1
|
Paietta EN, Kraberger S, Regney M, Custer JM, Ehmke E, Yoder AD, Varsani A. Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs ( Varecia rubra). Viruses 2023; 16:37. [PMID: 38257737 PMCID: PMC10818365 DOI: 10.3390/v16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages, particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types -1 and -2, the first PVs in lemurs with a fully identified genome, were previously characterized from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra by VavPV2. This work represents the first reported case of interspecies PV infection amongst the strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs. Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1). VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple genera, sample type, geographic location, and wild populations) is likely to uncover a world of diverse lemur PVs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Melanie Regney
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Erin Ehmke
- Duke Lemur Center, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Kaynarcalidan O, Oğuzoğlu TÇ. The oncogenic pathways of papillomaviruses. Vet Comp Oncol 2020; 19:7-16. [PMID: 33084187 DOI: 10.1111/vco.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Papillomaviruses are oncogenic DNA viruses and induce hyperplastic benign lesions of both cutaneous and mucosal tissues in their various hosts, including many domestic and wild animals as well as humans. There are some Papillomavirus genotypes that can infect hosts different from their own, such as BPV 1 and BPV 2 originated from cattle, which can also infect horses and are responsible for fibroblastic tumours in horses. This review article summarizes the origin and evolution of papillomaviruses as an etiological agent in the historical process. The main focus in this review is the evaluation of the interactions between high-risk papillomavirus oncoproteins and programmed cell-death pathways. It further exemplifies the role of these interactions in the malignant cell transformation process. In parallel with this, the use and importance of the bovine model system to enlighten the papillomavirus-associated cancers is discussed with an in-depth examination. Furthermore, it focuses on the epidemiological situation of BPV infections in Turkey in the cattle herds.
Collapse
Affiliation(s)
- Onur Kaynarcalidan
- Institute for Virology Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Szabo Z, Reavill DR, Kiupel M. SQUAMOUS CELL CARCINOMA IN CHINCHILLAS: A REVIEW OF THREE CASES. J Exot Pet Med 2019. [DOI: 10.1053/j.jepm.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Escudero Duch C, Williams RAJ, Timm RM, Perez-Tris J, Benitez L. A Century of Shope Papillomavirus in Museum Rabbit Specimens. PLoS One 2015; 10:e0132172. [PMID: 26147570 PMCID: PMC4493010 DOI: 10.1371/journal.pone.0132172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Sylvilagus floridanus Papillomavirus (SfPV) causes growth of large horn-like tumors on rabbits. SfPV was described in cottontail rabbits (probably Sylvilagus floridanus) from Kansas and Iowa by Richard Shope in 1933, and detected in S. audubonii in 2011. It is known almost exclusively from the US Midwest. We explored the University of Kansas Natural History Museum for historical museum specimens infected with SfPV, using molecular techniques, to assess if additional wild species host SfPV, and whether SfPV occurs throughout the host range, or just in the Midwest. Secondary aims were to detect distinct strains, and evidence for strain spatio-temporal specificity. We found 20 of 1395 rabbits in the KU collection SfPV symptomatic. Three of 17 lagomorph species (S. nuttallii, and the two known hosts) were symptomatic, while Brachylagus, Lepus and eight additional Sylvilagus species were not. 13 symptomatic individuals were positive by molecular testing, including the first S. nuttallii detection. Prevalence of symptomatic individuals was significantly higher in Sylvilagus (1.8%) than Lepus. Half of these specimens came from Kansas, though new molecular detections were obtained from Jalisco—Mexico’s first—and Nebraska, Nevada, New Mexico, and Texas, USA. We document the oldest lab-confirmed case (Kansas, 1915), pre-dating Shope’s first case. SfPV amplification was possible from 63.2% of symptomatic museum specimens. Using multiple methodologies, rolling circle amplification and, multiple isothermal displacement amplification in addition to PCR, greatly improved detection rates. Short sequences were obtained from six individuals for two genes. L1 gene sequences were identical to all previously detected sequences; E7 gene sequences, were more variable, yielding five distinct SfPV1 strains that differing by less than 2% from strains circulating in the Midwest and Mexico, between 1915 and 2005. Our results do not clarify whether strains are host species specific, though they are consistent with SfPV specificity to genus Sylvilagus.
Collapse
Affiliation(s)
- Clara Escudero Duch
- Department of Microbiology III, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Richard A. J. Williams
- Department of Zoology and Physical Anthropology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
- Natural Sciences, Saint Louis University, Madrid, Spain
- Department of Ecology and Evolutionary Biology & Natural History Museum, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Robert M. Timm
- Department of Ecology and Evolutionary Biology & Natural History Museum, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Javier Perez-Tris
- Department of Zoology and Physical Anthropology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Benitez
- Department of Microbiology III, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Root JJ, Shriner SA, Bentler KT, Gidlewski T, Mooers NL, Spraker TR, VanDalen KK, Sullivan HJ, Franklin AB. Shedding of a low pathogenic avian influenza virus in a common synanthropic mammal--the cottontail rabbit. PLoS One 2014; 9:e102513. [PMID: 25111780 PMCID: PMC4128595 DOI: 10.1371/journal.pone.0102513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cottontails (Sylvilagus spp.) are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV) infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations. METHODOLOGY/PRINCIPAL FINDINGS To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6). All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤ 10(6.94) PCR EID50 equivalents/mL) and orally (≤ 10(5.09) PCR EID50 equivalents/mL). However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera. CONCLUSIONS/SIGNIFICANCE To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances.
Collapse
Affiliation(s)
- J. Jeffrey Root
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Susan A. Shriner
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Kevin T. Bentler
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Thomas Gidlewski
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Nicole L. Mooers
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Terry R. Spraker
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kaci K. VanDalen
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Heather J. Sullivan
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Alan B. Franklin
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|