1
|
Orzeł-Gajowik K, Milewski K, Zielińska M. miRNA-ome plasma analysis unveils changes in blood-brain barrier integrity associated with acute liver failure in rats. Fluids Barriers CNS 2023; 20:92. [PMID: 38066639 PMCID: PMC10709860 DOI: 10.1186/s12987-023-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin β1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin β1 expression. CONCLUSION This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.
Collapse
Affiliation(s)
- Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura St. 3, 02-093, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Norkaew C, Subkorn P, Chatupheeraphat C, Roytrakul S, Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci Rep 2023; 13:8084. [PMID: 37208425 DOI: 10.1038/s41598-023-35193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Paweena Subkorn
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Norkaew C, Roytrakul S, Charoenlappanit S, Thaisakun S, Tanyong D. Pinostrobin induces acute leukemia cell apoptosis via the regulation of miR-410-5p and SFRP5. Life Sci 2023; 325:121739. [PMID: 37164308 DOI: 10.1016/j.lfs.2023.121739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
AIMS This study attempted to explore the mechanisms involved in pinostrobin (PN)-mediated acute leukemia cell apoptosis regulated by miR-410-5p. MATERIAL AND METHODS NB4 and MOLT-4 cells were cultured and treated with PN at the IC50 concentration. Apoptosis was examined by Annexin V-FITC/PI staining. RT-qPCR was used to measure the expression of caspase-3, BAK, BCL-W, and MCL-1. The target protein of PN was identified using LC-MS/MS followed by bioinformatic analysis. TargetScan, DIANA, and miRDB were used for the prediction of miRNAs involved in the PN-induced apoptosis mechanism. miRNA mimic transfection, RT-qPCR, and western blot analysis were performed to evaluate the regulatory effect of miRNA on its target and the involvement of miRNA in apoptosis induction by PN. In addition, the synergistic effect of PN and daunorubicin (DNR) were investigated by using the MTT assay. KEY FINDINGS The results showed that PN reduced cell viability and induced apoptosis in both leukemia cell lines. From the LC-MS/MS and bioinformatics analysis, SFRP5 and miR-410-5p were selected as a potential PN target protein and miRNA, respectively. After miRNA mimic transfection, miR-410-5p, which is an onco-miRNA, was decreased and led to increased apoptosis in both cell lines, indicating that this miRNA is involved in PN-mediated apoptosis mechanisms. Moreover, PN demonstrated a synergistic effect with DNR, suggesting that PN may be used in combination with conventional chemotherapy drugs. SIGNIFICANCE PN regulates the expression of miR-410-5p and SFRP5 to promote apoptosis in acute leukemia cells. It could be developed as an alternative treatment for leukemia in the future.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
5
|
Kalaigar SS, Rajashekar RB, Nataraj SM, Vishwanath P, Prashant A. Bioinformatic Tools for the Identification of MicroRNAs Regulating the Transcription Factors in Patients with β-Thalassemia. Bioinform Biol Insights 2022; 16:11779322221115536. [PMID: 35935529 PMCID: PMC9354123 DOI: 10.1177/11779322221115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
β-thalassemia is a significant health issue worldwide, with approximately 7% of the world’s population having defective hemoglobin genes. MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression at the post-transcriptional level by targeting multiple gene transcripts. The levels of fetal hemoglobin (HbF) can be increased by regulating the expression of the γ-globin gene using the suppressive effects of miRNAs on several transcription factors such as MYB, BCL11A, GATA1, and KLF. An early step in discovering miRNA:mRNA target interactions is the computational prediction of miRNA targets that can be later validated with wet-lab investigations. This review highlights some commonly employed computational tools such as miRBase, Target scan, DIANA-microT-CDS, miRwalk, miRDB, and micro-TarBase that can be used to predict miRNA targets. Upon comparing the miRNA target prediction tools, 4 main aspects of the miRNA:mRNA target interaction are shown to include a few common features on which most target prediction is based: conservation sites, seed match, free energy, and site accessibility. Understanding these prediction tools’ usage will help users select the appropriate tool and interpret the results accurately. This review will, therefore, be helpful to peers to quickly choose a list of the best miRNAs associated with HbF induction. Researchers will obtain significant results using these bioinformatics tools to establish a new important concept in managing β-thalassemia and delivering therapeutic strategies for improving their quality of life.
Collapse
Affiliation(s)
- Sumayakausar S Kalaigar
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | | | - Suma M Nataraj
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
6
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
7
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Xiang J, Bian Y. PWAR6 interacts with miR‑106a‑5p to regulate the osteogenic differentiation of human periodontal ligament stem cells. Mol Med Rep 2021; 23:268. [PMID: 33576453 PMCID: PMC7893692 DOI: 10.3892/mmr.2021.11907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) associated with bone regeneration serve an important role in the treatment of periodontal disease. Long non-coding RNAs are involved in the osteogenesis of multiple stem cells and can act as a sponge of microRNAs (miRs). The present study aimed to investigate the interaction between Prader Willi/Angelman region RNA 6 (PWAR6) and miR-106a-5p, as well as their influences on the osteogenic differentiation of hPDLSCs. hPDLSCs were isolated and cultured in osteogenic medium (OM) or growth medium (GM) for 7 days prior to transfection with PWAR6 overexpression vector, short hairpin RNA PWAR6 or miR-106a-5p mimic. The expression levels of runt-related transcription factor 2, osteocalcin and bone morphogenetic protein 2 (BMP2) were detected by western blotting and reverse transcription-quantitative PCR (RT-qPCR), and the expression levels of PWAR6, miR-106a-5p and alkaline phosphatase (ALP) were determined by RT-qPCR. ALP activity assays and Alizarin red staining were performed to detect osteogenesis and mineralization, respectively. Luciferase activities of wild-type and mutant PWAR6 and BMP2 were assessed by conducting a dual-luciferase reporter assay. The results indicated that PWAR6 expression was upregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs, and PWAR6 overexpression increased the osteogenic differentiation and mineralization of hPDLSCs compared with the corresponding control group. By contrast, miR-106a-5p expression was downregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs. PWAR6 acted as a sponge of miR-106a-5p and PWAR6 overexpression promoted the osteogenesis of miR-106a-5p mimic-transfected hPDLSCs. BMP2 was predicted as a target gene of miR-106a-5p. Collectively, the results indicated that PWAR6 displayed a positive influence on the osteogenic differentiation of hPDLSCs. The results of the present study demonstrated that the PWAR6/miR-106a-5p interaction network may serve as a potential regulatory mechanism underlying hPDLSCs osteogenesis.
Collapse
Affiliation(s)
- Juan Xiang
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ying Bian
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
9
|
Kaur T, Kapila S, Kapila R, Kumar S, Upadhyay D, Kaur M, Sharma C. Tmprss2 specific miRNAs as promising regulators for SARS-CoV-2 entry checkpoint. Virus Res 2021; 294:198275. [PMID: 33359190 PMCID: PMC7833564 DOI: 10.1016/j.virusres.2020.198275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Tmprss2 is an emerging molecular target which guides cellular infections of SARS-CoV-2, has been earmarked for interventions against the viral pathologies. The study aims to computationally screen and identifies potential miRNAs, following in vitro experimental validation of miRNA-mediated suppression of Tmprss2 for early prevention of COVID-19. Pool of 163 miRNAs, scrutinized for Tmprss2 binding with three miRNA prediction algorithms, ensued 11 common miRNAs. Further, computational negative energies for association, corroborated miRNA-Tmprss2 interactions, whereas three miRNAs (hsa-miR-214, hsa-miR-98 and hsa-miR-32) based on probability scores ≥0.8 and accessibility to Tmprss2 target have been selected in the Sfold tool. Transfection of miRNA(s) in the Caco-2 cells, quantitatively estimated differential expression, confirming silencing of Tmprss2 with maximum gene suppression by hsa-miR-32 employing novel promising role in CoV-2 pathogenesis. The exalted binding of miRNAs to Tmprss2 and suppression of later advocates their utility as molecular tools for prevention of SARS-CoV-2 viral transmission and replication in humans.
Collapse
Affiliation(s)
- Taruneet Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sandeep Kumar
- Virus Research and Diagnostic Laboratory, Kalpana Chawla Government Medical College, Karnal, Haryana, 132001, India
| | - Divya Upadhyay
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manjeet Kaur
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
10
|
Guo X, Wei S, Xu F, Cai X, Wang H, Ding R. MicroRNA-532-5p is implicated in the regulation of osteoporosis by forkhead box O1 and osteoblast differentiation. BMC Musculoskelet Disord 2020; 21:296. [PMID: 32404197 PMCID: PMC7218624 DOI: 10.1186/s12891-020-03317-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis. Methods Osteoporotic fractures (OP group, n = 10) or osteoarthritis without osteoporosis (control group, n = 10) were selected as subjects in this study. Quantitative analysis of gene expression was performed by RT-PCR. Western blot was used to determine the expression levels of protein forkhead O1 (FOXO1). Bioinformatics analyses and luciferase reporter assay were used to verify the downstream target of miR-532-5p. Results Compared with the non-osteoporotic controls, miR-532-5p was upregulated in osteoporotic samples, and expression of miR-532-5p was downregulated in the osteogenic C2C12 cell model. Overexpression of miR-532-5p resulted in decreased expression levels of key osteoblast markers, including alkaline phosphatase (ALP), osteocalcin (OC), and collagen type I alpha 1 (COL1A1). The inhibitory results of miR-532-5p were reversed. MiR-532-5p contained a putative FOXO1 binding site. Moreover, miR-532-5p inhibited the expression of FOXO1, and overexpression of FOXO1 inhibited the effect of miR-532-5p on osteoblast markers. Conclusions MiR-532-5p can provide references to osteoporosis by regulating the expression of FOXO1 and osteoblast differentiation. MiR-532-5p might serve as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Orthopaedics, Guizhou Provincial Orthopaedic Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Shijun Wei
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Feng Xu
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Xianhua Cai
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Huasong Wang
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Ran Ding
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China.
| |
Collapse
|
11
|
Rangel G, Teerawattanapong N, Chamnanchanunt S, Umemura T, Pinyachat A, Wanram S. Candidate microRNAs as Biomarkers in Malaria Infection: A Systematic Review. Curr Mol Med 2019; 20:36-43. [PMID: 31429687 DOI: 10.2174/1566524019666190820124827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023]
Abstract
Malaria disease is a public health problem especially in tropical countries, 445.000 of malaria-related deaths have been reported in 2017. MicroRNAs (miRNAs) are small non-coding RNAs with 18-24 nucleotides in length, which have been demonstrated to regulate gene expression of several biological processes. The dysregulation of host immune-related gene expressions during the transcriptional process by microRNA has been extensively reported in malaria parasite invasion of erythrocytes infection. The candidate's miRNAs would be used as potential biomarkers in the future and perspective. A systematic review on miRNAs as candidate clinical biomarkers in malaria infection has been established in this study. Electronic databases (Medline, EMBASE, CINAHL and Cochrane data bases) were screened and articles were included as per established selection criteria. We comprehensively searched to identify publications related to malaria and miRNA. PRISMA guidelines were followed, 262 articles were searched, duplicates and unconnected papers were excluded. Nineteen articles were included in the study. It was found that malaria parasite infected liver or tissue produce tissue-specific miRNAs and release to the blood stream. The association of miRNAs including miR-16, miR-155, miR-150, miR-451 and miR-223 with the dysregulations of immune-related genes expression such as PfEMP-1, IFN-γ, AGO- 1 AGO-2; IL4, CD80, CD86, CD36, ANG-1 and ANG-2 during early, severe and/or cerebral malaria infections indicate the potential use of those miRNAs as biomarkers for malaria infection.
Collapse
Affiliation(s)
- Gregorio Rangel
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nattawat Teerawattanapong
- Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tsukuru Umemura
- Departments of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Fukuoka 831-8501, Japan
| | - Anuwat Pinyachat
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surasak Wanram
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
12
|
Seenprachawong K, Tawornsawutruk T, Nantasenamat C, Nuchnoi P, Hongeng S, Supokawej A. miR-130a and miR-27b Enhance Osteogenesis in Human Bone Marrow Mesenchymal Stem Cells via Specific Down-Regulation of Peroxisome Proliferator-Activated Receptor γ. Front Genet 2018; 9:543. [PMID: 30487813 PMCID: PMC6246628 DOI: 10.3389/fgene.2018.00543] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cell (MSC) is a type of stem cell that is capable of differentiating into osteoblasts and adipocytes. The pathological perturbation of MSC fate determination is well demonstrated by the replacement of bone tissues with fat in those with osteoporosis and osteopenia. Cell fate determination can be regulated by epigenetic and post-transcriptional mechanisms. MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules that mediates the post-transcriptional regulation of genes expression. We hypothesized that miRNA specified to PPARγ, a major transcription factor of adipogenesis, is responsible for the differentiation of MSCs into osteoblasts. Candidate miRNA that is responsible for target gene inhibition was identified from the miRNA database via bioinformatic analyses. In this study, miR-130a and miR-27b were selected for investigation on their role in specifically binding to peroxisome proliferator-activated receptor γ (PPARγ) via in vitro osteogenesis of human MSCs. During osteogenic differentiation of human MSCs, the expression level of miR-130a and miR-27b were found to be upregulated. In the meanwhile, adipogenic marker genes (PPARγ and C/EBPβ) were found to decrease, which is in contrary to the increased expression of osteogenic marker genes (RUNX2 and Osterix). MSCs were transfected with mimics and inhibitors of miR-130a and miR-27b during in vitro osteogenesis followed by evaluation for the presence of osteogenic markers via quantitative gene expression, Western blot analysis and alkaline phosphatase activity assay. The overexpression of miR-130a and miR-27b is shown to enhance osteogenesis by increasing the gene expression of RUNX2 and Osterix, the protein expression of RUNX2, COL1A1, and Osterix as well as the alkaline phosphatase activity. Taken altogether, these results suggested that miR-130a and miR-27b could promote osteogenesis in human MSCs by targeting the PPARγ.
Collapse
Affiliation(s)
- Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Tulyapruek Tawornsawutruk
- Department of Orthopedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pornlada Nuchnoi
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Hao Y, Ge Y, Li J, Hu Y, Wu B, Fang F. Identification of MicroRNAs by Microarray Analysis and Prediction of Target Genes Involved in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J Periodontol 2017; 88:1105-1113. [PMID: 28598283 DOI: 10.1902/jop.2017.170079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The roles of microRNAs (miRNAs) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remain largely unexplored. In this study, the underlying molecular mechanism of osteogenic differentiation in hPDLSCs is investigated using miRNA profiling. METHODS The miRNA expression profile during osteogenic differentiation was analyzed using a microarray. Target genes of miRNAs with at least two-fold change in expression (P <0.05) were predicted by bioinformatics. Six miRNAs with osteogenesis-related target genes were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Expression of 116 miRNAs was found to be altered after osteoinduction, with 30 upregulated and 86 downregulated. Thirty-one of these miRNAs (26.7%) had osteogenesis-related target genes. Changes in expression levels of six of the 31 miRNAs (miR-654-3p, miR-4288, miR-34c-5p, miR-218-5p, miR-663a, and miR-874-3p) were validated by qRT-PCR. CONCLUSIONS Significant alterations in miRNA expression profiles were observed during osteogenic differentiation of hPDLSCs. These results imply that miRNAs may have regulatory effects on this process by targeting osteogenesis-related genes.
Collapse
Affiliation(s)
- Yilin Hao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9795409. [PMID: 27642606 PMCID: PMC5013236 DOI: 10.1155/2016/9795409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.
Collapse
|