1
|
Vohsen SA, Gruber-Vodicka HR, Herrera S, Dubilier N, Fisher CR, Baums IB. Discovery of deep-sea coral symbionts from a novel clade of marine bacteria with severely reduced genomes. Nat Commun 2024; 15:9508. [PMID: 39496625 PMCID: PMC11535214 DOI: 10.1038/s41467-024-53855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes perform critical functions in corals, yet most knowledge is derived from the photic zone. Here, we discover two mollicutes that dominate the microbiome of the deep-sea octocoral, Callogorgia delta, and likely reside in the mesoglea. These symbionts are abundant across the host's range, absent in the water, and appear to be rare in sediments. Unlike other mollicutes, they lack all known fermentative capabilities, including glycolysis, and can only generate energy from arginine provided by the coral host. Their genomes feature several mechanisms to interact with foreign DNA, including extensive CRISPR arrays and restriction-modification systems, which may indicate their role in symbiosis. We propose the novel family Oceanoplasmataceae which includes these symbionts and others associated with five marine invertebrate phyla. Its exceptionally broad host range suggests that the diversity of this enigmatic family remains largely undiscovered. Oceanoplasmataceae genomes are the most highly reduced among mollicutes, providing new insight into their reductive evolution and the roles of coral symbionts.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biology, The Pennsylvania State University, State College, PA, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Harald R Gruber-Vodicka
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
- Zoological Institute, Christian-Albrecht University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
| | - Charles R Fisher
- Department of Biology, The Pennsylvania State University, State College, PA, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, State College, PA, USA.
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Bremen, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
| |
Collapse
|
2
|
Cho A, Finke JF, Zhong KX, Chan AM, Saunders R, Schulze A, Warne S, Miller KM, Suttle CA. The core microbiome of cultured Pacific oyster spat is affected by age but not mortality. Microbiol Spectr 2024; 12:e0003124. [PMID: 39162495 PMCID: PMC11448229 DOI: 10.1128/spectrum.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.
Collapse
Affiliation(s)
- Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F Finke
- Hakai Institute, Heriot Bay, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin X Zhong
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Stuij TM, Cleary DFR, Rocha RJM, Polonia ARM, Machado E Silva DA, Frommlet JC, Louvado A, Huang YM, De Voogd NJ, Gomes NCM. Development and validation of an experimental life support system to study coral reef microbial communities. Sci Rep 2024; 14:21260. [PMID: 39261551 PMCID: PMC11391067 DOI: 10.1038/s41598-024-69514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.
Collapse
Affiliation(s)
- T M Stuij
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A R M Polonia
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - D A Machado E Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - J C Frommlet
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A Louvado
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Y M Huang
- National Penghu University of Science and Technology, Magong, Taiwan
| | - N J De Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, Ainsworth T. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems. Heliyon 2024; 10:e27513. [PMID: 38468949 PMCID: PMC10926130 DOI: 10.1016/j.heliyon.2024.e27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
- Monash University, Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | - Marisa M. Pasella
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
| | - Tom Bridge
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jeremy Horowitz
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Peter R. Girguis
- University of Harvard, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Tracy Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
| |
Collapse
|
5
|
Gong S, Liang J, Jin X, Xu L, Zhao M, Yu K. Unfolding the secrets of microbiome (Symbiodiniaceae and bacteria) in cold-water coral. Microbiol Spectr 2023; 11:e0131523. [PMID: 37729536 PMCID: PMC10580923 DOI: 10.1128/spectrum.01315-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/09/2023] [Indexed: 09/22/2023] Open
Abstract
Recent deep-ocean exploration has uncovered a variety of cold-water coral (CWC) ecosystems around the world ocean, but it remains unclear how microbiome is associated with these corals at a molecular levels. This study utilized metabarcoding, tissue section observation, and metatranscriptomes to investigate the microbiome (Symbiodiniaceae and bacteria) of CWC species (Narella versluysi, Heterogorgia uatumani, and Muriceides sp.) from depths ranging from 260 m to 370 m. Warm-water coral (WWC) species (Acropora pruinosa, Pocillopora damicornis, and Galaxea fascicularis) were used as control groups. Results revealed that CWC host diverse bacteria and Symbiodiniaceae cells were observed in endoderm of CWC tissues. Several new candidate bacterial phyla were found in both CWC and WWC, including Coralsanbacteria, Coralqiangbacteria, Coralgsqaceae, Coralgongineae, etc. Both the 16S rRNA gene sequencing and metatranscriptomes revealed that Actinobacteria and Proteobacteria were abundant bacterial phyla in CWC. At the gene transcription level, the CWC-associated Symbiodiniaceae community showed a low-level transcription of genes involved in photosynthesis, CO2 fixation, glycolysis, citric acid cycle, while bacteria associated with CWC exhibited a high-level transcription of genes for carbon fixation via the Wood-Lijungdahl pathway, short chain fatty acids production, nitrogen, and sulfur cycles. IMPORTANCE This study shed new light on the functions of both Symbiodiniaceae and bacteria in cold-water coral (CWC). The results demonstrated that Symbiodiniaceae can survive and actively transcribe genes in CWC, suggesting a possible symbiotic or parasitic relationship with the host. This study also revealed complete non-photosynthetic CO2 fixation pathway of bacteria in CWC, as well as their roles in short chain fatty acids production and assimilation of host-derived organic nitrogen and sulfur. These findings highlight the important role of bacteria in the carbon, nitrogen sulfur cycles in CWC, which were possibly crucial for CWC survival in in deep-water environments.
Collapse
Affiliation(s)
- Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Xujie Jin
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, China
| | - Meixia Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Li H, Hill N, Wallace J. A perennial living mulch system fosters a more diverse and balanced soil bacterial community. PLoS One 2023; 18:e0290608. [PMID: 37643167 PMCID: PMC10464973 DOI: 10.1371/journal.pone.0290608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Cover crops are known to positively impact soil health, both at a physical level (through erosion control and organic matter enhancement) and at a biological level (by fostering more diverse microbial communities). However, most research in this area has been conducted in the context of annual cover crops that are terminated when the main crop is planted. We have previously demonstrated that a continuous "living mulch" cover crop system can enhance the physical and chemical aspects of soil health; In this study, we reveal its effect on the soil bacterial community and compare it to two different annual cover crops and a conventional control without cover crops. We examined the effect of a living-mulch (LM) system using perennial white clover (Trifolium pratense L), annual cereal rye (Secale cereale L.) (CR), annual crimson clover (Trifolium incarnatum L.) (CC), and a no-cover (NC) control at three time points during the 2018 growing season. 16S rRNA amplicon analysis of the soil bacterial community revealed that the community composition in cover crop systems was significantly different from the NC control, and that LM and CR accommodated more heterogeneous and even bacterial communities compared to the NC control. The difference in bacterial composition between cover crop systems appears to be partly influenced by soil nitrogen concentration and lime buffer capacity. Overall community diversity was associated with nitrogen and metal ion concentrations, and these associations were both stronger and more numerous later in the season. These results elucidate how a perennial cover crop system affects the soil bacterial community and advance our understanding of the interactions between crops, management practices, and soil microbiomes in sustainable agriculture.
Collapse
Affiliation(s)
- Hanxia Li
- Institute of Bioinformatics, The University of Georgia, Athens, GA, United States of America
| | - Nicholas Hill
- Crop and Soil Sciences, The University of Georgia, Athens, GA, United States of America
| | - Jason Wallace
- Crop and Soil Sciences, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
7
|
Ashraf N, Anas A, Sukumaran V, Gopinath G, Idrees Babu KK, Dinesh Kumar PK. Recent advancements in coral health, microbiome interactions and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163085. [PMID: 36996987 DOI: 10.1016/j.scitotenv.2023.163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
Corals are the visible indicators of the disasters induced by global climate change and anthropogenic activities and have become a highly vulnerable ecosystem on the verge of extinction. Multiple stressors could act individually or synergistically which results in small to large scale tissue degradation, reduced coral covers, and makes the corals vulnerable to various diseases. The coralline diseases are like the Chicken pox in humans because they spread hastily throughout the coral ecosystem and can devastate the coral cover formed over centuries in an abbreviated time. The extinction of the entire reef ecosystem will alter the ocean and earth's amalgam of biogeochemical cycles causing a threat to the entire planet. The current manuscript provides an overview of the recent advancement in coral health, microbiome interactions and climate change. Culture dependent and independent approaches in studying the microbiome of corals, the diseases caused by microorganisms, and the reservoirs of coral pathogens are also discussed. Finally, we discuss the possibilities of protecting the coral reefs from diseases through microbiome transplantation and the capabilities of remote sensing in monitoring their health status.
Collapse
Affiliation(s)
- Nizam Ashraf
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Abdulaziz Anas
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India.
| | - Vrinda Sukumaran
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduvypu Campus, Kochi 682 508, India
| | - K K Idrees Babu
- Department of Science and Technology, Kavaratti, Lakshadweep 682555, India
| | - P K Dinesh Kumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| |
Collapse
|
8
|
Nguyen DH, Tran P T, Tran DM, Masashi H, Takashi Y, Nguyen HL. Development of a post-treatment system using a downflow hanging sponge reactor - an upflow anaerobic reactor for natural rubber processing wastewater treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:977-986. [PMID: 36263701 DOI: 10.1080/10934529.2022.2134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the nitrogen removal of a post-treatment system for natural rubber processing wastewater (NRPW) under low chemical oxygen demand to total nitrogen (COD/TN) ratios without any supplemental external carbon source. The system including a downflow hanging sponge (DHS) reactor and an upflow anaerobic reactor (UAR) was operated in two phases. In phase 1 (day 0-102), under a nitrogen loading rate (NLR) of 0.23 ± 0.06 kgN m-3 d-1 and COD/TN ratio of 0.63 ± 0.47, the DHS-UAR system removed 82.5 ± 11.8% and 83.9 ± 7.6% of TN and ammonium concentrations, respectively. In phase 2 (day 103-229), higher COD/TN ratio of 1.96 ± 0.28 was applied to remove increasing NLRs. At the highest NLR of 0.51 kgN m-3 d-1, the system achieved TN and ammonium removal efficiencies of 93.2% and 93.7%, respectively. Nitrogen profiles and the 16S rRNA high-throughput sequencing data suggested that ammonium, a major nitrogen compound in NRPW, was utilized by nitrifying and ammonium assimilation bacteria in DHS, then removed by heterotrophic denitrifying and anammox bacteria in the UAR. The predominance of Acinetobacter detected in both reactors suggested its essential role for the nitrogen conversion.
Collapse
Affiliation(s)
- Dung Hoang Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thao Tran P
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Duc Minh Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Hatamoto Masashi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yamaguchi Takashi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Huong Lan Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
9
|
Bellucci M, Borruso L, Piergiacomo F, Brusetti L, Beneduce L. The effect of substituting energy crop with agricultural waste on the dynamics of bacterial communities in a two-stage anaerobic digester. CHEMOSPHERE 2022; 294:133776. [PMID: 35093420 DOI: 10.1016/j.chemosphere.2022.133776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The replacement of energy crops with agricultural waste in biogas production through anaerobic digestion (AD) is both an environmentally sustainable and economically profitable strategy. However, the change of feeding mix in AD might result in nutrient imbalance or increase of the ammonium concentration, negatively affecting the activity of the microbes responsible for the process. In the present study the structure and dynamics of the bacterial communities of a full-scale two-stage AD plant, composed of a hydrolysis/acidogenesis (H) and an acetogenesis/methanogenesis (M) tanks, was monitored during feedstock substitution. Energy crop (triticale) was replaced by poultry manure litter and olive mill pomace. The increase percentage of poultry manure litter (up to 8.6%) and olive mill pomace (up to 30.5%) in the recipe incremented the total solids (up to 21% in H) and, consequently, the nitrogen content in the digestate (6.7 g N/kg in the solid fraction in H and 4-5 g NH4+-N/L in the liquid fraction). This favored the growth of Lactococcus sp. with consequent increment of lactate production (∼ 1 mg L-1 last two days of the survey) and the establishment of Weissella and Lactobacillus spp. Syntrophic acetate-oxidizers, including Syntrophaceticus (6% ± 1.7%), were detected manly in M but were negatively affected by the addition of the poultry manure litter, while the sulfate-reducing bacteria correlated with the variations of the volatile fatty acids. Planctomycetes putatively capable of anammox process were also found in the H during the first two days of the survey and accounted for 0.3 ± 0.01% of the total bacterial community. The stability of the process during feedstock change is the result of the shift of bacterial populations of different functional groups that showed peculiar adaptation patterns in the two stages of the plant.
Collapse
Affiliation(s)
- M Bellucci
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Rome, 00144, Italy
| | - L Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - F Piergiacomo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - L Brusetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100, Bolzano-Bozen, Italy
| | - L Beneduce
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
10
|
Quintanilla E, Rodrigues CF, Henriques I, Hilário A. Microbial Associations of Abyssal Gorgonians and Anemones (>4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Front Microbiol 2022; 13:828469. [PMID: 35432234 PMCID: PMC9006452 DOI: 10.3389/fmicb.2022.828469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.
Collapse
Affiliation(s)
- Elena Quintanilla
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Clara F. Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Leinberger J, Milke F, Christodoulou M, Poehlein A, Caraveo-Patiño J, Teske A, Brinkhoff T. Microbial epibiotic community of the deep-sea galatheid squat lobster Munidopsis alvisca. Sci Rep 2022; 12:2675. [PMID: 35177734 PMCID: PMC8854721 DOI: 10.1038/s41598-022-06666-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Life at hydrothermal vent sites is based on chemosynthetic primary producers that supply heterotrophic microorganisms with substrates and generate biomass for higher trophic levels. Often, chemoautotrophs associate with the hydrothermal vent megafauna. To investigate attached bacterial and archaeal communities on deep-sea squat lobsters, we collected ten specimens from a hydrothermal vent in the Guaymas Basin (Gulf of California). All animals were identified as Munidopsis alvisca via morphological and molecular classification, and intraspecific divergence was determined. Amplicon sequencing of microbial DNA and cDNA revealed significant differences between microbial communities on the carapaces of M. alvisca and those in ambient sea water. Major epibiotic bacterial taxa were chemoautotrophic Gammaproteobacteria, such as Thiotrichaceae and Methylococcaceae, while archaea were almost exclusively represented by sequences affiliated with Ca. Nitrosopumilus. In sea water samples, Marine Group II and III archaea and organoheterotrophic Alphaproteobacteria, Flavobacteriia and Planctomycetacia were more dominant. Based on the identified taxa, we assume that main metabolic processes, carried out by M. alvisca epibiota, include ammonia, methane and sulphide oxidation. Considering that M. alvisca could benefit from sulphide detoxification by its epibiota, and that attached microbes are supplied with a stable habitat in proximity to substrate-rich hydrothermal fluids, a mutualistic host-microbe relationship appears likely.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Magdalini Christodoulou
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | | | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
12
|
Silva DP, Epstein HE, Vega Thurber RL. Best practices for generating and analyzing 16S rRNA amplicon data to track coral microbiome dynamics. Front Microbiol 2022; 13:1007877. [PMID: 36891260 PMCID: PMC9987214 DOI: 10.3389/fmicb.2022.1007877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023] Open
Abstract
Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host's responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.
Collapse
Affiliation(s)
- Denise P Silva
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Hannah E Epstein
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
13
|
Elsheshtawy A, Clokie BGJ, Albalat A, Beveridge A, Hamza A, Ibrahim A, MacKenzie S. Characterization of External Mucosal Microbiomes of Nile Tilapia and Grey Mullet Co-cultured in Semi-Intensive Pond Systems. Front Microbiol 2021; 12:773860. [PMID: 34966368 PMCID: PMC8710667 DOI: 10.3389/fmicb.2021.773860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The external mucosal surfaces of the fish harbor complex microbial communities, which may play pivotal roles in the physiological, metabolic, and immunological status of the host. Currently, little is known about the composition and role of these communities, whether they are species and/or tissue specific and whether they reflect their surrounding environment. Co-culture of fish, a common practice in semi-intensive aquaculture, where different fish species cohabit in the same contained environment, is an easily accessible and informative model toward understanding such interactions. This study provides the first in-depth characterization of gill and skin microbiomes in co-cultured Nile tilapia (Oreochromis niloticus) and grey mullet (Mugil capito) in semi-intensive pond systems in Egypt using 16S rRNA gene-based amplicon sequencing. Results showed that the microbiome composition of the external surfaces of both species and pond water was dominated by the following bacterial phyla: Proteobacteria, Fusobacteriota, Firmicutes, Planctomycetota, Verrucomicrobiota, Bacteroidota, and Actinobacteriota. However, water microbial communities had the highest abundance and richness and significantly diverged from the external microbiome of both species; thus, the external autochthonous communities are not a passive reflection of their allochthonous communities. The autochthonous bacterial communities of the skin were distinct from those of the gill in both species, indicating that the external microbiome is likely organ specific. However, gill autochthonous communities were clearly species specific, whereas skin communities showed higher commonalities between both species. Core microbiome analysis identified the presence of shared core taxa between both species and pond water in addition to organ-specific taxa within and between the core community of each species. These core taxa included possibly beneficial genera such as Uncultured Pirellulaceae, Exiguobacterium, and Cetobacterium and opportunistic potential pathogens such as Aeromonas, Plesiomonas, and Vibrio. This study provides the first in-depth mapping of bacterial communities in this semi-intensive system that in turn provides a foundation for further studies toward enhancing the health and welfare of these cultured fish and ensuring sustainability.
Collapse
Affiliation(s)
- Ahmed Elsheshtawy
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | | | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Allan Beveridge
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Ahmad Hamza
- AQUAVET for Fish Nutrition and Health Solutions, Kafr El Sheikh, Egypt
| | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
14
|
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA. Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Mol Ecol Resour 2021; 22:877-890. [PMID: 34562066 DOI: 10.1111/1755-0998.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Lake sediments accumulate information on biological communities thus acting as natural archives. Traditionally paleolimnology has focussed on fossilized remains of organisms, however, many organisms do not leave fossil evidence, meaning major ecosystem components are missing from environmental reconstructions. Many paleolimnology studies now incorporate molecular methods, including investigating microbial communities using environmental DNA (eDNA), but there is uncertainty about the contribution of living organisms to molecular inventories. In the present study, we obtained DNA and RNA inventories from sediment spanning 700 years to investigate the contribution of past and active communities to the molecular signal from sedimentary archives. Additionally, a droplet digital PCR (ddPCR) targeting the 16S ribosomal RNA (16S rRNA) gene of the photosynthetic cyanobacterial genera Microcystis was used to explore if RNA signals were from legacy RNA. We posit that the RNA signal is a mixture of legacy RNA, dormant cells, living bacteria and modern-day trace level contaminants that were introduced during sampling and preferentially amplified. The presence of legacy RNA was confirmed by the detection of Microcystis in sediments aged to ~200 years ago. Recent comparisons between 16S rRNA gene metabarcoding and traditional paleo proxies showed that past changes in bacterial communities can be reconstructed from sedimentary archives. The recovery of RNA in the present study has provided new insights into the origin of these signals. However, caution is required during analysis and interpretation of 16S rRNA gene metabarcoding data especially in recent sediments were there are potentially active bacteria.
Collapse
Affiliation(s)
- John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Andrew Rees
- University of Victoria, Wellington, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
15
|
Pootakham W, Mhuantong W, Yoocha T, Sangsrakru D, Kongkachana W, Sonthirod C, Naktang C, Jomchai N, U-Thoomporn S, Yeemin T, Pengsakun S, Sutthacheep M, Tangphatsornruang S. Taxonomic profiling of Symbiodiniaceae and bacterial communities associated with Indo-Pacific corals in the Gulf of Thailand using PacBio sequencing of full-length ITS and 16S rRNA genes. Genomics 2021; 113:2717-2729. [PMID: 34089786 DOI: 10.1016/j.ygeno.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Corals live with complex assemblages of microbes including bacteria, the dinoflagellate Symbiodiniaceae, fungi and viruses in a coral holobiont. These coral-associated microorganisms play an important role in their host fitness and survival. Here, we investigated the structure and diversity of algal and bacterial communities associated with five Indo-Pacific coral species, using full-length 16S rRNA and internal transcribed spacer sequences. While the dinoflagellate communities associated with Poriteslutea were dominated with Symbiodiniaceae genus Cladocopium, the other four coral hosts were associated mainly with members of the Durusdinium genus, suggesting that host species was one of the underlying factors influencing the structure and composition of dinoflagellate communities associated with corals in the Gulf of Thailand. Alphaproteobacteria dominated the microbiomes of Pocillopora spp. while Pavonafrondifera and P. lutea were associated primarily with Gammaproteobacteria. Finally, we demonstrated a superior performance of full-length 16S rRNA sequences in achieving species-resolution taxonomic classification of coral-associated microbiota.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sonicha U-Thoomporn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thammasak Yeemin
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sittiporn Pengsakun
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | |
Collapse
|
16
|
Torres-Franco AF, Zuluaga M, Hernández-Roldán D, Leroy-Freitas D, Sepúlveda-Muñoz CA, Blanco S, Mota CR, Muñoz R. Assessment of the performance of an anoxic-aerobic microalgal-bacterial system treating digestate. CHEMOSPHERE 2021; 270:129437. [PMID: 33429236 DOI: 10.1016/j.chemosphere.2020.129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The performance of an anoxic-aerobic microalgal-bacterial system treating synthetic food waste digestate at 10 days of hydraulic retention time via nitrification-denitrification under increasing digestate concentrations of 25%, 50%, and 100% (v/v) was assessed during Stages I, II and III, respectively. The system supported adequate treatment without external CO2 supplementation since sufficient inorganic carbon in the digestate was available for autotrophic growth. High steady-state Total Organic Carbon (TOC) and Total Nitrogen (TN) removal efficiencies of 85-96% and 73-84% were achieved in Stages I and II. Similarly, PO43--P removals of 81 ± 15% and 58 ± 4% were recorded during these stages. During Stage III, the average influent concentrations of 815 ± 35 mg TOC·L-1, 610 ± 23 mg TN·L-1, and 46 ± 11 mg PO43--P·L-1 induced O2 limiting conditions, resulting in TOC, TN and PO43--P removals of 85 ± 3%, 73 ± 3%, and 28 ± 16%, respectively. Digestate concentrations of 25% and 50% favored nitrification-denitrification mechanisms, whereas the treatment of undiluted digestate resulted in higher ammonia volatilization and hampered nitrification-denitrification. In Stages I and II, the microalgal community was dominated by Chlorella vulgaris and Cryptomonas sp., whereas Pseudoanabaena sp. was more abundant during Stage III. Illumina sequencing revealed the presence of carbon and nitrogen transforming bacteria, with dominances of the genera Gemmata, Azospirillum, and Psychrobacter during Stage I, II, and III, respectively. Finally, the high settleability of the biomass (98% of suspended solids removal in the settler) and average C (42%), N (7%), P (0.2%), and S (0.4%) contents recovered in the biomass confirmed its potential for agricultural applications, contributing to a closed-cycle management of food waste.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Maribel Zuluaga
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Faculty of Environmental Engineering UPAEP University, Puebla, 21 Sur 1103, Barrio de Santiago, 72410, Puebla, Mexico
| | - Diana Hernández-Roldán
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Faculty of Environmental Engineering UPAEP University, Puebla, 21 Sur 1103, Barrio de Santiago, 72410, Puebla, Mexico
| | - Deborah Leroy-Freitas
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Cristian A Sepúlveda-Muñoz
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Saúl Blanco
- University of León, Campus de Vegazana, 24071, León, Spain; Laboratory of Diatomology, Institute of Environment, Natural Resources and Biodiversity, La Serna 58, 24007, León, Spain
| | - César R Mota
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n., 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
17
|
van de Water JAJM, Coppari M, Enrichetti F, Ferrier-Pagès C, Bo M. Local Conditions Influence the Prokaryotic Communities Associated With the Mesophotic Black Coral Antipathella subpinnata. Front Microbiol 2020; 11:537813. [PMID: 33123099 PMCID: PMC7573217 DOI: 10.3389/fmicb.2020.537813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
Black corals are important habitat-forming species in the mesophotic and deep-sea zones of the world’s oceans because of their arborescent colony structure and tendency to form animal forests. Although we have started unraveling the ecology of mesophotic black corals, the importance of the associated microbes to their health has remained unexplored. Here, we provide in-depth assessments of black coral-microbe symbioses by investigating the spatial and temporal stability of these associations, and make comparisons with a sympatric octocoral with similar colony structure. To this end, we collected samples of Antipathella subpinnata colonies from three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea (Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016 and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon sequencing. The bacterial community of E. cavolini was consistently dominated by Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional differences in the A. subpinnata microbiome existed between all locations and both time points, and no phylotypes were consistently associated with A. subpinnata. This highlights that local conditions may influence the bacterial community structure and potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that this coral holobiont possesses a high degree of microbiome flexibility, which may be a mechanism to acclimate to environmental change.
Collapse
Affiliation(s)
| | - Martina Coppari
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Francesco Enrichetti
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy
| | | | - Marzia Bo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
18
|
Zanotti AA, Gregoracci GB, Capel KCC, Kitahara MV. Microbiome of the Southwestern Atlantic invasive scleractinian coral, Tubastraea tagusensis. Anim Microbiome 2020; 2:29. [PMID: 33499978 PMCID: PMC7807860 DOI: 10.1186/s42523-020-00047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Background Commonly known as sun-coral, Tubastraea tagusensis is an azooxanthellate scleractinian coral that successfully invaded the Southwestern Atlantic causing significant seascape changes. Today it is reported to over 3500 km along the Brazilian coast, with several rocky shores displaying high substrate coverage. Apart from its singular invasiveness capacity, the documentation and, therefore, understanding of the role of symbiotic microorganisms in the sun-coral invasion is still scarce. However, in general, the broad and constant relationship between corals and microorganisms led to the development of co-evolution hypotheses. As such, it has been shown that the microbial community responds to environmental factors, adjustment of the holobiont, adapting its microbiome, and improving the hosts’ fitness in a short space of time. Here we describe the microbial community (i.e. Bacteria) associated with sun-coral larvae and adult colonies from a locality displaying a high invasion development. Results The usage of high throughput sequencing indicates a great diversity of Bacteria associated with T. tagusensis, with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, and Firmicutes corresponding to the majority of the microbiome in all samples. However, T. tagusensis’ microbial core consists of only eight genera for colonies, and, within them, three are also present in the sequenced larvae. Overall, the microbiome from colonies sampled at different depths did not show significant differences. The microbiome of the larvae suggests a partial vertical transfer of the microbial core in this species. Conclusion Although diverse, the microbiome core of adult Tubastraea tagusensis is composed of only eight genera, of which three are transferred from the mother colony to their larvae. The remaining bacteria genera are acquired from the seawater, indicating that they might play a role in the host fitness and, therefore, facilitate the sun-coral invasion in the Southwestern Atlantic.
Collapse
Affiliation(s)
- Aline Aparecida Zanotti
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil. .,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.
| | - Gustavo Bueno Gregoracci
- Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | | | - Marcelo Visentini Kitahara
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil.,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.,Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
19
|
Biagi E, Caroselli E, Barone M, Pezzimenti M, Teixido N, Soverini M, Rampelli S, Turroni S, Gambi MC, Brigidi P, Goffredo S, Candela M. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO 2 vents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138048. [PMID: 32251879 DOI: 10.1016/j.scitotenv.2020.138048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Coral microbiomes, the complex microbial communities associated with the different anatomic compartments of the coral, provide important functions for the host's survival, such as nutrient cycling at the host's surface, prevention of pathogens colonization, and promotion of nutrient uptake. Microbiomes are generally referred to as plastic entities, able to adapt their composition and functionality in response to environmental change, with a possible impact on coral acclimatization to phenomena related to climate change, such as ocean acidification. Ocean sites characterized by natural gradients of pCO2 provide models for investigating the ability of marine organisms to acclimatize to decreasing seawater pH. Here we compared the microbiome of the temperate, shallow water, non-symbiotic solitary coral Astroides calycularis that naturally lives at a volcanic CO2 vent in Ischia Island (Naples, Italy), with that of corals living in non-acidified sites at the same island. Bacterial DNA associated with the different anatomic compartments (mucus, tissue and skeleton) of A. calycularis was differentially extracted and a total of 68 samples were analyzed by 16S rRNA gene sequencing. In terms of phylogenetic composition, the microbiomes associated with the different coral anatomic compartments were different from each other and from the microbial communities of the surrounding seawater. Of all the anatomic compartments, the mucus-associated microbiome differed the most between the control and acidified sites. The differences detected in the microbial communities associated to the three anatomic compartments included a general increase in subdominant bacterial groups, some of which are known to be involved in different stages of the nitrogen cycle, such as potential nitrogen fixing bacteria and bacteria able to degrade organic nitrogen. Our data therefore suggests a potential increase of nitrogen fixation and recycling in A. calycularis living close to the CO2 vent system.
Collapse
Affiliation(s)
- Elena Biagi
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Monica Barone
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Martina Pezzimenti
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Nuria Teixido
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-Mer, France; Villa Dohrn-Benthic Ecology Center, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80077 Ischia (Naples), Italy
| | - Matteo Soverini
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Rampelli
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Cristina Gambi
- Villa Dohrn-Benthic Ecology Center, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80077 Ischia (Naples), Italy
| | - Patrizia Brigidi
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy.
| | - Marco Candela
- Unit of Holobiont Microbiome and Microbiome Engineering (HolobioME), Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy.
| |
Collapse
|
20
|
Mahadevan P, Middlebrooks ML. Bacterial diversity in the clarki ecotype of the photosynthetic sacoglossan, Elysia crispata. Microbiologyopen 2020; 9:e1098. [PMID: 32602643 PMCID: PMC7520991 DOI: 10.1002/mbo3.1098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 01/04/2023] Open
Abstract
Few studies have examined the bacterial communities associated with photosynthetic sacoglossan sea slugs. In this study, we determined the bacterial diversity in the clarki ecotype, Elysia crispata using 16S rRNA sequencing. Computational analysis using QIIME2 revealed variability between individual samples, with the Spirochaetes and Bacteroidetes phyla dominating most samples. Tenericutes and Proteobacteria were also found, among other phyla. Computational metabolic profiling of the bacteria revealed a variety of metabolic pathways involving carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and amino acid metabolism. Although associated bacteria may be involved in mutually beneficial metabolic pathways, there was a high degree of variation in the bacterial community of individual slugs. This suggests that many of these relationships are likely opportunistic rather than obligate and that many of these bacteria may live commensally providing no major benefit to the slugs.
Collapse
|
21
|
de Celis M, Belda I, Ortiz-Álvarez R, Arregui L, Marquina D, Serrano S, Santos A. Tuning up microbiome analysis to monitor WWTPs' biological reactors functioning. Sci Rep 2020; 10:4079. [PMID: 32139809 PMCID: PMC7057949 DOI: 10.1038/s41598-020-61092-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are necessary to protect ecosystems quality and human health. Their function relies on the degradation of organic matter and nutrients from a water influent, prior to the effluent release into the environment. In this work we studied the bacterial community dynamics of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing. The main phyla identified in the wastewater were Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Actinobacteria. The WWTP is located in Spain and, like other studied WWTP in temperate climate zones, the temperature played a major role in community assembly. Seasonal community succession is observed along the two years sampling period, in addition to a continual annual drift in the microbial populations. The core community of the WWTP bioreactor was also studied, where a small fraction of sequence variants constituted a large fraction of the total abundance. This core microbiome stability along the sampling period and the likewise dissimilarity patterns along the temperature gradient makes this feature a good candidate for a new process control in WWTPs.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ignacio Belda
- Department of Biology, Geology, Physics and Inorganic Chemistry - Area of Biodiversity and Conservation, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB - CSIC), 17300, Blanes, Catalonia, Spain
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Hou XM, Hai Y, Gu YC, Wang CY, Shao CL. Chemical and Bioactive Marine Natural Products of Coral-Derived Microorganisms (2015-2017). Curr Med Chem 2020; 26:6930-6941. [PMID: 31241431 DOI: 10.2174/0929867326666190626153819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023]
Abstract
Coral-derived microorganisms are known for their inherent ability to produce novel products of pharmaceutical importance. Nearly 260 marine natural products (MNPs) have been isolated from coral-derived microorganisms till 2014. In the last three years, 118 MNPs have been isolated from coral-associated microorganisms including 46 new compounds, two with a novel skeleton, and four new natural products. Most of them exhibited in vitro or in vivo activities against tumor cell lines, parasites, pathogenic bacteria, fungi and virus. We reviewed the natural products reported from 2015 to 2017 that have a wide range of bioactivities against different biological targets.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, Berkshire, United Kingdom
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Rice MM, Maher RL, Vega Thurber R, Burkepile DE. Different nitrogen sources speed recovery from corallivory and uniquely alter the microbiome of a reef-building coral. PeerJ 2019; 7:e8056. [PMID: 31741802 PMCID: PMC6859885 DOI: 10.7717/peerj.8056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022] Open
Abstract
Corals are in decline worldwide due to local anthropogenic stressors, such as nutrient loading, and global stressors, such as ocean warming. Anthropogenic nutrient loading, which is often rich in nitrate, inhibits coral growth and worsens corals' response to warming while natural sources of nitrogen, such as ammonium from fish excretion, promotes coral growth. Although the effects of nutrient loading and ocean warming have been well-studied, it remains unclear how these factors may interact with biotic processes, such as corallivory, to alter coral health and the coral microbiome. This study examined how nitrate vs. ammonium enrichment altered the effects of increased seawater temperature and simulated parrotfish corallivory on the health of Pocillopora meandrina and its microbial community. We tested the effects of nitrogen source on the response to corallivory under contrasting temperatures (control: 26 °C, warming: 29 °C) in a factorial mesocosm experiment in Moorea, French Polynesia. Corals were able to maintain growth rates despite simultaneous stressors. Seawater warming suppressed wound healing rates by nearly 66%. However, both ammonium and nitrate enrichment counteracted the effect of higher temperatures on would healing rates. Elevated seawater temperature and ammonium enrichment independently increased Symbiodiniaceae densities relative to controls, yet there was no effect of nitrate enrichment on algal symbiont densities. Microbiome variability increased with the addition of nitrate or ammonium. Moreover, microbial indicator analysis showed that Desulfovibrionaceae Operational taxonomic units (OTUs) are indicators of exclusively temperature stress while Rhodobacteraceae and Saprospiraceae OTUs were indicators of high temperature, wounding, and nitrogen enrichment. Overall, our results suggest that nitrogen source may not alter the response of the coral host to simultaneous stressors, but that the associated microbial community may be distinct depending on the source of enrichment.
Collapse
Affiliation(s)
- Mallory M Rice
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
24
|
Jensen S, Hovland M, Lynch MDJ, Bourne DG. Diversity of deep-water coral-associated bacteria and comparison across depth gradients. FEMS Microbiol Ecol 2019; 95:5519855. [DOI: 10.1093/femsec/fiz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTEnvironmental conditions influence species composition, including the microbial communities that associate with benthic organisms such as corals. In this study we identified and compared bacteria that associate with three common deep-water corals, Lophelia pertusa, Madrepora oculata and Paragorgia arborea, from a reef habitat on the mid-Norwegian shelf. The 16S rRNA gene amplicon sequencing data obtained revealed that >50% of sequences were represented by only five operational taxonomic units. Three were host-specific and unclassified below class level, belonging to Alphaproteobacteria with affiliation to members of the Rhizobiales order (L. pertusa), Flavobacteria affiliated with members of the Elisabethkingia genus (M. oculata) and Mollicutes sequences affiliated with the Mycoplasma genus (P. arborea). In addition, gammaproteobacterial sequences within the genera Sulfitobacter and Oleispira were found across all three deep-water coral taxa. Although highly abundant in the coral microbiomes, these sequences accounted for <0.1% of the surrounding bacterioplankton, supporting specific relationships. We combined this information with previous studies, undertaking a meta-data analysis of 165 widespread samples across coral hosts and habitats. Patterns in bacterial diversity indicated enrichment of distinct uncultured species in coral microbiomes that differed among deep (>200 m), mesophotic (30–200 m) and shallow (<30 m) reefs.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biology, University of Bergen, PO Box 7803, Bergen 5020, Norway
| | - Martin Hovland
- Centre for Geobiology, University of Bergen
- Tech Team Solutions ASA, Stavanger
| | | | - David G Bourne
- College of Science of Engineering James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
25
|
Kellogg CA. Microbiomes of stony and soft deep-sea corals share rare core bacteria. MICROBIOME 2019; 7:90. [PMID: 31182168 PMCID: PMC6558771 DOI: 10.1186/s40168-019-0697-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Numerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved "core microbiomes" of bacterial associates inferred to be serving key roles in the coral holobiont. Because studies tend to focus on only stony corals (order Scleractinia) or soft corals (order Alcyonacea), it is currently unknown if there are conserved bacteria that are shared by both. A meta-analysis was done of 16S rRNA amplicon data from multiple studies generated via identical methodology to allow direct comparisons of bacterial associates across seven deep-sea corals, including both stony and soft species: Anthothela grandiflora, Anthothela sp., Lateothela grandiflora, Lophelia pertusa, Paramuricea placomus, Primnoa pacifica, and Primnoa resedaeformis. RESULTS Twenty-three operational taxonomic units (OTUs) were consistently present in greater than 50% of the coral samples. Seven amplicon sequence variants (ASVs), five of which corresponded to a conserved OTU, were consistently present in greater than 30% of the coral samples including five or greater coral species. A majority of the conserved sequences had close matches with previously identified coral-associated bacteria. While known to dominate tropical and temperate coral microbiomes, Endozoicomonas were extremely rare or absent from these deep-sea corals. An Endozoicomonas OTU associated with Lo. pertusa in this study was most similar to those from shallow-water stony corals, while an OTU associated with Anthothela spp. was most similar to those from shallow-water gorgonians. CONCLUSIONS Bacterial sequences have been identified that are conserved at the level of class Anthozoa (i.e., found in both stony and soft corals, shallow and deep). These bacterial associates are therefore hypothesized to play important symbiotic roles and are highlighted for targeted future study. These conserved bacterial associates include taxa with the potential for nitrogen and sulfur cycling, detoxification, and hydrocarbon degradation. There is also some overlap with kit contaminants that need to be resolved. Rarely detected Endozoicomonas sequences are partitioned by whether the host is a stony coral or a soft coral, and the finer clustering pattern reflects the hosts' phylogeny.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, 600 4th Street South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
26
|
Kuo J, Yang YT, Lu MC, Wong TY, Sung PJ, Huang YS. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1414-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
27
|
Goldsmith DB, Kellogg CA, Morrison CL, Gray MA, Stone RP, Waller RG, Brooke SD, Ross SW. Comparison of microbiomes of cold-water corals Primnoa pacifica and Primnoa resedaeformis, with possible link between microbiome composition and host genotype. Sci Rep 2018; 8:12383. [PMID: 30120375 PMCID: PMC6098105 DOI: 10.1038/s41598-018-30901-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cold-water corals provide critical habitats for a multitude of marine species, but are understudied relative to tropical corals. Primnoa pacifica is a cold-water coral prevalent throughout Alaskan waters, while another species in the genus, Primnoa resedaeformis, is widely distributed in the Atlantic Ocean. This study examined the V4-V5 region of the 16S rRNA gene after amplifying and pyrosequencing bacterial DNA from samples of these species. Key differences between the two species' microbiomes included a robust presence of bacteria belonging to the Chlamydiales order in most of the P. pacifica samples, whereas no more than 2% of any microbial community from P. resedaeformis comprised these bacteria. Microbiomes of P. resedaeformis exhibited higher diversity than those of P. pacifica, and the two species largely clustered separately in a principal coordinate analysis. Comparison of P. resedaeformis microbiomes from samples collected in two submarine canyons revealed a significant difference between locations. This finding mirrored significant genetic differences among the P. resedaeformis from the two canyons based upon population genetic analysis of microsatellite loci. This study presents the first report of microbiomes associated with these two coral species.
Collapse
Affiliation(s)
- Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America
| | - Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America.
| | - Cheryl L Morrison
- Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, FL, United States of America
| | - Robert P Stone
- Auke Bay Laboratories, Alaska Fisheries Science Center, NOAA Fisheries, 17109, Point Lena Loop Road, Juneau, AK, United States of America
| | - Rhian G Waller
- Darling Marine Center, University of Maine, Walpole, ME, United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
28
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Mathur V, del Campo J, Kolisko M, Keeling PJ. Global diversity and distribution of close relatives of apicomplexan parasites. Environ Microbiol 2018; 20:2824-2833. [DOI: 10.1111/1462-2920.14134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Varsha Mathur
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
| | - Javier del Campo
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
- Department of Marine Biology and Oceanography; Institut de Ciències del Mar (CSIC); Barcelona Spain
| | - Martin Kolisko
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences; Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Patrick J. Keeling
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
30
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
31
|
Medina-Silva R, Oliveira RR, Trindade FJ, Borges LGA, Lopes Simão TL, Augustin AH, Valdez FP, Constant MJ, Simundi CL, Eizirik E, Groposo C, Miller DJ, da Silva PR, Viana AR, Ketzer JMM, Giongo A. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie van Leeuwenhoek 2017; 111:533-550. [PMID: 29110156 DOI: 10.1007/s10482-017-0975-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Abstract
As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the 'Vestimentifera' clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.
Collapse
Affiliation(s)
- Renata Medina-Silva
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael R Oliveira
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda J Trindade
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G A Borges
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Taiz L Lopes Simão
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adolpho H Augustin
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda P Valdez
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo J Constant
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina L Simundi
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Eizirik
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claudia Groposo
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Dennis J Miller
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Priscila Reis da Silva
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | | | - João M M Ketzer
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Giongo
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. .,, Av. Ipiranga, 6681 Prédio 96J Sala 501-04, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Sonthirod C, Naktang C, Thongtham N, Tangphatsornruang S. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci Rep 2017; 7:2774. [PMID: 28584301 PMCID: PMC5459821 DOI: 10.1038/s41598-017-03139-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are a complex ecosystem consisting of coral animals and a vast array of associated symbionts including the dinoflagellate Symbiodinium, fungi, viruses and bacteria. Several studies have highlighted the importance of coral-associated bacteria and their fundamental roles in fitness and survival of the host animal. The scleractinian coral Porites lutea is one of the dominant reef-builders in the Indo-West Pacific. Currently, very little is known about the composition and structure of bacterial communities across P. lutea reefs. The purpose of this study is twofold: to demonstrate the advantages of using PacBio circular consensus sequencing technology in microbial community studies and to investigate the diversity and structure of P. lutea-associated microbiome in the Indo-Pacific. This is the first metagenomic study of marine environmental samples that utilises the PacBio sequencing system to capture full-length 16S rRNA sequences. We observed geographically distinct coral-associated microbial profiles between samples from the Gulf of Thailand and Andaman Sea. Despite the geographical and environmental impacts on the coral-host interactions, we identified a conserved community of bacteria that were present consistently across diverse reef habitats. Finally, we demonstrated the superior performance of full-length 16S rRNA sequences in resolving taxonomic uncertainty of coral associates at the species level.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lalita Putchim
- Phuket Marine Biological Center, Phuket, 83000, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
33
|
Kellogg CA, Goldsmith DB, Gray MA. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome. Front Microbiol 2017; 8:796. [PMID: 28522997 PMCID: PMC5415624 DOI: 10.3389/fmicb.2017.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM). However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%). At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core sequences, whereas open Atlantic samples had a much higher proportion of locally consistent bacteria. Further, predictive functional profiling highlights the potential for the L. pertusa microbiome to contribute to chemoautotrophy, nutrient cycling, and antibiotic production.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| |
Collapse
|
34
|
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep 2017; 7:44714. [PMID: 28303925 PMCID: PMC5356181 DOI: 10.1038/srep44714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L-1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lauren K. Yum
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|