1
|
Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof MEM, Aldosari BN, Alfagih IM, AlQuadeib BT, Almarshidy SS, El-Bouseary MM. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microb Cell Fact 2023; 22:173. [PMID: 37670273 PMCID: PMC10478239 DOI: 10.1186/s12934-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1β expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1β expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Mirata S, Asnaghi V, Chiantore M, Salis A, Benvenuti M, Damonte G, Scarfì S. Photoprotective and Anti-Aging Properties of the Apical Frond Extracts from the Mediterranean Seaweed Ericaria amentacea. Mar Drugs 2023; 21:306. [PMID: 37233500 PMCID: PMC10224410 DOI: 10.3390/md21050306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
There is a growing interest in using brown algal extracts thanks to the bioactive substances they produce for adaptation to the marine benthic environment. We evaluated the anti-aging and photoprotective properties of two types of extracts (50%-ethanol and DMSO) obtained from different portions, i.e., apices and thalli, of the brown seaweed, Ericaria amentacea. The apices of this alga, which grow and develop reproductive structures during summer when solar radiation is at its peak, were postulated to be rich in antioxidant compounds. We determined the chemical composition and pharmacological effects of their extracts and compared them to the thallus-derived extracts. All the extracts contained polyphenols, flavonoids and antioxidants and showed significant biological activities. The hydroalcoholic apices extracts demonstrated the highest pharmacological potential, likely due to the higher content of meroditerpene molecular species. They blocked toxicity in UV-exposed HaCaT keratinocytes and L929 fibroblasts and abated the oxidative stress and the production of pro-inflammatory cytokines, typically released after sunburns. Furthermore, the extracts showed anti-tyrosinase and anti-hydrolytic skin enzyme activity, counteracting the collagenase and hyaluronidase degrading activities and possibly slowing down the formation of uneven pigmentation and wrinkles in aging skin. In conclusion, the E. amentacea apices derivatives constitute ideal components for counteracting sunburn symptoms and for cosmetic anti-aging lotions.
Collapse
Affiliation(s)
- Serena Mirata
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Mirko Benvenuti
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Sonia Scarfì
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Fernando IPS, Fernando PWP, Kim T, Ahn G. Structural diversity, biosynthesis, and health-promoting properties of brown algal meroditerpenoids. Crit Rev Biotechnol 2022; 42:1238-1259. [PMID: 34875939 DOI: 10.1080/07388551.2021.2001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
Marine algae that constitute hundreds of millions of tons of biomass are the oldest representatives of the plant kingdom. Recently, there has been growing interest in the utilization of algae as sustainable feedstocks for natural products with an economic value. Among these natural products are the meroditerpenoids, which are renowned for their protective effects against oxidative stress, inflammation, cancer, obesity, diabetes, and neurodegenerative disorders. Meroditerpenoids have a mixed biosynthetic origin and display a wide range of structural diversity. Their basic structure consists of a ring system bearing a diterpenoid side chain. Structural variations are observed in terms of the functional groups and saturation/cyclization of the diterpenoid side chain. This review classifies algal meroditerpenoids as plastoquinones, chromanols, chromenes, chromones, cyclic meroditerpenoids, nahocols, and isonahocols and examines their potential applications in functional foods and biopharmacology. Their lipid solubility, low molecular weight, and propensity to cross the blood-brain barrier places meroditerpenoids as potential drug candidates. There is growing interest in the study of algal meroterpenoids, and recent research has reported the structure of several new meroterpenoids and their biological activities. Further research is needed to extend the use of algal meroditerpenoids in preclinical trials. Understanding the mechanism of their biosynthesis will allow the development of de novo biosynthesis and biomimetic synthesis strategies for the industrial-scale production of meroditerpenoids and their synthetic derivatives to aid pharmaceutical research. This review is the first to summarize up-to-date information on all brown algae-derived meroditerpenoids.
Collapse
Affiliation(s)
| | | | - Taeho Kim
- Division of Marine Technology, Chonnam National University, Yeosu, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
4
|
De La Fuente G, Pinteus S, Silva J, Alves C, Pedrosa R. Antioxidant and antimicrobial potential of six Fucoids from the Mediterranean Sea and the Atlantic Ocean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5568-5575. [PMID: 35439330 DOI: 10.1002/jsfa.11944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUD In recent years, research on the bioactive properties of macroalgae has increased, due to the great interest in exploring new products that can contribute to improve human health and wellbeing. In the present study, the antioxidant and antimicrobial potential of six different brown algae of the Fucales order were evaluated, namely Ericaria selaginoides, Ericaria amentacea, Gongolaria baccata, Gongolaria usneoides, Cystoseira compressa and Sargassum vulgare (collected along the Mediterranean and Atlantic coasts). The antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, the oxygen radical absorbent capacity (ORAC) and the ferric reducing antioxidant power (FRAP) and were related to the total phenolic content (TPC). The antimicrobial activity was evaluated measuring the growth inhibition of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. RESULTS The highest antioxidant capacity was obtained for Ericaria selaginoides revealing the highest capacity to scavenge DPPH radical [half maximal effective concentration (EC50 ) = 27.02 μg mL-1 ], highest FRAP (1761.19 μmol FeSO4 equivalents g-1 extract), high ORAC (138.92 μmol TE g-1 extract), alongside to its high TPC (121.5 GAE g-1 extract). This species also reported the highest antimicrobial capacity against Staphylococcus aureus [half maximal inhibitory concentration (IC50 ) = 268 μg mL-1 ]. CONCLUSIONS Among all studied seaweed, Ericaria selaginoides reveals the highest antioxidant and antimicrobial activities, and thus should be explored as a natural food additive and/or functional ingredient. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gina De La Fuente
- DiSTAV - Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genoa, Italy
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Center, ESTM, Polytechnic of Leiria, Peniche, Portugal
| |
Collapse
|
5
|
Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125877] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microalgae are an untapped source of bioactive compounds with various biotechnological applications. Several species are industrially produced and commercialized for the feed or cosmetic industries, however, other applications in the functional food and pharmaceutical markets can be foreseen. In this study, nine industrial/commercial species were evaluated for in vitro antioxidant, calcium-chelating, anti-tumoral, and anti-inflammatory activities. The most promising extracts were fractionated yielding several promising fractions namely, of Tetraselmis striata CTP4 with anti-inflammatory activity (99.0 ± 0.8% reduction in TNF-α production in LPS stimulated human macrophages at 50 µg/mL), of Phaeodactylum Tricornutum with cytotoxicity towards cancerous cell lines (IC50 = 22.3 ± 1.8 μg/mL and 27.5 ± 1.6 μg/mL for THP-1 and HepG2, respectively) and of Porphyridium sp. and Skeletonema sp. with good chelating activity for iron, copper and calcium (IC50 = 0.047, 0.272, 0.0663 mg/mL and IC50 = 0.055, 0.240, 0.0850 mg/mL, respectively). These fractions were chemically characterized by GC–MS after derivatization and in all, fatty acids at various degrees of unsaturation were the most abundant compounds. Some of the species under study proved to be potentially valuable sources of antioxidant, metal chelators, anti-tumoral and anti-inflammatory compounds with possible application in the functional food and pharmaceutical industries.
Collapse
|
6
|
Machado S, González-Ballesteros N, Gonçalves A, Magalhães L, Sárria Pereira de Passos M, Rodríguez-Argüelles MC, Castro Gomes A. Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts. Int J Nanomedicine 2021; 16:5017-5036. [PMID: 34326639 PMCID: PMC8315781 DOI: 10.2147/ijn.s300674] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Research on gold nanoparticles (AuNPs) occupies a prominent place in the field of biomedicine nowadays, being their putative toxicity and bioactivity areas of major concern. The green synthesis of metallic nanoparticles using extracts from marine organisms allows the avoidance of hazardous production steps while maintaining features of interest, thus enabling the exploitation of their promising bioactivity. OBJECTIVE To synthesize and characterize AuNPs using, for the first time, macroalga Cystoseira tamariscifolia aqueous extract (Au@CT). METHODS Algal aqueous extracts were used for the synthesis of AuNPs, which were characterized using a wide panel of physicochemical techniques and biological assays. RESULTS The characterization by UV-Vis spectroscopy, transmission electron microscopy, Z-potential and infrared spectroscopy confirmed that Au@CT were stable, spherical and polycrystalline, with a mean diameter of 7.6 ± 2.2 nm. The antioxidant capacity of the extract, prior to and after synthesis, was analyzed in vitro, showing that the high antioxidant potential was not lost during the synthesis. Subsequently, in vitro and in vivo toxicity was screened, by comparing two species of the genus Cystoseira (C. tamariscifolia and C. baccata) and the corresponding biosynthesized gold nanoparticles (Au@CT and Au@CB). Cytotoxicity was tested in mouse (L929) and human (BJ5ta) fibroblast cell lines. In both cases, only the highest (nominal) test concentration of both extracts (31.25 mg/mL) or Au@CB (12.5 mM) significantly affected cell viability, as measured by the MTT assay. These results were corroborated by a Fish Embryo Acute Toxicity (FET) test. Briefly, it was shown that, at the highest (nominal) tested concentration (31.25 mg/mL), CT extract induced significantly higher cytotoxicity and embryotoxicity than CB extract. However, it was demonstrated that Au@CT, but not Au@CB, were generally non-toxic. At sub-lethal (nominal) test concentrations (1.25 and 2.5 mM), Au@CT affected zebrafish embryonic development to a much lesser extent than Au@CB. In vitro wound healing assays also revealed that, while other experimental conditions did not impact cell migration, CT and Au@CT displayed a moderate positive effect. CONCLUSION Au@CT and Au@CB display promising features, desirable for biomedical applications, as wound healing.
Collapse
Affiliation(s)
- Sofia Machado
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Anabela Gonçalves
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Luana Magalhães
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Marisa Sárria Pereira de Passos
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | | | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
7
|
Kord A, Foudil-Cherif Y, Amiali M, Boumechhour A, Benfares R. Phlorotannins Composition, Radical Scavenging Capacity and Reducing Power of Phenolics from the Brown Alga Cystoseira sauvageauana. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1895392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Affaf Kord
- National Center for Research and Development of Fisheries and Aquaculture, CNRDPA, Bou-Ismail, Algeria
- Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, USTHB, Algiers, Algeria
| | - Yazid Foudil-Cherif
- Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, USTHB, Algiers, Algeria
| | - Malek Amiali
- Agronomic Higher National School, Laboratory of Food Technology and Human Nutrition, ENSA, Algiers, Algeria
| | - Abdenour Boumechhour
- Center for Technical and Scientific Research in Physical-Chemical Analysis, CRAPC, Bou-Ismail, Algeria
| | - Redhouane Benfares
- National Center for Research and Development of Fisheries and Aquaculture, CNRDPA, Bou-Ismail, Algeria
| |
Collapse
|
8
|
Orlando-Bonaca M, Pitacco V, Slavinec P, Šiško M, Makovec T, Falace A. First Restoration Experiment for Gongolaria barbata in Slovenian Coastal Waters. What Can Go Wrong? PLANTS (BASEL, SWITZERLAND) 2021; 10:239. [PMID: 33530631 PMCID: PMC7911296 DOI: 10.3390/plants10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
The global decline of brown algal forests along rocky coasts is causing an exceptional biodiversity loss. Regardless of conservation efforts, different techniques have been developed for large-scale restoration strategies in the Mediterranean Sea. In this study we tested ex situ pilot restoration of Gongolaria barbata (=Treptacantha barbata) for the first time in Slovenian coastal waters. Healthy apical fronds of the species were collected and the development of recruits on clay tiles was followed under laboratory conditions for 20 days. Despite the experimental difficulties experienced, especially due to the lack of antibiotics to prevent the growth of the biofilm, G. barbata recruits were outplanted in the sea on two concrete plates with 48 tiles each, protected by purpose-built cages to avoid grazing by herbivorous fish. The high survival rate of juveniles after four months in the field (89% of the tiles on the plate that was constantly protected) suggests that outplanting G. barbata is an operable approach for restoration efforts in the northern Adriatic Sea. Our first experiment in Slovenian coastal waters provides new information for the optimization of the best practices during the laboratory cultivation and addresses the early steps of restoration and introduction of young thalli in the natural environment.
Collapse
Affiliation(s)
- Martina Orlando-Bonaca
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Valentina Pitacco
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Petra Slavinec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Milijan Šiško
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Tihomir Makovec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy;
| |
Collapse
|
9
|
De La Fuente G, Fontana M, Asnaghi V, Chiantore M, Mirata S, Salis A, Damonte G, Scarfì S. The Remarkable Antioxidant and Anti-Inflammatory Potential of the Extracts of the Brown Alga Cystoseira amentacea var. stricta. Mar Drugs 2020; 19:2. [PMID: 33374863 PMCID: PMC7823636 DOI: 10.3390/md19010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 μg/mL; NO EC50 between 546 and 1293 μg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.
Collapse
Affiliation(s)
- Gina De La Fuente
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Marco Fontana
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
| | - Annalisa Salis
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy; (A.S.); (G.D.)
| | - Gianluca Damonte
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy; (A.S.); (G.D.)
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (G.D.L.F.); (M.F.); (V.A.); (M.C.); (S.M.)
- Centro 3R, Interuniversitary Center for the Promotion of the Principles of the 3Rs in Teaching and Research, Via Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
10
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:molecules25194411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mostafa M. EL-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +20-1224106666; Fax: +20-403350804
| |
Collapse
|
11
|
Abu-Khudir R, Ismail GA, Diab T. Antimicrobial, Antioxidant, and Anti-Tumor Activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutr Cancer 2020; 73:829-844. [PMID: 32406258 DOI: 10.1080/01635581.2020.1764069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Brown algae earned importance by virtue of their promising secondary metabolites of reasonable biological activities. Herein, the antioxidant, antimicrobial, and anticancer effects of crude extracts obtained from two Egyptian brown seaweeds, Sargassum linearifolium and Cystoseira crinita were evaluated. Phytochemical and GC-MS analyses revealed numerous active secondary metabolites in C. crinita cold methanolic extract (CCME) and S. linearifolium hot aqueous extract (SHAE). Both SHAE and CCME exhibited comparable DPPH (124.5 vs 125.6 µg/ml) and ABTS (257.1 vs 254.8 µg/ml) scavenging activities, respectively. Moreover, both crude extracts exhibited antimicrobial activity against various pathogenic microorganisms. Interestingly, employing MTT assay revealed cytotoxic effects of both extracts against a panel of cancer cells, where CCME showed a strong cytotoxic activity against MCF-7 cells (IC50 = 18.0 ± 0.74 µg/ml), while SHAE exhibited a moderate effect (IC50 = 31.1 ± 1.04 µg/ml). Increased mRNA and protein expression of Bax and Beclin-1 as well as the decreased expression of Bcl-2 revealed the ability of both extracts to induce apoptosis and autophagy in MCF-7 cells. Collectively, these findings provide evidence for antioxidant, antimicrobial, as well as anticancer effects driven by the two brown seaweeds that may underlay their plausible application in the therapeutic uses.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gehan A Ismail
- Botany Department, Phycology Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Diab
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Moussa H, Quezada E, Viña D, Riadi H, Gil-Longo J. Redox-Active Phenolic Compounds Mediate the Cytotoxic and Antioxidant Effects of Carpodesmia tamariscifolia (=Cystoseira tamariscifolia). Chem Biodivers 2020; 17:e2000121. [PMID: 32374938 DOI: 10.1002/cbdv.202000121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH-20 and silica gel columns when appropriate. The fractions were subjected to thin-layer chromatography and liquid chromatography-mass spectrometry analysis and evaluated for their total phenolic content (Folin-Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH-SY5Y cell line), and ability to generate H2 O2 (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox-active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H2 O2 assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H2 O2 . Our results suggest that redox-active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro-oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.
Collapse
Affiliation(s)
- Hanaa Moussa
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Present adress, Applied Phycology-Mycology Group (PMA), Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, 93030, Tétouan, Morocco
| | - Elías Quezada
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Farmacología de las Enfermedades Crónicas, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Hassane Riadi
- Applied Phycology-Mycology Group (PMA), Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, 93030, Tétouan, Morocco
| | - José Gil-Longo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Zbakh H, Zubía E, De Los Reyes C, Calderón-Montaño JM, Motilva V. Anticancer Activities of Meroterpenoids Isolated from the Brown Alga Cystoseira usneoides against the Human Colon Cancer Cells HT-29. Foods 2020; 9:foods9030300. [PMID: 32155797 PMCID: PMC7143549 DOI: 10.3390/foods9030300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers and a leading cause of cancer death worldwide. The current treatment for CRC mainly involves surgery, radiotherapy, and chemotherapy. However, due to the side effects and the emergence of drug resistance, the search for new anticancer agents, pharmacologically safe and effective, is needed. In the present study, we have investigated the anticancer effects of eight algal meroterpenoids (AMTs, 1-8) isolated from the brown seaweed Cystoseira usneoides and their underlying mechanisms of action using HT-29, a highly metastatic human colon cancer cell line. All the tested meroterpenoids inhibited the growth of HT-29 malignant cells and were less toxic towards non-cancer colon cells, with the AMTs 1 and 5 exhibiting selectivity indexes of 5.26 and 5.23, respectively. Treatment of HT-29 cells with the AMTs 1, 2, 3, 4, 5, and 7 induced cell cycle arrest in G2/M phase and, in some instances, apoptosis (compounds 2, 3, and 5). Compounds 1-8 also exhibited significant inhibitory effects on the migration and/or invasion of colon cancer cells. Mechanistic analysis demonstrated that the AMTs 1, 2, 5, 6, 7, and 8 reduced phosphorylation levels of extracellular signal-regulated kinase (ERK) and the AMTs 2, 3, 4, 5, 7, and 8 decreased phosphorylation of c-JUN N-terminal kinase (JNK). Moreover, the AMTs 1, 2, 3, 4, 7, and 8 inhibited phosphorylation levels of protein kinase B (AKT) in colon carcinoma cells. These results provide new insights into the mechanisms and functions of the meroterpenoids of C. usneoides, which exhibit an anticancer effect on HT-29 colon cancer cells by inducing cell cycle arrest and apoptosis via the downregulation of ERK/JNK/AKT signaling pathways.
Collapse
Affiliation(s)
- Hanaa Zbakh
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
- Department of Biology, Faculty of Sciences, University of Abdelmalek Essaâdi, Tetouan 93000, Morocco
| | - Eva Zubía
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real (Cádiz), Spain; (E.Z.); (C.D.L.R.)
| | - Carolina De Los Reyes
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real (Cádiz), Spain; (E.Z.); (C.D.L.R.)
| | - José M. Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
- Correspondence:
| |
Collapse
|
14
|
Ecological Function of Phenolic Compounds from Mediterranean Fucoid Algae and Seagrasses: An Overview on the Genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8010019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biodiversity is undergoing rapid and worrying changes, partially driven by anthropogenic activities. Human impacts and climate change (e.g., increasing temperature and ocean acidification), which act at different spatial scales, represent the most serious threats to biodiversity and ecosystem structure and function. In the Mediterranean Sea, complex systems such as fucoid algae and seagrasses, characterized by a high associated biodiversity, are regularly exposed to natural and anthropogenic pressures. These systems, particularly sensitive to a variety of stressors, evolved several physiological and biochemical traits as a response to the different pressures which they are subjected to. For instance, they produce a huge quantity of secondary metabolites such as phenolic compounds, to adapt to different environmental stressors and to defend themselves from biological pressures. These natural products are receiving increasing attention due to their possible applications in a wide range of industrial sectors. In this paper we provide an overview on the ecological role of phenolic compounds from the genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile, also highlighting their potential use as ecological biomarkers.
Collapse
|
15
|
Abdelhamid A, Lajili S, Elkaibi MA, Ben Salem Y, Abdelhamid A, Muller CD, Majdoub H, Kraiem J, Bouraoui A. Optimized Extraction, Preliminary Characterization and Evaluation of the in Vitro Anticancer Activity of Phlorotannin-Rich Fraction from the Brown Seaweed, Cystoseira sedoides. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1662865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amal Abdelhamid
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Sirine Lajili
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Mohamed Amine Elkaibi
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Yosra Ben Salem
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Ameni Abdelhamid
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Christian D. Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Jamil Kraiem
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Abderrahman Bouraoui
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| |
Collapse
|
16
|
Sustainable Valorization of Halophytes from the Mediterranean Area: A Comprehensive Evaluation of Their Fatty Acid Profile and Implications for Human and Animal Nutrition. SUSTAINABILITY 2019. [DOI: 10.3390/su11082197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Halophytic plants can provide an economical and environmentally sustainable source of products for human and animal feeding, in the context of the increase of worldwide emergent semi-arid landscapes. This work reports a comprehensive evaluation of the qualitative and quantitative composition of fatty acids (FA) of nineteen Mediterranean halophytes collected in southern Portugal, with the purpose of establishing their possible uses as food and feed. For FA determination, lipids and free FA were converted to the corresponding fatty acid methyl esters (FAME) and analyzed by GC-MS. Beta maritima had the highest FAME levels (7.3 mg/g DW) while Suaeda vera had the lowest content (1.0 mg/g DW). The most common saturated fatty acid (SFA) across all studied species was palmitic acid. The most prevalent monounsaturated fatty acid (MUFA) was oleic acid. Polyunsaturated fatty acids (PUFA) levels were led by linoleic acid. Less common FAMEs were also detected, namely eicosadienoic and hexadecatrienoic acids. Cotula coronopifolia, Phragmites australis and Suaeda vera displayed the best FA nutritional profiles. These species also showed bioactivities relevant for both human and animal health according to the literature and thus, collectively with this study, they could be further explored as food and feed.
Collapse
|
17
|
Bruno de Sousa C, Cox CJ, Brito L, Pavão MM, Pereira H, Ferreira A, Ginja C, Campino L, Bermejo R, Parente M, Varela J. Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences. PLoS One 2019; 14:e0210143. [PMID: 30699208 PMCID: PMC6364706 DOI: 10.1371/journal.pone.0210143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Cystoseira is a common brown algal genus widely distributed throughout the Atlantic and Mediterranean regions whose taxonomical assignment of specimens is often hampered by intra- and interspecific morphological variability. In this study, three mitochondrial regions, namely cytochrome oxidase subunit 1 (COI), 23S rDNA (23S), and 23S-tRNAVal intergenic spacer (mt-spacer) were used to analyse the phylogenetic relationships of 22 Cystoseira taxa (n = 93 samples). A total of 135 sequences (48 from COI, 43 from 23S and 44 from mt-spacer) were newly generated and analysed together with Cystoseira sequences (9 COI, 31 23S and 35 mt-spacer) from other authors. Phylogenetic analysis of these three markers identified 3 well-resolved clades and also corroborated the polyphyletic nature of the genus. The resolution of Cystoseira taxa within the three clades improves significantly when the inclusion of specimens of related genera was minimized. COI and mt-spacer markers resolved the phylogeny of some of the Cystoseira taxa, such as the C. baccata, C. foeniculacea and C. usneoides. Furthermore, trends between phylogeny, embryonic development and available chemotaxonomic classifications were identified, showing that phylogenetic, chemical and morphological data should be taken into account to study the evolutionary relationships among the algae currently classified as Cystoseira. The resolution of Cystoseira macroalgae into three well supported clades achieved here is relevant for a more accurate isolation and identification of natural compounds and the implementation of conservation measures for target species.
Collapse
Affiliation(s)
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | - Luís Brito
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | | | - Hugo Pereira
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| | - Ana Ferreira
- Universidade dos Açores, Faculdade de Ciências e Tecnologia, Ponta
Delgada, Açores, Portugal
| | - Catarina Ginja
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos
Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão,
Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina
Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ricardo Bermejo
- Departamento de Biología- Área de Ecología, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
- Irish Seaweed Research Group & Earth and Ocean Sciences Department,
Ryan Institute and School of Natural Sciences, National University of Ireland,
Galway, Ireland
| | - Manuela Parente
- CIBIO-Açores, Centro de Investigação em Biodiversidade e Recursos
Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Departamento de
Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - João Varela
- Centro de Ciências do Mar, Universidade do Algarve, Faro,
Portugal
| |
Collapse
|
18
|
Kurt O, Özdal-Kurt F, Akçora CM, Özkut M, Tuğlu MI. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line. Biotech Histochem 2018; 93:59-69. [PMID: 29388476 DOI: 10.1080/10520295.2017.1381992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.
Collapse
Affiliation(s)
- O Kurt
- a Faculty of Sciences and Literature, Department of Biology , Manisa Celal Bayar University , Yunusemre/Manisa , Turkey
| | - F Özdal-Kurt
- a Faculty of Sciences and Literature, Department of Biology , Manisa Celal Bayar University , Yunusemre/Manisa , Turkey
- b Department of Molecular, Cell and Systems Biology, Stem Cell Center , College of Natural and Agricultural Sciences, University of California Riverside , Riverside , CA
| | - C M Akçora
- a Faculty of Sciences and Literature, Department of Biology , Manisa Celal Bayar University , Yunusemre/Manisa , Turkey
| | - M Özkut
- c Department of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Yunusemre/Manisa , Turkey
| | - M I Tuğlu
- c Department of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Yunusemre/Manisa , Turkey
| |
Collapse
|
19
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
20
|
Cystoseira algae (Fucaceae): update on their chemical entities and biological activities. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Tenorio-Rodriguez PA, Murillo-Álvarez JI, Campa-Cordova ÁI, Angulo C. Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. Journal of Food Science and Technology 2017; 54:422-429. [PMID: 28242941 DOI: 10.1007/s13197-016-2478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Abstract
The Baja California Peninsula in México has about 670 species of macroalgae along its coast. Species richness increases the probability of finding native macroalgae with potential as sources of bioactive compounds suitable for health, pharmacological, and cosmetic ingredients. To understand the biotechnological value of macroalgae from the peninsula, ethanol extracts from 17 macroalgae (four Chlorophyta, six Rhodophyta, seven Ochrophyta) were screened for antioxidant potential. To determine the antioxidant capacity of macroalgal extracts, 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power, and nitric oxide radical scavenging as well as total phenolic content (TPC) were measured. Extracts of the brown macroalgae were most active. Among these, Eisenia arborea, Padina concrecens, and Cystoseira osmundacea had the highest TPC and exhibited the strongest radical scavenging activities. Correlations were found between TPC macroalgal and scavenging capacity, indicating an important role of polyphenols as antioxidants. This suggests that some brown macroalgae from Baja California Peninsula may be a good source of natural bioactive compounds.
Collapse
Affiliation(s)
- Paola A Tenorio-Rodriguez
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| | - Jesús I Murillo-Álvarez
- Centro Interdisciplinario de Ciencias Marinas-IPN (CICIMAR), Avenida IPN s/n, 23096 La Paz, B.C.S. Mexico
| | - Ángel I Campa-Cordova
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| |
Collapse
|