1
|
Gadzhiev A, Petherbridge G, Sharshov K, Sobolev I, Alekseev A, Gulyaeva M, Litvinov K, Boltunov I, Teymurov A, Zhigalin A, Daudova M, Shestopalov A. Pinnipeds and avian influenza: a global timeline and review of research on the impact of highly pathogenic avian influenza on pinniped populations with particular reference to the endangered Caspian seal ( Pusa caspica). Front Cell Infect Microbiol 2024; 14:1325977. [PMID: 39071164 PMCID: PMC11273096 DOI: 10.3389/fcimb.2024.1325977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study reviews chronologically the international scientific and health management literature and resources relating to impacts of highly pathogenic avian influenza (HPAI) viruses on pinnipeds in order to reinforce strategies for the conservation of the endangered Caspian seal (Pusa caspica), currently under threat from the HPAI H5N1 subtype transmitted from infected avifauna which share its haul-out habitats. Many cases of mass pinniped deaths globally have occurred from HPAI spill-overs, and are attributed to infected sympatric aquatic avifauna. As the seasonal migrations of Caspian seals provide occasions for contact with viruses from infected migratory aquatic birds in many locations around the Caspian Sea, this poses a great challenge to seal conservation. These are thus critical locations for the surveillance of highly pathogenic influenza A viruses, whose future reassortments may present a pandemic threat to humans.
Collapse
Affiliation(s)
- Alimurad Gadzhiev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Guy Petherbridge
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Caspian Centre for Nature Conservation, International Institute of Ecology and Sustainable Development, Association of Universities and Research Centers of Caspian Region States, Makhachkala, Russia
| | - Kirill Sharshov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan Sobolev
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Alekseev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina Gulyaeva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Litvinov
- Laboratory of Ecological and Biological Research, Astrakhan State Nature Biosphere Reserve, Astrakhan, Russia
| | - Ivan Boltunov
- Department of Vertebrate Zoology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Abdulgamid Teymurov
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Zhigalin
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Madina Daudova
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Shestopalov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Lee LKF, Hipfner JM, Frankfurter G, Cray C, Pearson SF, Fiorello C, Clyde NMT, Hudson SA, Parker SE, Stallknecht DE, Furst E, Haman KH. Baseline health parameters of rhinoceros auklets ( Cerorhinca monocerata) using serum protein electrophoresis, acute phase proteins, and biochemistry. Front Vet Sci 2024; 11:1379980. [PMID: 38983768 PMCID: PMC11231077 DOI: 10.3389/fvets.2024.1379980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
Clinical metrics of baseline health in sentinel seabird species can offer insight into marine ecosystem dynamics, individual and population health, and assist in wildlife rehabilitation and conservation efforts. Protein electrophoresis is useful for detecting changes in acute phase proteins and immunoglobulin levels that may indicate subtle inflammatory responses and/or infectious disease. Serum biochemistry can highlight nutritional status, metabolic derangements, and organ injury and function. However, baseline values for such health parameters are largely unknown for many seabird species. Therefore, the objective of this study is to establish baseline clinical health reference intervals for serum protein electrophoresis, acute phase proteins including serum amyloid A and haptoglobin, and biochemistry parameters in the rhinoceros auklet (Cerorhinca monocerata), a key sentinel species in the North Pacific. From 2013 to 2019, 178 wild, apparently healthy breeding adult rhinoceros auklets were captured across four breeding colonies in British Columbia, Canada (Lucy Island, Pine Island, Triangle Islands, and SGang Gwaay) and from one colony in Washington, United States (Protection Island). Reference intervals were calculated for protein electrophoresis fractions and acute phase proteins (n = 163), and serum biochemistry (n = 35) following established guidelines by the American Society of Veterinary Clinical Pathology. Animals were also assessed for the presence of antibodies to the influenza A virus. Approximately 48% (70/147) of sampled birds were seropositive for influenza A virus, with a prevalence of 50% (6/12) in 2013, 75% (47/63) in 2014, and 24% (17/72) in 2019. This work provides clinical baseline health metrics of a key North Pacific sentinel species to help inform marine ecosystem monitoring, recovery, and rehabilitation efforts in the Pacific Northwest.
Collapse
Affiliation(s)
- Lisa K F Lee
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Mark Hipfner
- Wildlife Research Division, Environment and Climate Change Canada, Delta, BC, Canada
| | - Greg Frankfurter
- School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, Davis, CA, United States
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, Miami, FL, United States
| | - Scott F Pearson
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | | | - Nikolas M T Clyde
- Wildlife Research Division, Environment and Climate Change Canada, Delta, BC, Canada
| | - Sarah A Hudson
- Wildlife Research Division, Environment and Climate Change Canada, Delta, BC, Canada
| | - Sarah E Parker
- Centre for Applied Epidemiology, Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David E Stallknecht
- Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Katherine H Haman
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| |
Collapse
|
3
|
Gass JD, Kellogg HK, Hill NJ, Puryear WB, Nutter FB, Runstadler JA. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022; 14:1531. [PMID: 35891510 PMCID: PMC9315492 DOI: 10.3390/v14071531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been detected in multiple wildlife species in all Arctic regions, including seabirds, shorebirds, waterfowl, seals, sea lions, whales, and terrestrial mammals, and in the environment. Isolates from wild birds comprise the majority of documented viruses derived from wildlife; however, among all animals and environmental matrices, 26 unique low and highly pathogenic subtypes have been characterized in the scientific literature from Arctic regions. Pooled prevalence across studies indicates 4.23% for wild birds, 3.42% among tested environmental matrices, and seroprevalences of 9.29% and 1.69% among marine and terrestrial mammals, respectively. Surveillance data are geographically biased, with most data from the Alaskan Arctic and many fewer reports from the Russian, Canadian, North Atlantic, and Western European Arctic. We highlight multiple important aspects of wildlife host, pathogen, and environmental ecology of IAVs in Arctic regions, including the role of avian migration and breeding cycles for the global spread of IAVs, evidence of inter-species and inter-continental reassortment at high latitudes, and how climate change-driven ecosystem shifts, including changes in the seasonal availability and distribution of dietary resources, have the potential to alter host-pathogen-environment dynamics in Arctic regions. We conclude by identifying gaps in knowledge and propose priorities for future research.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Hunter K. Kellogg
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| |
Collapse
|
4
|
ANTIBODIES AGAINST INFLUENZA VIRUS TYPES A AND B IN CANADIAN SEALS. J Wildl Dis 2021; 57:808-819. [PMID: 34410421 DOI: 10.7589/jwd-d-20-00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Influenza viruses have been reported from marine mammals worldwide, particularly in pinnipeds, and have caused mass mortalities of seals in North America and Europe. Because influenza viruses in marine mammals can be zoonotic, our objective was to examine Canadian phocids for exposure to influenza A and B viruses in order to understand health risks to wild populations as well as to humans who consume or handle these animals. Blood was collected from 394 seals in eastern Canada from 1994 to 2005. Sera were screened for exposure to influenza viruses in three resident species of seals: harbour, Phoca vitulina (n=66); grey, Halichoerus grypus (n=82); ringed, Phoca hispida (n=2); and two migrant species: harp, Pagophilus groenlandica (n=206) and hooded, Cystophora cristata (n=38). Included were samples from captive grey (n=1) and harbour seals (n=8) at two aquaria. Sera were prescreened using indirect enzyme-linked immunosorbent assay (ELISA), and antibodies against influenza A virus were confirmed using a commercial competitive ELISA (IDEXX Europe B.V.). A subset of influenza A virus positive sera was used to determine common virus subtypes recognized by sera using reference strains. All positive sera in the indirect ELISA reacted with influenza A virus subtypes H3, H4, and H10 using a hemagglutination inhibition assay. Sera from harbour, grey, harp, and hooded seals had antibodies against influenza A and influenza B viruses (some cross-reactivity occurred). Overall, 33% (128/385) of wild seals were seropositive to influenza viruses, with the highest seroprevalence in harp (42%) followed by harbour (33%), grey (23%), and hooded (11%) seals. Antibodies were detected in both sexes and most age classes of wild seals. Two of eight captive harbour seals were seropositive to influenza B virus and four had cross-reactions to influenza A and B viruses. This study reports antibodies against influenza A and B viruses in four seal species from the same geographic area in eastern Canada.
Collapse
|
5
|
Ramey AM, Reeves AB. Ecology of Influenza A Viruses in Wild Birds and Wetlands of Alaska. Avian Dis 2020; 64:109-122. [PMID: 32550610 DOI: 10.1637/0005-2086-64.2.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 11/05/2022]
Abstract
Alaska represents a globally important region for the ecology of avian-origin influenza A viruses (IAVs) given the expansive wetlands in this region, which serve as habitat for numerous hosts of IAVs that disperse among four continents during the annual cycle. Extensive sampling of wild birds for IAVs in Alaska since 1991 has greatly extended inference regarding intercontinental viral exchange between North America and East Asia and the importance of Beringian endemic species to IAV ecology within this region. Data on IAVs in aquatic birds inhabiting Alaska have also been useful for helping to establish global patterns of prevalence in wild birds and viral dispersal across the landscape. In this review, we summarize the main findings from investigations of IAVs in wild birds and wetlands of Alaska with the aim of providing readers with an understanding of viral ecology within this region. More specifically, we review viral detections, evidence of IAV exposure, and genetic characterization of isolates derived from wild bird samples collected in Alaska by host taxonomy. Additionally, we provide a short overview of wetland complexes within Alaska that may be important to IAV ecology at the continental scale.
Collapse
Affiliation(s)
- Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508,
| | - Andrew B Reeves
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508
| |
Collapse
|
6
|
Canuti M, Munro HJ, Robertson GJ, Kroyer ANK, Roul S, Ojkic D, Whitney HG, Lang AS. New Insight Into Avian Papillomavirus Ecology and Evolution From Characterization of Novel Wild Bird Papillomaviruses. Front Microbiol 2019; 10:701. [PMID: 31031718 PMCID: PMC6473165 DOI: 10.3389/fmicb.2019.00701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
Viruses in the family Papillomaviridae have circular dsDNA genomes of approximately 5.7–8.6 kb that are packaged within non-enveloped, icosahedral capsids. The known papillomavirus (PV) representatives infect vertebrates, and there are currently more than 130 recognized PV species in more than 50 genera. We identified 12 novel avian papillomavirus (APV) types in wild birds that could represent five distinct species and two genera. Viruses were detected in paired oropharyngeal/cloacal swabs collected from six bird species, increasing the number of avian species known to harbor PVs by 40%. A new duck PV (DuPV-3) was found in mallard and American black duck (27.6% estimated prevalence) that was monophyletic with other known DuPVs. A single viral type was identified in Atlantic puffin (PuPV-1, 9.8% estimated prevalence), while a higher genetic diversity was found in other Charadriiformes. Specifically, three types [gull PV-1 (GuPV-1), -2, and -3] were identified in two gull species (estimated prevalence of 17% and 2.6% in American herring and great black-backed gull, respectively), and seven types [kittiwake PV-1 (KiPV-1) through -7] were found in black-legged kittiwake (81.3% estimated prevalence). Significantly higher DuPV-3 circulation was observed in spring compared to fall and in adults compared to juveniles. The studied host species’ tendencies to be in crowded environments likely affect infection rates and their migratory behaviors could explain the high viral diversity, illustrating how host behavior can influence viral ecology and distribution. For DuPV-3, GuPV-1, PuPV-1, and KiPV-2, we obtained the complete genomic sequences, which showed the same organization as other known APVs. Phylogenetic analyses showed evidence for virus–host co-divergence at the host taxonomic levels of family, order, and inter-order, but we also observed that host-specificity constraints are relaxed among highly related hosts as we found cross-species transmission within ducks and within gulls. Furthermore, the phylogeny of viruses infecting the Charadriiformes did not match the host phylogeny and gull viruses formed distinct monophyletic clades with kittiwake viruses, possibly reflecting past host-switching events. Considering the vast PV genotype diversity in other hosts and the large number of bird species, many more APVs likely remain to be discovered.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hannah J Munro
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sheena Roul
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
7
|
Wille M, Yin H, Lundkvist Å, Xu J, Muradrasoli S, Järhult JD. RNAlater ® is a viable storage option for avian influenza sampling in logistically challenging conditions. J Virol Methods 2017; 252:32-36. [PMID: 29129490 DOI: 10.1016/j.jviromet.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Surveillance of wild birds is critical in monitoring for highly pathogenic avian influenza A viruses (AIVs). However, a successful surveillance regime requires proper treatment of samples in the field - rapid placement of samples in -80°C and subsequent maintenance of cold-chain. Given the logistical difficulties of this, many avian taxa and/or geographic locations are not sampled, or, when sampled may result in false negatives due to poor sample treatment in the field. Here, we assessed the utility of RNAlater® as a stabilization agent for AIV sampling. We found no difference in real time PCR performance between virus transport media at optimal conditions and RNAlater® at -80°C, -20°C, 4°C or room temperature up to two weeks, at either low or high virus load. Not only was RNAlater® useful in comparison of spiked samples or those from duck experiments, it was employed successfully in a field study of backyard birds in China. We detected AIV in cloacal and oropharyngeal samples from chickens and a sample with a low Cq was successfully subtyped as H9, although sample storage conditions were suboptimal. Thus, despite limitations in downstream characterization such virus isolation and typing, RNAlater® is a viable option for AIV sampling under logistically challenging circumstances.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Hong Yin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Dalarna County, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Xu
- Xuanwu Hospital, Capital Medical University, China
| | - Shaman Muradrasoli
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Hartby CM, Krog JS, Merkel F, Holm E, Larsen LE, Hjulsager CK. First Characterization of Avian Influenza Viruses from Greenland 2014. Avian Dis 2017; 60:302-10. [PMID: 27309071 DOI: 10.1637/11119-050515-regr] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In late February 2014, unusually high numbers of wild thick-billed murres (Uria lomvia) were found dead on the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examination in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and low pathogenic H5N1 were detected in some of the birds. Characterization of the viruses by full genome sequencing revealed that all the gene segments belonged to the North American lineage of AIVs. The seemingly sparse and mixed subtype occurrence of low pathogenic AIVs in these birds, in addition to the emaciated appearance of the birds, suggests that the murre die-off was due to malnutrition as a result of sparse food availability or inclement weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland may be involved in the movement of AIV between North America and Europe.
Collapse
Affiliation(s)
- Christina Marie Hartby
- National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark
| | - Jesper Schak Krog
- National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark
| | - Flemming Merkel
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland.,Arctic Environment, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Elisabeth Holm
- National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark
| | - Lars Erik Larsen
- National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark
| | | |
Collapse
|
9
|
Lang AS, Lebarbenchon C, Ramey AM, Robertson GJ, Waldenström J, Wille M. Assessing the Role of Seabirds in the Ecology of Influenza A Viruses. Avian Dis 2016; 60:378-86. [DOI: 10.1637/11135-050815-regr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew S. Lang
- Department of Biology, Memorial University, St. John’s, NL, A1B 3X9, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Reunion Island
| | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center, 4210 University Drive, Anchorage, AK 99508
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, 6 Bruce St., Mount Pearl, NL, A1N 4T3, Canada
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
10
|
Reeves AB, Poulson RL, Muzyka D, Ogawa H, Imai K, Bui VN, Hall JS, Pantin-Jackwood M, Stallknecht DE, Ramey AM. Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds. INFECTION GENETICS AND EVOLUTION 2016; 40:104-108. [PMID: 26925702 DOI: 10.1016/j.meegid.2016.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study.
Collapse
Affiliation(s)
- Andrew B Reeves
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA.
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Denys Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Pushkinska Street 83, 61023, Kharkiv, Ukraine
| | - Haruko Ogawa
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Kunitoshi Imai
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Vuong Nghia Bui
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Jeffrey S Hall
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, Georgia 30677, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA.
| |
Collapse
|
11
|
Huang Y, Robertson GJ, Ojkic D, Whitney H, Lang AS. Diverse inter-continental and host lineage reassortant avian influenza A viruses in pelagic seabirds. INFECTION GENETICS AND EVOLUTION 2014; 22:103-11. [PMID: 24462905 DOI: 10.1016/j.meegid.2014.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022]
Abstract
Avian influenza A viruses (AIVs) often infect waterfowl, gulls and shorebirds, but other bird groups including pelagic seabirds also serve as hosts. In this study, we analyzed 21 AIVs found in two distant breeding colonies of Common Murre (Uria aalge) in Newfoundland and Labrador, Canada, during 2011. Phylogenetic analyses and genotype assignments were performed for the 21 Common Murre viruses together with all Common and Thick-billed Murre (Uria lomvia) AIV sequences available in public sequence databases. All fully characterized viruses from the Common Murres in 2011 were H1N2 subtype, but the genome sequences revealed greater diversity and the viruses belonged to four distinct genotypes. The four genotypes shared most segments in common, but reassortment was observed for PB2 and M segments. This provided direct genetic data of AIV diversification through segment reassortment during an outbreak of AIV infection in high-density breeding colonies. Analysis of the total collection of available murre viruses revealed a diverse collection of subtypes and gene lineages with high similarity to those found in viruses from waterfowl and gulls, and there was no indication of murre-specific AIV gene lineages. Overall, the virus gene pool in murres was predominantly made up of AIV lineages associated with waterfowl, but also featured considerable gull lineage genes and inter-continental reassortments. In particular, all but one of the 21 Common Murre viruses from 2011 in Newfoundland contained 1 or 2 Eurasian segments and 16 contained 1 gull lineage segment. This mosaic nature of characterized murre AIV genomes might reflect an under-recognized role of these pelagic seabirds in virus transmission across space and between bird host taxa.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Gregory J Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, NL A1N 4T3, Canada.
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Hugh Whitney
- Newfoundland and Labrador Department of Natural Resources, St. John's, NL A1E 3Y5, Canada.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|