1
|
Khandani Y, Sarikhani H, Gholami M, Chehregani Rad A, Shirani Bidabadi S. Alteration in certain growth, biochemical, and anatomical indices of grapevine ( Vitis vinifera) in response to the foliar application of auxin under water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24059. [PMID: 39388429 DOI: 10.1071/fp24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.
Collapse
Affiliation(s)
- Yaser Khandani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
2
|
Skoczyńska AK, Gładysz AK, Stępniak J, Karbownik-Lewińska M. Indole-3-Butyric Acid, a Natural Auxin, Protects against Fenton Reaction-Induced Oxidative Damage in Porcine Thyroid. Nutrients 2024; 16:3010. [PMID: 39275325 PMCID: PMC11397436 DOI: 10.3390/nu16173010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
We present results on the potential protective antioxidant properties of indole-3-butyric acid. Indole-3-butyric acid is an indole derivative defined as an auxin and widely known as a plant growth regulator. It naturally occurs in Arabidopsis thaliana, which is applied as a model plant in genetic studies. Oxidative damage to membrane lipids (lipid peroxidation; LPO) in porcine thyroid homogenates was induced by Fenton reaction substrates (Fe2+ + H2O2). Iron (Fe2+) was used in very high concentrations of 1200, 600, 300, 150, 75, 37.5, 18.75, 9.375, 4.687, and 2.343 µM. Indole-3-butyric acid (10.0, 5.0, 2.5, 1.25, and 0.625 mM) was applied to check whether it prevents the above process. The LPO level, expressed as malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration, was measured spectrophotometrically. Expectedly, Fenton reaction substrates, in a Fe2+ concentration-dependent manner, increased LPO level, with the lowest effective concentration of iron being 9.375 µM. In the case of almost all concentrations of indole-3-butyric acid, this auxin has exhibited very promising antioxidant protection, with the most effective concentrations being 10.0 and 5.0 mM; however, as low concentrations of indole-3-butyric acid at 1.25 mM was still effective. Indole-3-butyric acid used alone did not change the basal level of LPO, which is a favourable effect. To summarise, indole-3-butyric acid has protective antioxidant properties against experimentally induced oxidative damage to membrane lipids in the thyroid, and this is for the first time documented in the literature. This compound can be considered a natural protective agent present in plants, which can serve as a dietary nutrient.
Collapse
Affiliation(s)
- Anna K Skoczyńska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Aleksandra K Gładysz
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
3
|
Wang LX, Wang YH, Chen C, Liu JX, Li T, Li JW, Liu PZ, Xu DB, Shu S, Xiong AS. Advances in research on the main nutritional quality of daylily, an important flower vegetable of Liliaceae. PeerJ 2024; 12:e17802. [PMID: 39131608 PMCID: PMC11316465 DOI: 10.7717/peerj.17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Daylily (Hemerocallis citrina) is a perennial herb of the genus Hemerocallis of Liliaceae. It is also an economically important crop and is widely cultivated. Daylily has nutritional, medicinal and ornamental values. The research literature shows that daylily is a high-quality food raw material rich in soluble sugars, ascorbic acid, flavonoids, dietary fiber, carotenoids, mineral elements, polyphenols and other nutrients, which are effective in clearing heat and diuresis, resolving bruises and stopping bleeding, strengthening the stomach and brain, and reducing serum cholesterol levels. This article reviews the main nutrients of daylily and summarizes the drying process of daylily. In addition, due to the existence of active ingredients, daylily also has a variety of biological activities that are beneficial to human health. This article also highlights the nutritional quality of daylily, the research progress of dried vegetable rehydration technology and dried daylily. In the end, the undeveloped molecular mechanism and functional research status of daylily worldwide are introduced in order to provide reference for the nutritional quality research and dried processing industry of daylily.
Collapse
Affiliation(s)
- Li-Xiang Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ya-Hui Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jing-Wen Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Pei-Zhuo Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - De-Bao Xu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Sheng Shu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ai-Sheng Xiong
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Wang Y, Wang Q, Zhang F, Han C, Li W, Ren M, Wang Y, Qi K, Xie Z, Zhang S, Tao S. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112103. [PMID: 38657909 DOI: 10.1016/j.plantsci.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.
Collapse
Affiliation(s)
- Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Khodaeiaminjan M, Gomes C, Pagano A, Kruszka D, Sulima P, Przyborowski JA, Krajewski P, Paiva JAP. Impacts of in-vitro zebularine treatment on genome-wide DNA methylation and transcriptomic profiles in Salix purpurea L. PHYSIOLOGIA PLANTARUM 2024; 176:e14403. [PMID: 38923551 DOI: 10.1111/ppl.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Renewable energy resources such as biomass are crucial for a sustainable global society. Trees are a major source of lignocellulosic biomass, which can vary in response to different environmental factors owing to epigenetic regulation, such as DNA C-methylation. To investigate the effects of DNA methylation on plant development and wood formation, and its impacts on gene expression, with a focus on secondary cell wall (SCW)-associated genes, Salix purpurea plantlets were cloned from buds derived from a single hybrid tree for both treatment and control conditions. For the treatment condition, buds were exposed to 50 μM zebularine in vitro and a combined strategy of whole-genome bisulfite sequencing (WGBS) and RNA-seq was employed to examine the methylome and transcriptome profiles of different tissues collected at various time points under both conditions. Transcriptomic and methylome data revealed that most of the promoter and gene body demethylation had no marked effects on the expression profiles of genes. Nevertheless, gene expression tended to decrease with the increased methylation levels of genes with highly methylated promoters. Results indicated that demethylation is less evident in centromeric regions and sex chromosomes. Promoters of secondary cell wall-associated genes, such as 4-coumarate-CoA ligase-like and Rac-like GTP-binding protein RHO, were differentially methylated in the secondary xylem samples collected from two-month potted treated plants compared to control samples. Our results provide novel insights into DNA methylation and gene expression landscapes and a basis for investigating the epigenetic regulation of wood formation in S. purpurea as a model plant for bioenergy species.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Dariusz Kruszka
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Jorge Almiro Pinto Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
7
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Koirala M, Cristine Goncalves Dos Santos K, Gélinas SE, Ricard S, Karimzadegan V, Lamichhane B, Sameera Liyanage N, Merindol N, Desgagné-Penix I. Auxin and light-mediated regulation of growth, morphogenesis, and alkaloid biosynthesis in Crinum x powellii 'Album' callus. PHYTOCHEMISTRY 2023; 216:113883. [PMID: 37820888 DOI: 10.1016/j.phytochem.2023.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Crinum x powellii 'Album' belongs to the Amaryllidaceae medicinal plant family that produces a range of structurally diverse alkaloids with potential therapeutic properties. The optimal conditions for in vitro tissue growth, morphogenesis, and alkaloid biosynthesis remain unclear. Auxin and light play critical roles in regulating plant growth, development, and alkaloid biosynthesis in several Amaryllidaceae plants. Here, we have succeeded in showing, for the first time, that the combination of auxin and light significantly influence C. x powellii "Album" in vitro tissue growth, survival, and morphogenesis compared to individual treatments. Furthermore, this combination also upregulates the expression of alkaloid biosynthetic genes and led to an increase in the content of certain alkaloids, suggesting a positive impact on the defense and therapeutic potential of the calli. Our findings provide insights into the regulation of genes involved in alkaloid biosynthesis in C. x powellii "Album" callus and underline the potential of auxin and light as tools for enhancing their production in plants. This study provides a foundation for further exploration of C. x powellii "Album" calli as a sustainable source of bioactive alkaloids for pharmaceutical and agricultural applications. Furthermore, this study paves the way to the discovery of the biosynthetic pathway of specialized metabolites from C. x powellii "Album", such as cherylline and lycorine.
Collapse
Affiliation(s)
- Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Simon Ricard
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Vahid Karimzadegan
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Basanta Lamichhane
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Plant Biology Research Group, Trois-Rivières, Québec, Canada.
| |
Collapse
|
9
|
Šípošová K, Labancová E, Hačkuličová D, Kollárová K, Vivodová Z. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87102-87117. [PMID: 37418187 PMCID: PMC10406670 DOI: 10.1007/s11356-023-28029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/28/2023] [Indexed: 07/08/2023]
Abstract
Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly. This paper investigates the changes in the anatomy and cell wall architecture of maize (Zea mays L.) roots grown for 10 days in the presence of auxin indole-3-butyric acid (IBA) and Cd. The application of IBA in the concentration 10-9 M delayed the development of apoplastic barriers, decreased the content of lignin in the cell wall, increased the content of Ca2+ and phenols, and influenced the composition of monosaccharides in polysaccharide fractions when compared to the Cd treatment. Application of IBA improved the Cd2+ fixation to the cell wall and increased the endogenous concentration of auxin depleted by Cd treatment. The proposed scheme from obtained results may explain the possible mechanisms of the exogenously applied IBA and its effects on the changes in the binding of Cd2+ within the cell wall, and on the stimulation of growth that resulted in the amelioration of Cd stress.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
10
|
Gao J, Duan M, Hasi G, Yang J, Yan C, Kang Y, Qi Z. Comparison of two contrasting Leymus chinensis accessions reveals the roles of the cell wall and auxin in rhizome development. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154003. [PMID: 37301035 DOI: 10.1016/j.jplph.2023.154003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
Leymus chinensis, a perennial native forage grass, is widely distributed in the steppes of Inner Mongolia as the dominant species. The main reproductive strategy of this grass is clonal propagation, which occurs via the proliferation of subterranean horizontal stems known as rhizomes. To elucidate the mechanism underlying rhizome development in this grass, we collected 60 accessions of L. chinensis and evaluated their rhizome development. One accession, which we named SR-74 (Strong Rhizomes), had significantly better rhizome development capacity than the accession WR-16 (Weak Rhizomes) in terms of rhizome number, total and primary rhizome length, and number of rhizome seedlings. Rhizome elongation was positively correlated with the number of internodes in the rhizome, which affected plant biomass. Compared to WR-16, SR-74 had higher rhizome tip hardness, higher abundance of transcripts participating in the biosynthesis of cell wall components, and higher levels of the metabolites L-phenylalanine, trans-cinnamic acid, 3-coumaric acid, ferulic acid, and coniferin. These metabolites in the phenylpropanoid biosynthesis pathway are precursors of lignin. In addition, SR-74 rhizomes contained higher amounts of auxin and auxin metabolites, including L-Trp, IPA, IBA, IAA and IAA-Asp, as well as upregulated expression of the auxin biosynthesis and signaling genes YUCCA6, YUCCA8, YUCCA10, YUCCA11, PIN1, PIN2, UGT1, UGT2, UGT4, UGT10, GH3, IAA7, IAA23, and IAA30. We propose a network between auxin signaling and the cell wall underlying rhizome development in L. chinensis.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Menglu Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Gaowa Hasi
- Grassland Work Station of East Ujimqin Banner of Xilin Gol League of Inner Mongolia, East Ujimqin Banner, 026300, China
| | - Jia Yang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| |
Collapse
|
11
|
Ren R, Liu W, Yao M, Jia Y, Huang L, Li W, He X, Guan M, Liu Z, Guan C, Hua W, Xiong X, Qian L. Regional association and transcriptome analysis revealed candidate genes controlling plant height in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:69. [PMID: 37313473 PMCID: PMC10248621 DOI: 10.1007/s11032-022-01337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 06/15/2023]
Abstract
Plant height is a key morphological trait in rapeseed, which not only plays an important role in determining plant architecture, but is also an important characteristic related to yield. Presently, the improvement of plant architecture is a major challenge in rapeseed breeding. This work was carried out to identify genetic loci related to plant height in rapeseed. In this study, a genome-wide association study (GWAS) of plant height was performed using a Brassica 60 K Illumina Infinium SNP array and 203 Brassica napus accessions. Eleven haplotypes containing important candidate genes were detected and significantly associated with plant height on chromosomes A02, A03, A05, A07, A08, C03, C06, and C09. Moreover, regional association analysis of 50 resequenced rapeseed inbred lines was used to further analyze these eleven haplotypes and revealed nucleotide variation in the BnFBR12-A08 and BnCCR1-C03 gene regions related to the phenotypic variation in plant height. Furthermore, coexpression network analysis showed that BnFBR12-A08 and BnCCR1-C03 were directly connected with hormone genes and transcription factors and formed a potential network regulating the plant height of rapeseed. Our results will aid in the development of haplotype functional markers to further improve plant height in rapeseed. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01337-1.
Collapse
Affiliation(s)
- Rui Ren
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Wei Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Yuan Jia
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Luyao Huang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Wenqian Li
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Zhongsong Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xinghua Xiong
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
12
|
ElShamey EAZ, Hamad HS, Alshallash KS, Alghuthaymi MA, Ghazy MI, Sakran RM, Selim ME, ElSayed MAA, Abdelmegeed TM, Okasha SA, Behiry SI, Boudiar R, Mansour E. Growth Regulators Improve Outcrossing Rate of Diverse Rice Cytoplasmic Male Sterile Lines through Affecting Floral Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:1291. [PMID: 35631716 PMCID: PMC9148114 DOI: 10.3390/plants11101291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 05/03/2023]
Abstract
Cytoplasmic male sterility (CMS) provides an irreplaceable strategy for commercial exploitation of heterosis and producing high-yielding hybrid rice. The exogenous application of plant growth regulators could improve outcrossing rates of the CMS lines by affecting floral traits and accordingly increase hybrid rice seed production. The present study aimed at exploring the impact of growth regulators such as gibberellic acid (GA3), indole-3-acetic acid (IAA), and naphthalene acetic acid (NAA) on promoting floral traits and outcrossing rates in diverse rice CMS lines and improving hybrid rice seed production. The impact of foliar applications of growth regulators comprising GA3 at 300 g/ha or GA3 at 150 g/ha + IAA at 50 g/ha + NAA at 200 g/ha versus untreated control was investigated on floral, growth, and yield traits of five diverse CMS lines. The exogenously sprayed growth regulators, in particular, the combination of GA3, IAA, and NAA (T3) boosted all studied floral, growth, and yield traits in all tested CMS lines. Moreover, the evaluated CMS lines exhibited significant differences in all measured floral traits. L2, L3, and L1 displayed the uppermost spikelet opening angle, duration of spikelet opening, total stigma length, style length, stigma brush, and stigma width. In addition, these CMS lines exhibited the highest plant growth and yield traits, particularly under T3. Consequently, exogenous application of GA3, IAA, and NAA could be exploited to improve the floral, growth, and yield traits of promising CMS lines such as L2, L3, and L1, hence increasing outcrossing rates and hybrid rice seed production.
Collapse
Affiliation(s)
- Essam A. Z. ElShamey
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Hassan Sh. Hamad
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Khalid S. Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
| | - Mohamed I. Ghazy
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Raghda M. Sakran
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Mahmoud E. Selim
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Mahmoud A. A. ElSayed
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Taher M. Abdelmegeed
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (E.A.Z.E.); (H.S.H.); (M.I.G.); (R.M.S.); (M.E.S.); (M.A.A.E.); (T.M.A.)
| | - Salah A. Okasha
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Ridha Boudiar
- Division of Biotechnology & Agriculture, Biotechnology Research Center (CRBt), UV 03, P.O. Box E73, Nouvelle Ville Ali Mendjli, Constantine 25016, Algeria;
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Xu L, Deng ZN, Wu KC, Malviya MK, Solanki MK, Verma KK, Pang T, Li YJ, Liu XY, Kashyap BK, Dessoky ES, Wang WZ, Huang HR. Transcriptome Analysis Reveals a Gene Expression Pattern That Contributes to Sugarcane Bud Propagation Induced by Indole-3-Butyric Acid. FRONTIERS IN PLANT SCIENCE 2022; 13:852886. [PMID: 35371161 PMCID: PMC8969426 DOI: 10.3389/fpls.2022.852886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Sugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation. Indole-3-butyric acid (IBA) is a rooting agent utilized significantly in seedling propagation. Greenhouse experiment results discovered the significant growth promotion in sugarcane seedlings and accumulation of plant hormones at 100 ppm IBA. Next, we performed transcriptomic analysis of sugarcane buds using RNA sequencing and compared their gene expression during root development due to affect of IBA (100 ppm). A total of 113,475 unigenes were annotated with an average length of 836 bp (N50 = 1,536). The comparative RNA-seq study between the control (CK) and IBA-treated (T) buds showed significant differentially expressed unigenes (494 upregulated and 2086 downregulated). The IBA influenced major biological processes including metabolic process, the cellular process, and single-organism process. For cellular component category, cell, cell part, organelle, membrane, and organelle part were mainly affected. In addition, catalytic activity and binding were primarily affected in the molecular function categories. Furthermore, the expression of genes related to plant hormones and signaling pathways was analyzed by qRT-PCR, which was consistent with the RNA-seq expression profile. This study provides new insights into the IBA response to the bud sprouting in sugarcane based on RNA sequencing, and generated information could help further research on breeding improvement of sugarcane.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhi-Nian Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tian Pang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi-Jie Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Eldessoky S. Dessoky
- Department of Plant Genetic Transformation, Agriculture Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Wei-Zan Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai-Rong Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Cheng L, Zhao C, Zhao M, Han Y, Li S. Lignin Synthesis, Affected by Sucrose in Lotus ( Nelumbo nucifera) Seedlings, Was Involved in Regulation of Root Formation in the Arabidopsis thanliana. Int J Mol Sci 2022; 23:ijms23042250. [PMID: 35216366 PMCID: PMC8875098 DOI: 10.3390/ijms23042250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (ARs) have an unmatched status in plant growth and metabolism due to the degeneration of primary roots in lotuses. In the present study, we sought to assess the effect of sucrose on ARs formation and observed that lignin synthesis was involved in ARs development. We found that the lignification degree of the ARs primordium was weaker in plants treated with 20 g/L sucrose than in 50 g/L sucrose treatment and control plants. The contents of lignin were lower in plants treated with 20 g/L sucrose and higher in plants treated with 50 g/L sucrose. The precursors of monomer lignin, including p-coumaric acid, caffeate, sinapinal aldehyde, and ferulic acid, were lower in the GL50 library than in the GL20 library. Further analysis revealed that the gene expression of these four metabolites had no novel difference in the GL50/GL20 libraries. However, a laccase17 gene (NnLAC17), involved in polymer lignin synthesis, had a higher expression in the GL50 library than in the GL20 library. Therefore, NnLAC17 was cloned and the overexpression of NnLAC17 was found to directly result in a decrease in the root number in transgenic Arabidopsis plants. These findings suggest that lignin synthesis is probably involved in ARs formation in lotus seedlings.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
- Correspondence:
| | - Chen Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Minrong Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Yuyan Han
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Shuyan Li
- College of Guangling, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|