven more by instantaneous changes, like a multiple-demand system now inhabiting V1? Here, we tested whether individual FC patterns from the V1 of blind individuals are stable over time. We show that over two years, FC from the V1 is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in V1 connectivity, this indicates that there may be a consistent role for V1 in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.
Collapse
Affiliation(s)
- Lénia Amaral
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Peyton Thomas
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya4610101, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya4610101, Israel
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| |
Collapse
|
16
|
Kunigk NG, Schone HR, Gontier C, Hockeimer W, Tortolani AF, Hatsopoulos NG, Downey JE, Chase SM, Boninger ML, Dekleva BD, Collinger JL. Motor somatotopy impacts imagery strategy success in human intracortical brain-computer interfaces. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311180. [PMID: 39132484 PMCID: PMC11312650 DOI: 10.1101/2024.08.01.24311180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The notion of a somatotopically organized motor cortex, with movements of different body parts being controlled by spatially distinct areas of cortex, is well known. However, recent studies have challenged this notion and suggested a more distributed representation of movement control. This shift in perspective has significant implications, particularly when considering the implantation location of electrode arrays for intracortical brain-computer interfaces (iBCIs). We sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus the underlying somatotopy, has any impact on the imagery strategies that can enable successful iBCI control. Three individuals with a spinal cord injury were enrolled in an ongoing clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural data were recorded while participants attempted to perform movements of the hand, wrist, elbow, and shoulder. We found that electrode arrays that were located more medially recorded significantly more activity during attempted proximal arm movements (elbow, shoulder) than did lateral arrays, which captured more activity related to attempted distal arm movements (hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each participant to decoding accuracy during calibration of an iBCI decoder for translation and grasping tasks. For both task types, imagery strategy (e.g., reaching vs. wrist movements) had a significant impact on the relative contributions of each array to decoding. Overall, we found some evidence of broad tuning to arm and hand movements; however, there was a clear bias in the amount of information accessible about each movement type in spatially distinct areas of cortex. These results demonstrate that classical concepts of somatotopy can have real consequences for iBCI use, and highlight the importance of considering somatotopy when planning iBCI implantation.
Collapse
Affiliation(s)
- N G Kunigk
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - H R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Gontier
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Hockeimer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - A F Tortolani
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - N G Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - J E Downey
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - S M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - M L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - B D Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - J L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Stroh AL, Radziun D, Korczyk M, Crucianelli L, Ehrsson HH, Szwed M. Blind individuals' enhanced ability to sense their own heartbeat is related to the thickness of their occipital cortex. Cereb Cortex 2024; 34:bhae324. [PMID: 39152673 PMCID: PMC11329624 DOI: 10.1093/cercor/bhae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Maksymilian Korczyk
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Department of Biological and Experimental Psychology, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
18
|
Verpeut JL. Restoring cerebellar-dependent learning. eLife 2024; 13:e100251. [PMID: 39012692 PMCID: PMC11251719 DOI: 10.7554/elife.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Behavioral and pharmaceutical interventions reverse defects associated with increased cerebellar long-term depression in a mouse model of Fragile X syndrome.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Department of Psychology, Arizona State UniversityTempeUnited States
| |
Collapse
|
19
|
Robert S, Granovetter MC, Patterson C, Behrmann M. Hemispheric functional organization, as revealed by naturalistic neuroimaging, in pediatric epilepsy patients with cortical resections. Proc Natl Acad Sci U S A 2024; 121:e2317458121. [PMID: 38950362 PMCID: PMC11252739 DOI: 10.1073/pnas.2317458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/14/2024] [Indexed: 07/03/2024] Open
Abstract
Functional changes in the pediatric brain following neural injuries attest to remarkable feats of plasticity. Investigations of the neurobiological mechanisms that underlie this plasticity have largely focused on activation in the penumbra of the lesion or in contralesional, homotopic regions. Here, we adopt a whole-brain approach to evaluate the plasticity of the cortex in patients with large unilateral cortical resections due to drug-resistant childhood epilepsy. We compared the functional connectivity (FC) in patients' preserved hemisphere with the corresponding hemisphere of matched controls as they viewed and listened to a movie excerpt in a functional magnetic resonance imaging (fMRI) scanner. The preserved hemisphere was segmented into 180 and 200 parcels using two different anatomical atlases. We calculated all pairwise multivariate statistical dependencies between parcels, or parcel edges, and between 22 and 7 larger-scale functional networks, or network edges, aggregated from the smaller parcel edges. Both the left and right hemisphere-preserved patient groups had widespread reductions in FC relative to matched controls, particularly for within-network edges. A case series analysis further uncovered subclusters of patients with distinctive edgewise changes relative to controls, illustrating individual postoperative connectivity profiles. The large-scale differences in networks of the preserved hemisphere potentially reflect plasticity in the service of maintained and/or retained cognitive function.
Collapse
Affiliation(s)
- Sophia Robert
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
| | - Michael C. Granovetter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
- School of Medicine, University of Pittsburgh, Pittsburgh, PA15213
| | - Christina Patterson
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh, Pittsburgh, PA15213
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
- The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA15213
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| |
Collapse
|
20
|
Norman LJ, Hartley T, Thaler L. Changes in primary visual and auditory cortex of blind and sighted adults following 10 weeks of click-based echolocation training. Cereb Cortex 2024; 34:bhae239. [PMID: 38897817 PMCID: PMC11186672 DOI: 10.1093/cercor/bhae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Recent work suggests that the adult human brain is very adaptable when it comes to sensory processing. In this context, it has also been suggested that structural "blueprints" may fundamentally constrain neuroplastic change, e.g. in response to sensory deprivation. Here, we trained 12 blind participants and 14 sighted participants in echolocation over a 10-week period, and used MRI in a pre-post design to measure functional and structural brain changes. We found that blind participants and sighted participants together showed a training-induced increase in activation in left and right V1 in response to echoes, a finding difficult to reconcile with the view that sensory cortex is strictly organized by modality. Further, blind participants and sighted participants showed a training induced increase in activation in right A1 in response to sounds per se (i.e. not echo-specific), and this was accompanied by an increase in gray matter density in right A1 in blind participants and in adjacent acoustic areas in sighted participants. The similarity in functional results between sighted participants and blind participants is consistent with the idea that reorganization may be governed by similar principles in the two groups, yet our structural analyses also showed differences between the groups suggesting that a more nuanced view may be required.
Collapse
Affiliation(s)
- Liam J Norman
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Tom Hartley
- Department of Psychology and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Lore Thaler
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
21
|
Frank SM. Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. Neuroscientist 2024:10738584241256277. [PMID: 38813891 DOI: 10.1177/10738584241256277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Downey JE, Schone HR, Foldes ST, Greenspon C, Liu F, Verbaarschot C, Biro D, Satzer D, Moon CH, Coffman BA, Youssofzadeh V, Fields D, Hobbs TG, Okorokova E, Tyler-Kabara EC, Warnke PC, Gonzalez-Martinez J, Hatsopoulos NG, Bensmaia SJ, Boninger ML, Gaunt RA, Collinger JL. A roadmap for implanting microelectrode arrays to evoke tactile sensations through intracortical microstimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306239. [PMID: 38712177 PMCID: PMC11071570 DOI: 10.1101/2024.04.26.24306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other brain-computer interface studies to ensure successful placement of stimulation electrodes.
Collapse
Affiliation(s)
- John E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Hunter R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Stephen T Foldes
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Charles Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Fang Liu
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Daniel Biro
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Taylor G Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Elizaveta Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | | | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computation Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computation Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
24
|
Tilton-Bolowsky V, Stockbridge MD, Hillis AE. Remapping and Reconnecting the Language Network after Stroke. Brain Sci 2024; 14:419. [PMID: 38790398 PMCID: PMC11117613 DOI: 10.3390/brainsci14050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Here, we review the literature on neurotypical individuals and individuals with post-stroke aphasia showing that right-hemisphere regions homologous to language network and other regions, like the right cerebellum, are activated in language tasks and support language even in healthy people. We propose that language recovery in post-stroke aphasia occurs largely by potentiating the right hemisphere network homologous to the language network and other networks that previously supported language to a lesser degree and by modulating connection strength between nodes of the right-hemisphere language network and undamaged nodes of the left-hemisphere language network. Based on this premise (supported by evidence we review), we propose that interventions should be aimed at potentiating the right-hemisphere language network through Hebbian learning or by augmenting connections between network nodes through neuroplasticity, such as non-invasive brain stimulation and perhaps modulation of neurotransmitters involved in neuroplasticity. We review aphasia treatment studies that have taken this approach. We conclude that further aphasia rehabilitation with this aim is justified.
Collapse
Affiliation(s)
| | | | - Argye E. Hillis
- Departments of Neurology, Physical Medicine & Rehabilitation, and Cognitive Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.T.-B.); (M.D.S.)
| |
Collapse
|
25
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Lee GM, Rodríguez-Deliz CL, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Developmentally stable representations of naturalistic image structure in macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581889. [PMID: 38463955 PMCID: PMC10925106 DOI: 10.1101/2024.02.24.581889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We studied visual development in macaque monkeys using texture stimuli, matched in local spectral content but varying in "naturalistic" structure. In adult monkeys, naturalistic textures preferentially drive neurons in areas V2 and V4, but not V1. We paired behavioral measurements of naturalness sensitivity with separately-obtained neuronal population recordings from neurons in areas V1, V2, V4, and inferotemporal cortex (IT). We made behavioral measurements from 16 weeks of age and physiological measurements as early as 20 weeks, and continued through 56 weeks. Behavioral sensitivity reached half of maximum at roughly 25 weeks of age. Neural sensitivities remained stable from the earliest ages tested. As in adults, neural sensitivity to naturalistic structure increased from V1 to V2 to V4. While sensitivities in V2 and IT were similar, the dimensionality of the IT representation was more similar to V4's than to V2's.
Collapse
Affiliation(s)
- Gerick M. Lee
- Center for Neural Science New York University New York, NY, USA 10003
| | | | | | - Najib J. Majaj
- Center for Neural Science New York University New York, NY, USA 10003
| | | | - Lynne Kiorpes
- Center for Neural Science New York University New York, NY, USA 10003
| |
Collapse
|
27
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
28
|
Baffour-Awuah KA, Bridge H, Engward H, MacKinnon RC, Ip IB, Jolly JK. The missing pieces: an investigation into the parallels between Charles Bonnet, phantom limb and tinnitus syndromes. Ther Adv Ophthalmol 2024; 16:25158414241302065. [PMID: 39649951 PMCID: PMC11624543 DOI: 10.1177/25158414241302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Charles Bonnet syndrome (CBS) is a condition characterised by visual hallucinations of varying complexity on a background of vision loss. CBS research has gained popularity only in recent decades, despite evidence dating back to 1760. Knowledge of CBS among both the patient and professional populations unfortunately remains poor, and little is known of its underlying pathophysiology. CBS parallels two other better-known conditions that occur as a result of sensory loss: phantom limb syndrome (PLS) (aberrant sensation of the presence of a missing limb) and tinnitus (aberrant sensation of sound). As 'phantom' conditions, CBS, PLS and tinnitus share sensory loss as a precipitating factor, and, as subjective perceptual phenomena, face similar challenges to investigations. Thus far, these conditions have been studied separately from each other. This review aims to bridge the conceptual gap between CBS, PLS and tinnitus and seek common lessons between them. It considers the current knowledge base of CBS and explores the extent to which an understanding of PLS and tinnitus could provide valuable insights into the pathology of CBS (including the roles of cortical reorganisation, emotional and cognitive factors), and towards identifying effective potential management for CBS.
Collapse
Affiliation(s)
- Kwame A. Baffour-Awuah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Holly Bridge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hilary Engward
- Veterans and Families Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert C. MacKinnon
- School of Psychology, Sports and Sensory Sciences, Anglia Ruskin University, Cambridge, UK
| | - I. Betina Ip
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK
| |
Collapse
|
29
|
Schone HR, Maimon Mor RO, Kollamkulam M, Gerrand C, Woollard A, Kang NV, Baker CI, Makin TR. Stable Cortical Body Maps Before and After Arm Amputation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571314. [PMID: 38168448 PMCID: PMC10760201 DOI: 10.1101/2023.12.13.571314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neuroscientists have long debated the adult brain's capacity to reorganize itself in response to injury. A driving model for studying plasticity has been limb amputation. For decades, it was believed that amputation triggers large-scale reorganization of cortical body resources. However, these studies have relied on cross-sectional observations post-amputation, without directly tracking neural changes. Here, we longitudinally followed adult patients with planned arm amputations and measured hand and face representations, before and after amputation. By interrogating the representational structure elicited from movements of the hand (pre-amputation) and phantom hand (post-amputation), we demonstrate that hand representation is unaltered. Further, we observed no evidence for lower face (lip) reorganization into the deprived hand region. Collectively, our findings provide direct and decisive evidence that amputation does not trigger large-scale cortical reorganization.
Collapse
Affiliation(s)
- Hunter R. Schone
- Institute of Cognitive Neuroscience, University College London, London, UK
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roni O. Maimon Mor
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Mathew Kollamkulam
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | | | - Norbert V. Kang
- Plastic Surgery Department, Royal Free Hospital NHS Trust, London, UK
| | - Chris I. Baker
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|