1
|
Sanabria-Fernández JA, Génin A, Dakos V. Unveiling functional linkages between habitats and organisms: Macroalgal habitats as influential factors of fish functional traits. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106305. [PMID: 38145605 DOI: 10.1016/j.marenvres.2023.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Understanding the relationship between the characteristics of habitats and their associated community is essential to comprehend the functioning of ecological systems and prevent their degradation. This is particularly relevant for in decline, habitat-forming species, such as macroalgae, which support diverse communities of fish in temperate rocky reefs. To understand the link between the functional habitats of macroalgae and the functional dimension of their associated fish communities, we used a standardized underwater visual census to quantify the macroalgal functional diversity, as well as the functional diversity, redundancy, and richness of fish communities in 400 sites scattered in three southern temperate marine realms. Our findings reveal that functional macroalgal habitats can be classified into three groups that shape the functional diversity, redundancy, and richness of fish when considering trait commonness. These results enhance our comprehension of the functional connections between the habitat and coexisting fish within marine ecosystems, providing valuable insights for the preservation of these habitats.
Collapse
Affiliation(s)
- José A Sanabria-Fernández
- Vicerectorat de Recerca, Universitat de Barcelona, Barcelona, Spain; Department of Zoology, Genetics and Physical Anthropology, CRETUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Alexandre Génin
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; Estación Costera de Investigaciones Marinas, Las Cruces, Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Vasilis Dakos
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Brewton RA, Lapointe BE. Eutrophication leads to food web enrichment and a lack of connectivity in a highly impacted urban lagoon. MARINE POLLUTION BULLETIN 2023; 195:115441. [PMID: 37683393 DOI: 10.1016/j.marpolbul.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Nitrogen (N) loading can affect estuarine food webs through alteration of primary producers. In the Indian River Lagoon (IRL), Florida there has been long-term N enrichment, worsening phytoplankton blooms, large-scale macroalgal blooms, and catastrophic seagrass losses. To investigate how N enrichment affects higher trophic levels and food webs in the IRL, nutrient availability was compared to primary producer and faunal stable N (δ15N) isotope values. Seawater samples were collected in the IRL for dissolved nutrient, chlorophyll-a, and particulate organic matter δ15N analyses. Macrophytes and fauna were also collected for δ15N analyses. Throughout the IRL, N was elevated but was highest in the northern IRL and Banana River Lagoon. δ15N was enriched in these segments for most samples to levels characteristic of human-waste impacted estuaries. Variability in δ15N among lagoon segments suggests a low level of trophic connectivity. Decreasing N loading to the IRL and other eutrophic estuaries may help improve resiliency.
Collapse
Affiliation(s)
- Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA.
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA
| |
Collapse
|
3
|
Caballero-Aragón H, Perera-Valderrama S, Cobián-Rojas D, Hernández Gonzalez Z, González Méndez J, De la Guardia E. A decade of study on the condition of western Cuban coral reefs, with low human impact. PeerJ 2023; 11:e15953. [PMID: 37667748 PMCID: PMC10475277 DOI: 10.7717/peerj.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023] Open
Abstract
Background The long-time study of coral reefs with low human impacts can provide information on the effects of regional pressures like climate change, and is an opportunity to document how these pressures are reflected in coral communities. An example of minimal local anthropogenic impacts are the Guanahacabibes coral reefs, located in the westernmost region of Cuba. The objectives of this study were: to evaluate the temporal variability of six benthic biological indicators of coral reefs, and to explore the possible relationship between predictive abiotic variables and biological response variables. Methods Four coral reef sites were sampled between 2008 and 2017, to analyze biological indicators (living coral cover, fleshy algae index, coral species richness, coral species abundance, coral trait groups species abundance, Functional Reef Index). Seven abiotic variables (wave exposure, sea surface temperature, degree heating week, chlorophyll-a concentration, particulate organic carbon, photosynthetically available radiation, and the diffuse attenuation coefficient) were compiled between 2007 and 2016, from remote sensing datasets, to analyze their relationship with the biological indicators. Permanova statistical analysis was used to evaluate trends in biological variables between sites and years, and Routine Analysis Based on Linear Distances (DISTLM) was used to explore some dependencies between biotic and abiotic variables. Results We found significant variability in the temporal analysis, with a decrease in living coral cover, a decline in the predominance of the branching and massive framework reef-building species, a decline in Orbicella species abundance, and an increase in the fleshy algae index. Some abiotic variables (average of degree heating weeks, standard deviation of the diffuse attenuation coefficient, average of the sea surface temperature, among others) significantly explained the variability of biological indicators; however, determination coefficients were low. Conclusions Certain decrease in the functionality of the coral reef was appreciated, taking into account the predominance of secondary and nom-massive framework reef-building species in the last years. A weak association between abiotic and biological variables was found in the temporal analysis. The current scenario of the condition of the coral reefs seems to be regulated by the global effects of climate change, weakly associated effects, and in longer terms.
Collapse
|
4
|
Velázquez-Ochoa R, Enríquez S. Environmental degradation of the Mexican Caribbean reef lagoons. MARINE POLLUTION BULLETIN 2023; 191:114947. [PMID: 37086550 DOI: 10.1016/j.marpolbul.2023.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Insufficient attention to the large volumes of wastewater produced by expansive tourism and urban development in the north of the Mexican Caribbean has increased concerns on the ecological and economic sustainability of this important tourist destination, which is currently threatened by massive arrivals of pelagic Sargassum. Comparing environmental descriptions for sites exposed to contrasting anthropogenic pressure and before and during massive Sargassum tides, uncovered significant shifts in the environmental conditions in the last 20 years, from oligotrophic to mesotrophic-eutrophic conditions. The most significant changes were observed in the north, for habitats exposed to high anthropogenic pressure. Accordingly, the severe threat that massive Sargassum beaching currently represents for the survival of Caribbean coral reefs cannot be considered the only driver of reef eutrophication in the Mexican Caribbean, as the habitat degradation documented here has an important contribution from anthropogenic fertilization.
Collapse
Affiliation(s)
- Roberto Velázquez-Ochoa
- Laboratory of Photobiology, Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ap. Postal #13, 77500 Cancun, Quintana Roo, Mexico; Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| | - Susana Enríquez
- Laboratory of Photobiology, Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ap. Postal #13, 77500 Cancun, Quintana Roo, Mexico.
| |
Collapse
|
5
|
Fish community structure and dynamics are insufficient to mediate coral resilience. Nat Ecol Evol 2022; 6:1700-1709. [PMID: 36192541 DOI: 10.1038/s41559-022-01882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Coral reefs are being impacted by myriad stressors leading to drastic changes to their structure and function. Fishes play essential roles in driving ecosystem processes on coral reefs but the extent to which these processes are emergent at temporal or ecosystem scales or otherwise masked by other drivers (for example, climatic events and crown-of-thorns starfish outbreaks) is poorly understood. Using time series data on fish community composition and coral and macroalgae percentage cover between 2006 and 2017 from 57 sites around Mo'orea, Polynesia, we found that fish community diversity predicts temporal stability in fish biomass but did not translate to temporal stability of coral cover. Furthermore, we found limited evidence of directional influence of fish on coral dynamics at temporal and ecosystem scales and no evidence that fish mediate coral recovery rate from disturbance. Our findings suggest that coral reef fisheries management will benefit from maintaining fish diversity but that this level of management is unlikely to strongly mediate coral loss or recovery over time.
Collapse
|
6
|
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol 2022; 5:440. [PMID: 35681037 PMCID: PMC9184636 DOI: 10.1038/s42003-022-03398-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.
Collapse
Affiliation(s)
- Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México.
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ana Molina-Hernández
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
7
|
Lapointe BE, Tewfik A, Phillips M. Macroalgae reveal nitrogen enrichment and elevated N:P ratios on the Belize Barrier Reef. MARINE POLLUTION BULLETIN 2021; 171:112686. [PMID: 34271509 DOI: 10.1016/j.marpolbul.2021.112686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Macroalgal blooms are increasing on the Belize Barrier Reef (BBR) as scleractinian coral cover declines. Although some have attributed this to reduced grazing, the role of land-based nutrient pollution has not been assessed. Nutrient enrichment was quantified through macroalgal tissue analysis from Belize City to the offshore fore reef and at several central BBR lagoon sites. These recent data were compared to baseline data from the 1980s. Significant nearshore-to-offshore gradients of %N, %P and δ13C in macroalgae all indicated land-based sources of these nutrients. Macroalgal δ15N values were generally enriched in nearshore waters where values matched those reported for human sewage. Notably, the N:P ratios of recent macroalgae measurements were elevated at all sites, more than two-fold higher than values from the 1980s (~30: 1 to 70:1). These results support the hypothesis that nitrogen enrichment from land-based sources has increased phosphorus limitation driving macroalgal blooms and coral stress on the BBR.
Collapse
Affiliation(s)
- Brian E Lapointe
- Florida Atlantic University-Harbor Branch Oceanographic Institute, 5600 US 1 North, Ft. Pierce, FL 34946, USA
| | - Alexander Tewfik
- Wildlife Conservation Society, Belize Program, PO Box 768, 1755 Coney Drive, 2nd Floor, Belize City, Belize.
| | - Myles Phillips
- Wildlife Conservation Society, Belize Program, PO Box 768, 1755 Coney Drive, 2nd Floor, Belize City, Belize
| |
Collapse
|
8
|
A doubling of stony coral cover on shallow forereefs at Carrie Bow Cay, Belize from 2014 to 2019. Sci Rep 2021; 11:19185. [PMID: 34584122 PMCID: PMC8478911 DOI: 10.1038/s41598-021-96799-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022] Open
Abstract
To better understand the decline of one of earth’s most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network’s biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3–10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change.
Collapse
|
9
|
The Conservational State of Coastal Ecosystems on the Mexican Caribbean Coast: Environmental Guidelines for Their Management. SUSTAINABILITY 2021. [DOI: 10.3390/su13052738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accelerated rate of environmental degradation of the Mexican Caribbean coast is alarming. In this work, spatial analysis procedures were applied to study relationships among wave and wind climates, water quality, and environmental degradation of the principal coastal ecosystems. We found an increasing North-South gradient in the preservation state of the coastal ecosystems, related to the degree of anthropization of the coastline. In the north, all analysed stressors exert high pressure on coral reefs, seagrass meadows, mangroves, and dunes, and cause chronic coastline erosion. The coastal ecosystems of the central and southern regions are more mature and healthier, and the most significant stressor is reduced water quality. The north has been most hit by high-intensity hurricanes, the frequency of which has increased in the Mexican Caribbean over recent decades. The status of conservation of the ecosystems, added to the long-term intensification of environmental pressures, particularly high-intensity hurricanes, will induce further deterioration if a coordinated management scheme is not adopted by decision-makers. To ensure effective coordinated management, plans should be made on a regional scale using shared guidelines. Spatial analysis procedures aid in prioritizing and adapting the shared guidelines depending on the identified major stressors and the preservation state of each region in the Mexican Caribbean.
Collapse
|
10
|
González-Barrios FJ, Cabral-Tena RA, Alvarez-Filip L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. GLOBAL CHANGE BIOLOGY 2021; 27:640-651. [PMID: 33131196 DOI: 10.1111/gcb.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The ecology and structure of many tropical coral reefs have been markedly altered over the past few decades. Although long-term recovery has been observed in terms of coral cover, it is not clear how novel species configurations shape reef functionality in impaired reefs. The identities and life-history strategies of the corals species that recover are essential for understanding reef functional dynamics. We used a species identity approach to quantify the physical functionality outcomes over a 13 year period across 56 sites in the Mexican Caribbean. This region was affected by multiple stressors that converged and drastically damaged reefs in the early 2000s. Since then, the reefs have shown evidence of a modest recovery of coral cover. We used Bayesian linear models and annual rates of change to estimate temporal changes in physical functionality and coral cover. Moreover, a functional diversity framework was used to explore changes in coral composition and the traits of those assemblages. Between 2005 and 2018, physical functionality increased at a markedly lower rate compared to that of coral cover. The disparity between recovery rates depended on the identity of the species that increased (mainly non-framework and foliose-digitate corals). No changes in species dominance or functional trait composition were observed, whereas non-framework building corals consistently dominated most reefs. Although the observed recovery of coral cover and functional potential may provide some ecological benefits, the long-term effects on reef frameworks remain unclear, as changes in the cover of key reef-building species were not observed. Our findings are likely to be representative of many reefs across the wider Caribbean basin, as declines in coral cover and rapid increases in the relative abundance of weedy corals have been reported regionally. A coral identity approach to assess species turnover is needed to understand and quantify changes in the functionality of coral reefs.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Rafael A Cabral-Tena
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
| |
Collapse
|
11
|
Russ GR, Rizzari JR, Abesamis RA, Alcala AC. Coral cover a stronger driver of reef fish trophic biomass than fishing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02224. [PMID: 32866333 PMCID: PMC7816266 DOI: 10.1002/eap.2224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 05/21/2023]
Abstract
An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1-2 yr), and when HC recovered, often slowly (5-10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.
Collapse
Affiliation(s)
- Garry R. Russ
- College of Science and Engineering and ARC Centre for Coral Reef StudiesJames Cook UniversityTownsvilleQueensland4811Australia
| | - Justin R. Rizzari
- School of Life and Environmental SciencesDeakin UniversityGeelong Waurn Ponds CampusGeelongVictoria3216Australia
| | - Rene A. Abesamis
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| | - Angel C. Alcala
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| |
Collapse
|
12
|
Molina-Hernández A, González-Barrios FJ, Perry CT, Álvarez-Filip L. Two decades of carbonate budget change on shifted coral reef assemblages: are these reefs being locked into low net budget states? Proc Biol Sci 2020; 287:20202305. [PMID: 33290684 DOI: 10.1098/rspb.2020.2305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ecology of coral reefs is rapidly shifting from historical baselines. One key-question is whether under these new, less favourable ecological conditions, coral reefs will be able to sustain key geo-ecological processes such as the capacity to accumulate carbonate structure. Here, we use data from 34 Caribbean reef sites to examine how the carbonate production, net erosion and net carbonate budgets, as well as the organisms underlying these processes, have changed over the past 15 years in the absence of further severe acute disturbances. We find that despite fundamental benthic ecological changes, these ecologically shifted coral assemblages have exhibited a modest but significant increase in their net carbonate budgets over the past 15 years. However, contrary to expectations this trend was driven by a decrease in erosion pressure, largely resulting from changes in the abundance and size-frequency distribution of parrotfishes, and not by an increase in rates of coral carbonate production. Although in the short term, the carbonate budgets seem to have benefitted marginally from reduced parrotfish erosion, the absence of these key substrate grazers, particularly of larger individuals, is unlikely to be conducive to reef recovery and will thus probably lock these reefs into low budget states.
Collapse
Affiliation(s)
- Ana Molina-Hernández
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, México.,Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Chris T Perry
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
13
|
Precht WF, Aronson RB, Gardner TA, Gill JA, Hawkins JP, Hernández-Delgado EA, Jaap WC, McClanahan TR, McField MD, Murdoch TJT, Nugues MM, Roberts CM, Schelten CK, Watkinson AR, Côté IM. The timing and causality of ecological shifts on Caribbean reefs. ADVANCES IN MARINE BIOLOGY 2020; 87:331-360. [PMID: 33293016 DOI: 10.1016/bs.amb.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Collapse
Affiliation(s)
- William F Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Miami, FL, United States.
| | - Richard B Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | | | - Jennifer A Gill
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Julie P Hawkins
- Environment Department, University of York, York, United Kingdom
| | - Edwin A Hernández-Delgado
- Department of Environmental Sciences and Center for Applied Tropical Ecology and Conservation, Applied Marine Ecology Laboratory, University of Puerto Rico, San Juan, Puerto Rico
| | - Walter C Jaap
- Lithophyte Research LLC, Saint Petersburg, FL, United States
| | - Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States
| | | | | | - Maggy M Nugues
- EPHE, Laboratoire d'Excellence "CORAIL", PSL Research University, UPVD, CNRS, USR, Perpignan, France
| | - Callum M Roberts
- Environment Department, University of York, York, United Kingdom
| | | | - Andrew R Watkinson
- Living with Environmental Change, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Coral Reef Recovery in the Mexican Caribbean after 2005 Mass Coral Mortality—Potential Drivers. DIVERSITY 2020. [DOI: 10.3390/d12090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 2005, an extreme heatwave hit the Wider Caribbean, followed by 13 hurricanes (including hurricanes Emily and Wilma) that caused significant loss in hard coral cover. However, the drivers of the potential recovery are yet to be fully understood. Based on recent findings in the literature of coral cover recovery in the Mexican Caribbean after the mass bleaching event and associated hurricanes in 2005, this study analyzed, through random-effects meta-analysis, the hard coral and macroalgae benthic development and potential drivers of change between 2005 and 2016 in the Mexican Caribbean. Therefore, we tested the relative effect of sea surface temperature (SST), chlorophyll-a water concentration, coastal human population development, reef distance to shore, and geographical location on both hard coral and macroalgae cover over time. Findings revealed increases of both hard coral (by 6%) and algae cover (by ca. 14%, i.e., almost three times the increase of corals) over 12 years. Although our findings confirm the partial coral recovery after the 2005 Caribbean mass coral mortality event, they also indicate rapid colonization of algae across the region. Surprisingly, only SST correlated negatively with changes in coral cover. Contrary to expectations, there was a significantly greater algae cover increase in the Central section of the Mexican Caribbean, which is characterized by a low population density. However, a constant discharge of nutrient-rich freshwater may have facilitated algae growth there. This study reports partial regional reef recovery, but it also indicates that local factors, particularly eutrophication, facilitate algae growth at a speed that is much faster than coral recovery.
Collapse
|
15
|
Contreras-Silva AI, Tilstra A, Migani V, Thiel A, Pérez-Cervantes E, Estrada-Saldívar N, Elias-Ilosvay X, Mott C, Alvarez-Filip L, Wild C. A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Sci Rep 2020; 10:8897. [PMID: 32483234 PMCID: PMC7264131 DOI: 10.1038/s41598-020-65801-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Coral reefs in the wider Caribbean declined in hard coral cover by ~80% since the 1970s, but spatiotemporal analyses for sub-regions are lacking. Here, we explored benthic change patterns in the Mexican Caribbean reefs through meta-analysis between 1978 and 2016 including 125 coral reef sites. Findings revealed that hard coral cover decreased from ~26% in the 1970s to 16% in 2016, whereas macroalgae cover increased to ~30% in 2016. Both groups showed high spatiotemporal variability. Hard coral cover declined in total by 12% from 1978 to 2004 but increased again by 5% between 2005 and 2016 indicating some coral recovery after the 2005 mass bleaching event and hurricane impacts. In 2016, more than 80% of studied reefs were dominated by macroalgae, while only 15% were dominated by hard corals. This stands in contrast to 1978 when all reef sites surveyed were dominated by hard corals. This study is among the first within the Caribbean region that reports local recovery in coral cover in the Caribbean, while other Caribbean reefs have failed to recover. Most Mexican Caribbean coral reefs are now no longer dominated by hard corals. In order to prevent further reef degradation, viable and reliable conservation alternatives are required.
Collapse
Affiliation(s)
- Ameris I Contreras-Silva
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany.
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany
| | - Valentina Migani
- Population and Evolutionary Ecology Group, Institute of Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 5, 28359, Bremen, Germany
| | - Andra Thiel
- Population and Evolutionary Ecology Group, Institute of Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 5, 28359, Bremen, Germany
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Xochitl Elias-Ilosvay
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany
| | - Claudius Mott
- Remote Sensing Solutions GmbH, Dingolfinger Str. 9, 81673, München, Germany
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico.
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany.
| |
Collapse
|
16
|
Häder DP, Banaszak AT, Villafañe VE, Narvarte MA, González RA, Helbling EW. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136586. [PMID: 31955090 DOI: 10.1016/j.scitotenv.2020.136586] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 04/15/2023]
Abstract
Aquatic ecosystems cover over two thirds of our planet and play a pivotal role in stabilizing the global climate as well as providing a large array of services for a fast-growing human population. However, anthropogenic activities increasingly provoke deleterious impacts in aquatic ecosystems. In this paper we discuss five sources of anthropogenic pollution that affect marine and freshwater ecosystems: sewage, nutrients and terrigenous materials, crude oil, heavy metals and plastics. Using specific locations as examples, we show that land-based anthropogenic activities have repercussions in freshwater and marine environments, and we detail the direct and indirect effects that these pollutants have on a range of aquatic organisms, even when the pollutant source is distant from the sink. While the issues covered here do focus on specific locations, they exemplify emerging problems that are increasingly common around the world. All these issues are in dire need of stricter environmental policies and legislations particularly for pollution at industrial levels, as well as solutions to mitigate the effects of anthropogenic pollutants and restore the important services provided by aquatic ecosystems for future generations.
Collapse
Affiliation(s)
- Donat-P Häder
- Friedrich-Alexander Universität, Dept. Biology, Neue Str. 9, D-91096 Möhrendorf, Germany.
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Virginia E Villafañe
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Estación de Fotobiología Playa Unión, Casilla de Correos N° 15, 9103 Rawson, Chubut, Argentina
| | - Maite A Narvarte
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Raúl A González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, 8520 San Antonio Oeste, Río Negro, Argentina
| | - E Walter Helbling
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Estación de Fotobiología Playa Unión, Casilla de Correos N° 15, 9103 Rawson, Chubut, Argentina
| |
Collapse
|
17
|
Shantz AA, Ladd MC, Burkepile DE. Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew A. Shantz
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802 USA
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara California 93106 USA
| | - Mark C. Ladd
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara California 93106 USA
| | - Deron E. Burkepile
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara California 93106 USA
- Marine Science Institute University of California Santa Barbara California 93106 USA
| |
Collapse
|
18
|
Richardson LE, Graham NAJ, Hoey AS. Coral species composition drives key ecosystem function on coral reefs. Proc Biol Sci 2020; 287:20192214. [PMID: 32070253 PMCID: PMC7062023 DOI: 10.1098/rspb.2019.2214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid and unprecedented ecological change threatens the functioning and stability of ecosystems. On coral reefs, global climate change and local stressors are reducing and reorganizing habitat-forming corals and associated species, with largely unknown implications for critical ecosystem functions such as herbivory. Herbivory mediates coral-algal competition, thereby facilitating ecosystem recovery following disturbance such as coral bleaching events or large storms. However, relationships between coral species composition, the distribution of herbivorous fishes and the delivery of their functional impact are not well understood. Here, we investigate how herbivorous fish assemblages and delivery of two distinct herbivory processes, grazing and browsing, differ among three taxonomically distinct, replicated coral habitats. While grazing on algal turf assemblages was insensitive to different coral configurations, browsing on the macroalga Laurencia cf. obtusa varied considerably among habitats, suggesting that different mechanisms may shape these processes. Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.
Collapse
Affiliation(s)
- Laura E Richardson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Nicholas A J Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
19
|
Mendes TC, Quimbayo JP, Bouth HF, Silva LPS, Ferreira CEL. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. JOURNAL OF FISH BIOLOGY 2019; 95:812-819. [PMID: 31198985 DOI: 10.1111/jfb.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the functional role of the highly generalist omnivore Melichthys niger in the remote St. Peter and St Paul's Archipelago (SPSPA), Brazil, where grazing herbivorous fishes are very scarce. We analysed patterns of distribution from zero to 30 m deep during three time intervals during the day and sampled different aspects of their feeding behaviour, including diel feeding rate, feeding substrate and diet. The density of M. niger increased with depth (26-30 m) and decreased by the end of the day. Although M. niger did not present a typical herbivore diel feeding pattern, they targeted the epilithic algal matrix as their primary feeding substrate, ingesting predominantly algae and detritus. The characteristic Caulerpa racemosa var. peltata from SPSPA was ingested only as detached fronds. We suggest that in the isolated SPSPA, the single species M. niger may perform a unique role as a link between benthic primary production and higher levels. Further studies on the trophic ecology of omnivorous species are necessary to better understand their roles in a reef system, especially in impoverished areas where they are likely to play a crucial role.
Collapse
Affiliation(s)
- Thiago C Mendes
- Department of Ecology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Reef System Ecology and Conservation Laboratory, Department de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
- Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Juan P Quimbayo
- Reef System Ecology and Conservation Laboratory, Department de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
- Macroecology and Biogeographic Laboratory, Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Helena F Bouth
- Reef System Ecology and Conservation Laboratory, Department de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
| | - Luana P S Silva
- Reef System Ecology and Conservation Laboratory, Department de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos E L Ferreira
- Reef System Ecology and Conservation Laboratory, Department de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
20
|
Cannon SE, Donner SD, Fenner D, Beger M. The relationship between macroalgae taxa and human disturbance on central Pacific coral reefs. MARINE POLLUTION BULLETIN 2019; 145:161-173. [PMID: 31590773 DOI: 10.1016/j.marpolbul.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 06/10/2023]
Abstract
Climate change and human disturbance threatens coral reefs across the Pacific, yet there is little consensus on what characterizes a "healthy" reef. Benthic cover, particularly low coral cover and high macroalgae cover, are often used as an indicator of reef degradation, despite uncertainty about the typical algal community compositions associated with either near-pristine or damaged reefs. In this study, we examine differences in coral and algal community compositions and their response to human disturbance and past heat stress, by analysing 25 sites along a gradient of human disturbance in Majuro and Arno Atolls of the Republic of the Marshall Islands. Our results show that total macroalgae cover indicators of reef degradation may mask the influence of local human disturbance, with different taxa responding to disturbance differently. Identifying macroalgae to a lower taxonomic level (e.g. the genus level) is critical for a more accurate measure of Pacific coral reef health.
Collapse
Affiliation(s)
- Sara E Cannon
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada.
| | - Simon D Donner
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada
| | | | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
21
|
Ruttenberg BI, Adam TC, Duran A, Burkepile DE. Identity of coral reef herbivores drives variation in ecological processes over multiple spatial scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01893. [PMID: 31026114 DOI: 10.1002/eap.1893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Overexploitation of key species can negatively impact ecosystem processes, so understanding the ecological roles of individual species is critical for improving ecosystem management. Here, we use coral reefs and the process of herbivory as a model to examine how species identity of consumers influence ecosystem processes to inform management of these consumers. Herbivorous fishes can facilitate the recruitment, growth, and recovery of corals by controlling the fast-growing algae that can outcompete corals for space. However, herbivorous fish guilds are species rich with important differences among species in diet, movement, and habitat preferences. Yet, we lack a general understanding of (1) how these species-specific differences in feeding and behavior scale up to reef-wide rates of ecosystem processes and (2) how species identity and diversity impact these processes. To address these knowledge gaps, we used field observations to derive key species- and size-specific foraging parameters for nine herbivorous parrotfish species on coral reefs in the Florida Keys, USA. We then combined these foraging parameters with fish survey data spanning multiple spatial scales to estimate the rates of three ecosystem processes: area of reef grazed, amount of macroalgae removed, and rate of bioerosion. We found that predicted rates of ecological processes varied dramatically among habitats and among reef zones within habitats, driven primarily by variation in abundance among species with different foraging behaviors. In some cases, assemblages with similar levels of total biomass had different rates of ecological processes, and in others, assemblages with different biomass had similar rates of ecological processes. Importantly, our models of herbivory using species-specific parameters differed from those using genus-level parameters by up to 300% in rates of ecological processes, highlighting the importance of herbivore identity in this system. Our results indicate that there may be little overlap in the roles species play, suggesting that some systems may be vulnerable to loss of ecological function with the reduction or loss of just a few species. This work provides a framework that can be applied across the region to predict how changes in management may affect the ecological impact of these important herbivores.
Collapse
Affiliation(s)
- Benjamin I Ruttenberg
- Biological Sciences Department and Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California, 93407-0401, USA
| | - Thomas C Adam
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - Alain Duran
- Department of Biological Sciences and Marine Sciences Program, Florida International University, Miami, Florida, 33181, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
- Department of Ecology, Evolution& Marine Biology, University of California, Santa Barbara, California, 93106, USA
| |
Collapse
|
22
|
Adapting to extreme environments: can coral reefs adapt to climate change? Emerg Top Life Sci 2019; 3:183-195. [DOI: 10.1042/etls20180088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Abstract
Reef-building corals throughout the world have an annual value of tens of billions of dollars, yet they are being degraded at an increasing rate by many anthropogenic and environmental factors. Despite this, some reefs show resilience to such extreme environmental changes. This review shows how techniques in computational modelling, genetics, and transcriptomics are being used to unravel the complexity of coral reef ecosystems, to try and understand if they can adapt to new and extreme environments. Considering the ambitious climate targets of the Paris Agreement to limit global warming to 2°C, with aspirations of even 1.5°C, questions arise on how to achieve this. Geoengineering may be necessary if other avenues fail, although global governance issues need to play a key role. Development of large and effective coral refugia and marine protected areas is necessary if we are not to lose this vital resource for us all.
Collapse
|
23
|
Rioja-Nieto R, Álvarez-Filip L. Coral reef systems of the Mexican Caribbean: Status, recent trends and conservation. MARINE POLLUTION BULLETIN 2019; 140:616-625. [PMID: 30005908 DOI: 10.1016/j.marpolbul.2018.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Over the last four decades the Mexican Caribbean has experienced intensive coastal development, and change on the reef system condition has already been observed. This paper describes the reef system characteristics, at local and seascape scales, and discusses the current status and trends, considering the main research efforts from academia and Non-Governmental Organizations. To date, the coral cover of most reefs in the region is between 15 and 20%, following a slight recovery on mean coral cover over the last decade. During this same period, fleshy macroalgae and herbivorous fish biomass appear to have increased. At seascape scales, an increase of macroalgae and the loss of seagrass habitat have been observed. Considering that anthropogenic and environmental disturbances will most likely increase, the establishment of newly protected areas in the Mexican Caribbean is appropriate, but sufficient accompanying funding is required.
Collapse
Affiliation(s)
- Rodolfo Rioja-Nieto
- Laboratorio de Análisis Espacial de Zonas Costeras, Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, Yucatán 97302, México.
| | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
24
|
Bruno JF, Côté IM, Toth LT. Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience? ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:307-334. [PMID: 30606097 DOI: 10.1146/annurev-marine-010318-095300] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change-the root cause of global coral decline.
Collapse
Affiliation(s)
- John F Bruno
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA;
| | - Isabelle M Côté
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lauren T Toth
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, Florida 33701, USA
| |
Collapse
|
25
|
Francis F, Filbee-Dexter K, Yan H, Côté I. Invertebrate herbivores: Overlooked allies in the recovery of degraded coral reefs? Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
26
|
Robinson JPW, Williams ID, Yeager LA, McPherson JM, Clark J, Oliver TA, Baum JK. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. CORAL REEFS (ONLINE) 2018; 37:1157-1168. [PMID: 30930680 PMCID: PMC6404665 DOI: 10.1007/s00338-018-01737-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/20/2018] [Indexed: 05/30/2023]
Abstract
Our ability to understand natural constraints on coral reef benthic communities requires quantitative assessment of the relative strengths of abiotic and biotic processes across large spatial scales. Here, we combine underwater images, visual censuses and remote sensing data for 1566 sites across 34 islands spanning the central-western Pacific Ocean, to empirically assess the relative roles of abiotic and grazing processes in determining the prevalence of calcifying organisms and fleshy algae on coral reefs. We used regression trees to identify the major predictors of benthic composition and to test whether anthropogenic stress at inhabited islands decouples natural relationships. We show that sea surface temperature, wave energy, oceanic productivity and aragonite saturation strongly influence benthic community composition; overlooking these factors may bias expectations of calcified reef states. Maintenance of grazing biomass above a relatively low threshold (~ 10-20 kg ha-1) may also prevent transitions to algal-dominated states, providing a tangible management target for rebuilding overexploited herbivore populations. Biophysical relationships did not decouple at inhabited islands, indicating that abiotic influences remain important macroscale processes, even at chronically disturbed reefs. However, spatial autocorrelation among inhabited reefs was substantial and exceeded abiotic and grazing influences, suggesting that natural constraints on reef benthos were superseded by unmeasured anthropogenic impacts. Evidence of strong abiotic influences on reef benthic communities underscores their importance in specifying quantitative targets for coral reef management and restoration that are realistic within the context of local conditions.
Collapse
Affiliation(s)
- James P. W. Robinson
- Department of Biology, University of Victoria, PO BOX 1700, Station CSC, Victoria, BC V8W 2Y2 Canada
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Ivor D. Williams
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
| | - Lauren A. Yeager
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373 USA
| | - Jana M. McPherson
- Center for Conservation Research, Calgary Zoological Society, 1300 Zoo Road NE, Calgary, AB T2E 7V6 Canada
- Department of Biological Sciences, Simon Fraser University, 888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Jeanette Clark
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
- Joint Institute for Marine and Atmospheric Research, University of Hawaìi at Mānoa, Honolulu, HI USA
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 735 State St #300, Santa Barbara, CA 93101 USA
| | - Thomas A. Oliver
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO BOX 1700, Station CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
27
|
González-Gómez R, Briones-Fourzán P, Álvarez-Filip L, Lozano-Álvarez E. Diversity and abundance of conspicuous macrocrustaceans on coral reefs differing in level of degradation. PeerJ 2018; 6:e4922. [PMID: 29910975 PMCID: PMC6001826 DOI: 10.7717/peerj.4922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022] Open
Abstract
Coral reefs sustain abundant and diverse macrocrustaceans that perform multiple ecological roles, but coral reefs are undergoing massive degradation that may be driving changes in the species composition and abundance of reef-associated macrocrustaceans. To provide insight into this issue, we used non-destructive visual census techniques to compare the diversity and abundance of conspicuous macrocrustaceans (i.e., those >1 cm and visible without disturbance) between two shallow Caribbean coral reefs similar in size (∼1.5 km in length) and close to each other, but one (“Limones”) characterized by extensive stands of the branching coral Acropora palmata, and the other (“Bonanza”) dominated by macroalgae and relic coral skeletons and rubble (i.e., degraded). We also assessed the structural complexity of each reef and the percent cover of various benthic community components. Given the type of growth of A. palmata, we expected to find a greater structural complexity, a higher cover of live coral, and a lower cover of macroalgae on Limones, and hence a more diverse and abundant macrocrustacean community on this reef compared with Bonanza. Overall, we identified 63 macrocrustacean species (61 Decapoda and two Stomatopoda). Contrary to our expectations, structural complexity did not differ significantly between the back-reef zones of these reefs but varied more broadly on Limones, and the diversity and abundance of macrocrustaceans were higher on Bonanza than on Limones despite live coral cover being higher on Limones and macroalgal cover higher on Bonanza. However, the use of various types of microhabitats by macrocrustaceans differed substantially between reefs. On both reefs, the dominant species were the clinging crab Mithraculus coryphe and the hermit crab Calcinus tibicen, but the former was more abundant on Bonanza and the latter on Limones. M. coryphe occupied a diverse array of microhabitats but mostly coral rubble and relic skeletons, whereas C. tibicen was often, but not always, found associated with colonies of Millepora spp. A small commensal crab of A. palmata, Domecia acanthophora, was far more abundant on Limones, emerging as the main discriminant species between reefs. Our results suggest that local diversity and abundance of reef-associated macrocrustaceans are partially modulated by habitat degradation, the diversity of microhabitat types, and the establishment of different commensal associations rather than by structural complexity alone.
Collapse
Affiliation(s)
- Roberto González-Gómez
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico, Ciudad de México, Mexico
| | - Patricia Briones-Fourzán
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Lorenzo Álvarez-Filip
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Enrique Lozano-Álvarez
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
28
|
Suchley A, Alvarez-Filip L. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conserv Lett 2018. [DOI: 10.1111/conl.12571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adam Suchley
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México; Puerto Morelos Quintana Roo Mexico
- Posgrado en Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México; Puerto Morelos Quintana Roo Mexico
| |
Collapse
|
29
|
Steneck RS, Mumby PJ, MacDonald C, Rasher DB, Stoyle G. Attenuating effects of ecosystem management on coral reefs. SCIENCE ADVANCES 2018; 4:eaao5493. [PMID: 29750192 PMCID: PMC5942913 DOI: 10.1126/sciadv.aao5493] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/20/2018] [Indexed: 05/12/2023]
Abstract
Managing diverse ecosystems is challenging because structuring drivers are often processes having diffuse impacts that attenuate from the people who were "managed" to the expected ecosystem-wide outcome. Coral reef fishes targeted for management only indirectly link to the ecosystem's foundation (reef corals). Three successively weakening interaction tiers separate management of fishing from coral abundance. We studied 12 islands along the 700-km eastern Caribbean archipelago, comparing fished and unfished coral reefs. Fishing reduced biomass of carnivorous (snappers and groupers) and herbivorous (parrotfish and surgeonfish) fishes. We document attenuating but important effects of managing fishing, which explained 37% of variance in parrotfish abundance, 20% of variance in harmful algal abundance, and 17% of variance in juvenile coral abundance. The explained variance increased when we quantified herbivory using area-specific bite rates. Local fisheries management resulted in a 62% increase in the archipelago's juvenile coral density, improving the ecosystem's recovery potential from major disturbances.
Collapse
Affiliation(s)
- Robert S. Steneck
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME 04573, USA
- Corresponding author.
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences and Australian Research Council Centre for Excellence in Coral Reef Studies, University of Queensland, Brisbane, Australia
| | - Chancey MacDonald
- Marine Biology and Aquaculture Science, College of Science and Engineering, and Australian Research Council Centre for Excellence in Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Douglas B. Rasher
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - George Stoyle
- RARE 1310 North Courthouse Road, Suite 110, Arlington, VA 22201, USA
| |
Collapse
|
30
|
Suchley A, Alvarez-Filip L. Herbivory facilitates growth of a key reef-building Caribbean coral. Ecol Evol 2017; 7:11246-11256. [PMID: 29299297 PMCID: PMC5743540 DOI: 10.1002/ece3.3620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 01/13/2023] Open
Abstract
The decline of reef-building corals in conjunction with shifts to short-lived opportunistic species has prompted concerns that Caribbean reef framework-building capacity has substantially diminished. Restoring herbivore populations may be a potential driver of coral recovery; however, the impact of herbivores on coral calcification has been little studied. We performed an exclusion experiment to evaluate the impact of herbivory on Orbicella faveolata coral growth over 14 months. The experiment consisted of three treatments: full exclusion cages; half cage procedural controls; and uncaged control plates, each with small O. faveolata colonies. We found that herbivorous fish exclusion had a substantial impact on both macroalgal cover and coral growth. Fleshy macroalgae reached 50% cover within some exclusion cages, but were almost absent from uncaged control plates. Critically, O. faveolata calcification rates were suppressed by almost half within exclusion cages, with monthly coral growth negatively related to overgrowth by fleshy macroalgae. These findings highlight the importance of herbivorous fishes for coral growth and the detrimental impact of macroalgal proliferation in the Caribbean. Policy makers and local managers should consider measures to protect herbivorous fishes and reduce macroalgal proliferation to enable coral communities to continue to grow and function.
Collapse
Affiliation(s)
- Adam Suchley
- Posgrado en Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Mexico City Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory Unidad Académica de Sistemas Arrecifales Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Puerto Morelos Mexico
| |
Collapse
|
31
|
Collado-Vides L, Duran A, Armenis E, Cassano V, Burkepile D, Shantz AA, Palma L, Díaz-Larrea J, Sentíes A, Fujii MT. Seasonal recruitment and survival strategies of Palisada cervicornis comb. nov. (Ceramiales, Rhodophyta) in coral reefs. JOURNAL OF PHYCOLOGY 2017; 53:1087-1096. [PMID: 28733994 DOI: 10.1111/jpy.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
As marine tropical ecosystems deteriorate and lose biodiversity, their communities are shifting to being dominated by a few species, altering ecosystem's functioning and services. Macroalgae are becoming dominant on coral reefs, and are frequently observed outcompeting corals. Turf algal assemblages are the base of energy flow in these systems and one of the most abundant types of macroalgae on coral reefs, but little is known about their biology and diversity. Through molecular and morphological analyses, we identified the turf-forming species Laurencia cervicornis, and by studying seasonal recruitment and the impact of herbivorous fishes on its abundance, we describe its survival strategy. The molecular analyses used a total of 45 rbcL gene sequences including eight current genera within the Laurencia complex and two new sequences of L. cervicornis and strongly support the new combination of Palisada cervicornis comb. nov. In addition, a detailed morphological characterization including the description of reproductive structures is provided. Palisada cervicornis was seen recruiting in all seasons but was typically in low abundance. Specimens grown on tiles in fish exclosure cages were devoured in less than 4 h when offered to fishes. Even though many species of the Laurencia complex have chemicals that deter herbivory, species within the genus Palisada lack feeding deterrents and thus are highly palatable. We suggest that P. cervicornis is a palatable species that seems to survive in the community by obtaining a size-refuge from herbivory within turf communities.
Collapse
Affiliation(s)
- Ligia Collado-Vides
- Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Alain Duran
- Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA
| | - Elizabeth Armenis
- Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA
| | - Valéria Cassano
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, São Paulo, 05508-900, Brazil
| | - Deron Burkepile
- Department of Ecology, Evolution, & Marine Biology and Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - Andrew A Shantz
- Department of Ecology, Evolution, & Marine Biology and Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - Laura Palma
- Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA
| | - Jhoana Díaz-Larrea
- Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, México D.F, 09340, México
| | - Abel Sentíes
- Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, México D.F, 09340, México
| | - Mutue Toyota Fujii
- Núcleo de Pesquisa em Ficologia, Instituto de Botânica, Av. Miguel Estéfano, 3687, São Paulo, 04301-902, Brazil
| |
Collapse
|
32
|
Arias-González JE, Fung T, Seymour RM, Garza-Pérez JR, Acosta-González G, Bozec YM, Johnson CR. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS One 2017; 12:e0174855. [PMID: 28445546 PMCID: PMC5405933 DOI: 10.1371/journal.pone.0174855] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/16/2017] [Indexed: 01/12/2023] Open
Abstract
Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica.
Collapse
Affiliation(s)
- Jesús Ernesto Arias-González
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados I.P.N.-Unidad Mérida. Carr. Ant. Progreso Km. 6, A.P. 73 Cordemex, Mérida, Yucatan, Mexico
- * E-mail:
| | - Tak Fung
- National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, Singapore
| | - Robert M. Seymour
- Centre for Mathematics & Physics in the Life Sciences & Experimental Biology, & Department of Mathematics, University College London, London United Kingdom
| | - Joaquín Rodrigo Garza-Pérez
- Unidad Multidisciplinaria de Docencia e Investigación Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal Yucatán Mexico
| | - Gilberto Acosta-González
- Unidad de Ciencias del Agua. Centro de Investigación Científica de Yucatán A.C. Calle 8 no. 29 Mza 39 SM 64. Cancún. Q. Roo. C.P. México
| | - Yves-Marie Bozec
- Marine Spatial Ecology Lab, School of Biological Sciences & Australian Research Council Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, Queensland, Australia
| | - Craig R. Johnson
- Institute for Marine & Antarctic Studies, Private Bag 129, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
33
|
Clements KD, German DP, Piché J, Tribollet A, Choat JH. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12914] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kendall D. Clements
- School of Biological Sciences; University of Auckland; Private Bag 92019 Auckland New Zealand
| | - Donovan P. German
- Department of Ecology and Evolutionary Biology; University of California; Irvine CA 92697 USA
| | - Jacinthe Piché
- Department of Biology; Dalhousie University; Halifax NS B3H 4R2 Canada
| | - Aline Tribollet
- IRD-Sorbonne Universités (Univ. Paris 6) UPMC-CNRS-MNHN; Laboratoire IPSL-LOCEAN; 32 Avenue Henri Varagnat 93143 Bondy France
| | - John Howard Choat
- College of Marine and Environmental Sciences; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
34
|
Pereira PHC, Santos M, Lippi DL, Silva P. Ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae. PeerJ 2016; 4:e2536. [PMID: 27761330 PMCID: PMC5068395 DOI: 10.7717/peerj.2536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the resilience of coral reefs. Nevertheless, little is known on their ecological role in the south-western Atlantic Ocean. The present study analysed the ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae using behavioural observation and benthic composition analyses. We found a significant negative relationship between fish size and feeding rates for S. zelindae individuals. Thus, terminal phase individuals forage with lower feeding rates compared to juveniles and initial phase individuals. The highest relative foraging frequency of S. zelindae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred benthos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life phases (1.3%). Different life phases of S. zelindae foraged on different benthos according to their availability. Based on Ivlev’s electivity index, juveniles selected EAM and sponge, while initial phase and terminal phase individuals only selected EAM. Our findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae is reduced according to body size and that there is a slight ontogenetic change in feeding selectivity. Therefore, ecological knowledge of ontogenetic variations on resource use is critical for the remaining parrotfish populations which have been dramatically reduced in the Southwestern Atlantic Ocean.
Collapse
Affiliation(s)
- Pedro H C Pereira
- Department of Marine Biology, James Cook University, Townsville, Queensland, Australia; Coral Reef Ecosystem Department, Reef Conservation Project, Recife, PE, Brazil
| | - Marcus Santos
- Coral Reef Ecosystem Department, Reef Conservation Project, Recife, PE, Brazil; Department of Oceanography, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Daniel L Lippi
- Coral Reef Ecosystem Department, Reef Conservation Project, Recife, PE, Brazil; Department of Oceanography, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Pedro Silva
- Coral Reef Ecosystem Department, Reef Conservation Project, Recife, PE, Brazil; Biological Sciences Department, Federal Institute of Education, Science and Technology (IFGoiano), Rio Verde, GO, Brazil
| |
Collapse
|