1
|
Wagner BD, Zemanick ET, Sagel SD, Robertson CE, Stevens MJ, Mayer-Hamblett N, Retsch-Bogart G, Ramsey BW, Harris JK. Limited effects of azithromycin on the oropharyngeal microbiome in children with CF and early pseudomonas infection. BMC Microbiol 2023; 23:312. [PMID: 37891457 PMCID: PMC10612347 DOI: 10.1186/s12866-023-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tobramycin inhalation solution (TIS) and chronic azithromycin (AZ) have known clinical benefits for children with CF, likely due to antimicrobial and anti-inflammatory activity. The effects of chronic AZ in combination with TIS on the airway microbiome have not been extensively investigated. Oropharyngeal swab samples were collected in the OPTIMIZE multicenter, randomized, placebo-controlled trial examining the addition of AZ to TIS in 198 children with CF and early P. aeruginosa infection. Bacterial small subunit rRNA gene community profiles were determined. The effects of TIS and AZ were assessed on oropharyngeal microbial diversity and composition to uncover whether effects on the bacterial community may be a mechanism of action related to the observed changes in clinical outcomes. RESULTS Substantial changes in bacterial communities (total bacterial load, diversity and relative abundance of specific taxa) were observed by week 3 of TIS treatment for both the AZ and placebo groups. On average, these shifts were due to changes in non-traditional CF taxa that were not sustained at the later study visits (weeks 13 and 26). Bacterial community measures did not differ between the AZ and placebo groups. CONCLUSIONS This study provides further evidence that the mechanism for AZ's effect on clinical outcomes is not due solely to action on airway microbial composition.
Collapse
Affiliation(s)
- Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA.
- Children's Hospital Colorado, Aurora, CO, USA.
| | - Edith T Zemanick
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Scott D Sagel
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | | | - Mark J Stevens
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Nicole Mayer-Hamblett
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | | | - Bonnie W Ramsey
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | - J Kirk Harris
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| |
Collapse
|
2
|
Harris JK, Wagner BD, Robertson CE, Stevens MJ, Lingard C, Borowitz D, Leung DH, Heltshe SL, Ramsey BW, Zemanick ET. Upper airway microbiota development in infants with cystic fibrosis diagnosed by newborn screen. J Cyst Fibros 2023; 22:644-651. [PMID: 37137746 PMCID: PMC10524365 DOI: 10.1016/j.jcf.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Changes in upper airway microbiota may impact early disease manifestations in infants with cystic fibrosis (CF). To investigate early airway microbiota, the microbiota present in the oropharynx of CF infants over the first year of life was assessed along with the relationships between microbiota and growth, antibiotic use and other clinical variables. METHODS Oropharyngeal (OP) swabs were collected longitudinally between 1 and 12 months of age from infants diagnosed with CF by newborn screen and enrolled in the Baby Observational and Nutrition Study (BONUS). DNA extraction was performed after enzymatic digestion of OP swabs. Total bacterial load was determined by qPCR and community composition assessed using 16S rRNA gene analysis (V1/V2 region). Changes in diversity with age were evaluated using mixed models with cubic B-splines. Associations between clinical variables and bacterial taxa were determined using a canonical correlation analysis. RESULTS 1,052 OP swabs collected from 205 infants with CF were analyzed. Most infants (77%) received at least one course of antibiotics during the study and 131 OP swabs were collected while the infant was prescribed an antibiotic. Alpha diversity increased with age and was only marginally impacted by antibiotic use. Community composition was most highly correlated with age and was only moderately correlated with antibiotic exposure, feeding method and weight z-scores. Relative abundance of Streptococcus decreased while Neisseria and other taxa increased over the first year. CONCLUSIONS Age was more influential on the oropharyngeal microbiota of infants with CF than clinical variables including antibiotics in the first year of life.
Collapse
Affiliation(s)
- J Kirk Harris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA.
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E Robertson
- Department of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA
| | - Conor Lingard
- Spartanburg Regional Healthcare Systems, Spartanburg, SC, USA
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Daniel H Leung
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sonya L Heltshe
- Cystic Fibrosis Foundation Therapeutic Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Bonnie W Ramsey
- Cystic Fibrosis Foundation Therapeutic Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Broderick DTJ, Waite DW, Marsh RL, Camargo CA, Cardenas P, Chang AB, Cookson WOC, Cuthbertson L, Dai W, Everard ML, Gervaix A, Harris JK, Hasegawa K, Hoffman LR, Hong SJ, Josset L, Kelly MS, Kim BS, Kong Y, Li SC, Mansbach JM, Mejias A, O’Toole GA, Paalanen L, Pérez-Losada M, Pettigrew MM, Pichon M, Ramilo O, Ruokolainen L, Sakwinska O, Seed PC, van der Gast CJ, Wagner BD, Yi H, Zemanick ET, Zheng Y, Pillarisetti N, Taylor MW. Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis. Front Microbiol 2021; 12:711134. [PMID: 35002989 PMCID: PMC8733647 DOI: 10.3389/fmicb.2021.711134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies. Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (<18 years) microbiota in acute and chronic respiratory conditions, with >10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses. Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively. Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.
Collapse
Affiliation(s)
| | - David W. Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Robyn L. Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Paul Cardenas
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Anne B. Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - William O. C. Cookson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Leah Cuthbertson
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mark L. Everard
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Alain Gervaix
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lucas R. Hoffman
- Seattle Children’s Hospital, Seattle, WA, United States
- Department of Pediatrics and Microbiology, University of Washington, Seattle, WA, United States
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, United States
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Shuai C. Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jonathan M. Mansbach
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Asuncion Mejias
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Laura Paalanen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Melinda M. Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Maxime Pichon
- CHU Poitiers, Infectious Agents Department, Poitiers, France
- University of Poitiers, INSERM U1070, Poitiers, France
| | - Octavio Ramilo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Patrick C. Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Aurora, CO, United States
| | - Hana Yi
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | | | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Oriano M, Terranova L, Teri A, Sottotetti S, Ruggiero L, Tafuro C, Marchisio P, Gramegna A, Amati F, Nava F, Franceschi E, Cariani L, Blasi F, Aliberti S. Comparison of different conditions for DNA extraction in sputum - a pilot study. Multidiscip Respir Med 2019; 14:6. [PMID: 30733864 PMCID: PMC6357456 DOI: 10.1186/s40248-018-0166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/25/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The analysis of microbiome in respiratory samples is a topic of great interest in chronic respiratory diseases. The method used to prepare sputum samples for microbiome analysis is very heterogeneous. The selection of the most suitable methodology for DNA extraction is fundamental to have the most representative data. The objective of this study was to compare different conditions for DNA extraction from sputum in adult patients with bronchiectasis. METHODS Five sputum samples from bronchiectasis patients were collected at the Policlinico Hospital in Milan, Italy. Eighteen conditions for DNA extraction were compared, including two enzyme-based (Roche and Zymo) and one beads-based (Mobio) technique. These techniques were tested with/without Dithiothreitol (DTT) and with/without lysostaphin (0.18 and 0.36 mg/mL) step. DNA was quantified, tested using Real-time PCR for 16S rDNA and S. aureus and, then, microbiome was evaluated. RESULTS Although 16S rDNA was similarly detected across all the different techniques, Roche kit gave the highest DNA yield. The lowest Ct values for Real-time PCR for S. aureus was identified when lysostaphin was added. Considering genera from microbiome, alpha diversity indices did not show any significant differences between techniques, while relative abundances were more similar in presence of DTT. CONCLUSIONS None of the conditions emerged to be superior to the others even if enzyme-based kits seem to be needed in order to have a higher extraction yield.
Collapse
Affiliation(s)
- Martina Oriano
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- University of Pavia, Department of Molecular Medicine, Pavia, Italy
| | - Leonardo Terranova
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Antonio Teri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Microbiology Laboratory, Milan, Italy
| | - Samantha Sottotetti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Microbiology Laboratory, Milan, Italy
| | - Luca Ruggiero
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Via della Commenda 9, 20122 Milan, Italy
| | - Camilla Tafuro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Via della Commenda 9, 20122 Milan, Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Via della Commenda 9, 20122 Milan, Italy
| | - Andrea Gramegna
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Francesco Amati
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabrizio Nava
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Elisa Franceschi
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Lisa Cariani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Microbiology Laboratory, Milan, Italy
| | - Francesco Blasi
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Aliberti
- University of Milan, Department of Pathophysiology and Transplantation, Via Francesco Sforza 35, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
5
|
Terranova L, Oriano M, Teri A, Ruggiero L, Tafuro C, Marchisio P, Gramegna A, Contarini M, Franceschi E, Sottotetti S, Cariani L, Bevivino A, Chalmers JD, Aliberti S, Blasi F. How to Process Sputum Samples and Extract Bacterial DNA for Microbiota Analysis. Int J Mol Sci 2018; 19:E3256. [PMID: 30347804 PMCID: PMC6214103 DOI: 10.3390/ijms19103256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023] Open
Abstract
Different steps and conditions for DNA extraction for microbiota analysis in sputum have been reported in the literature. We aimed at testing both dithiothreitol (DTT) and enzymatic treatments of sputum samples and identifying the most suitable DNA extraction technique for the microbiota analysis of sputum. Sputum treatments with and without DTT were compared in terms of their median levels and the coefficient of variation between replicates of both DNA extraction yield and real-time PCR for the 16S rRNA gene. Treatments with and without lysozyme and lysostaphin were compared in terms of their median levels of real-time PCR for S. aureus. Two enzyme-based and three beads-based techniques for DNA extraction were compared in terms of their DNA extraction yield, real-time PCR for the 16S rRNA gene and microbiota analysis. DTT treatment decreased the coefficient of variation between replicates of both DNA extraction yield and real-time PCR. Lysostaphin (either 0.18 or 0.36 mg/mL) and lysozyme treatments increased S. aureus detection. One enzyme-based kit offered the highest DNA yield and 16S rRNA gene real-time PCR with no significant differences in terms of alpha-diversity indexes. A condition using both DTT and lysostaphin/lysozyme treatments along with an enzymatic kit seems to be preferred for the microbiota analysis of sputum samples.
Collapse
Affiliation(s)
- Leonardo Terranova
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, 20100 Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy.
| | - Martina Oriano
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Antonio Teri
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, 20100 Milan, Italy.
| | - Luca Ruggiero
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, 20100 Milan, Italy.
| | - Camilla Tafuro
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, 20100 Milan, Italy.
| | - Paola Marchisio
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, 20100 Milan, Italy.
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| | - Martina Contarini
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| | - Elisa Franceschi
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| | - Samantha Sottotetti
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, 20100 Milan, Italy.
| | - Lisa Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, 20100 Milan, Italy.
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy.
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, DD1 9SY Dundee, UK.
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| |
Collapse
|