1
|
Starevich VA, Madueño L, Festa S, Agnello AC, Cecotti M, Layún MF, Oneto ME, Del Panno MT, Morelli IS. Microbial community structure and metabolic profile of anthropized freshwater tributary channels from La Plata River, Argentina, to develop sustainable remediation strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:566. [PMID: 38775858 DOI: 10.1007/s10661-024-12713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.
Collapse
Affiliation(s)
| | - L Madueño
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina.
| | - S Festa
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | - A C Agnello
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | - M F Layún
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | | | - I S Morelli
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
- CIC-PBA, Bs. As., La Plata, Argentina
| |
Collapse
|
2
|
Yan D, Han Y, Zhong M, Wen H, An Z, Capo E. Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. ENVIRONMENT INTERNATIONAL 2024; 186:108654. [PMID: 38621322 DOI: 10.1016/j.envint.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.
Collapse
Affiliation(s)
- Dongna Yan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an, Shaanxi 710061, China.
| | - Meifang Zhong
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden
| | - Hanfeng Wen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden.
| |
Collapse
|
3
|
Corona Ramírez A, Symanczik S, Gallusser T, Bodenhausen N. Quantification of arbuscular mycorrhizal fungi root colonization in wheat, tomato, and leek using absolute qPCR. MYCORRHIZA 2023; 33:387-397. [PMID: 37646822 PMCID: PMC10752845 DOI: 10.1007/s00572-023-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and are known to have a positive effect on plant growth and health. Different methodologies have been developed to assess the AMF-plant symbiosis. The most applied method, which involves staining of roots and microscopic observation of the AMF structures, is tedious and time-consuming and the results are highly dependent on the observer. Using quantitative polymerase chain reaction (qPCR) to quantify AMF root colonization represents a reliable, high-throughput technique that allows the assessment of numerous samples. Quantification with qPCR can be performed through two methods: relative quantification and absolute quantification. In relative quantification, the target gene is normalized with a reference gene. On the other hand, absolute quantification involves the use of a standard curve, for which template DNA is serially diluted. In a previous paper, we validated the primer pair AMG1F and AM1 for a relative quantification approach to assess AMF root colonization in Petunia. Here, we tested the same primers with an absolute quantification approach and compared the results with the traditional microscopy method. We evaluated the qPCR method with three different crops, namely, wheat (cv. Colmetta and Wiwa), tomato, and leek. We observed a strong correlation between microscopy and qPCR for Colmetta (r = 0.90, p < 0.001), Wiwa (r = 0.94, p < 0.001), and tomato (r = 0.93, p < 0.001), but no correlation for leek (r = 0.27, p = 0.268). This highlights the importance of testing the primer pair for each specific crop.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Tabea Gallusser
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland.
| |
Collapse
|
4
|
Corona Ramírez A, Lee KS, Odriozola A, Kaminek M, Stocker R, Zuber B, Junier P. Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36804869 DOI: 10.1099/mic.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Kang Soo Lee
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Marek Kaminek
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Stocker
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
5
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Corona Ramírez A, Cailleau G, Fatton M, Dorador C, Junier P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar de Huasco. Front Microbiol 2022; 13:826117. [PMID: 36687602 PMCID: PMC9847572 DOI: 10.3389/fmicb.2022.826117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
The production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.g., starvation). In contrast, little is known about the production of specialized resting cells in archaea. In this study, we applied a culture-independent method that uses physical and chemical lysis, to assess the diversity of lysis-resistant bacteria and archaea and compare it to the overall prokaryotic diversity (direct DNA extraction). The diversity of lysis-resistant cells was studied in the polyextreme environment of the Salar de Huasco. The Salar de Huasco is a high-altitude athalassohaline wetland in the Chilean Altiplano. Previous studies have shown a high diversity of bacteria and archaea in the Salar de Huasco, but the diversity of lysis-resistant microorganisms has never been investigated. The underlying hypothesis was that the combination of extreme abiotic conditions might favor the production of specialized resting cells. Samples were collected from sediment cores along a saline gradient and microbial mats were collected in small surrounding ponds. A significantly different diversity and composition were found in the sediment cores or microbial mats. Furthermore, our results show a high diversity of lysis-resistant cells not only in bacteria but also in archaea. The bacterial lysis-resistant fraction was distinct in comparison to the overall community. Also, the ability to survive the lysis-resistant treatment was restricted to a few groups, including known spore-forming phyla such as Firmicutes and Actinobacteria. In contrast to bacteria, lysis resistance was widely spread in archaea, hinting at a generalized resistance to lysis, which is at least comparable to the resistance of dormant cells in bacteria. The enrichment of Natrinema and Halarchaeum in the lysis-resistant fraction could hint at the production of cyst-like cells or other resistant cells. These results can guide future studies aiming to isolate and broaden the characterization of lysis-resistant archaea.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland,*Correspondence: Pilar Junier,
| |
Collapse
|
7
|
Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun Biol 2020; 3:169. [PMID: 32265485 PMCID: PMC7138834 DOI: 10.1038/s42003-020-0899-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
DNA can be preserved in marine and freshwater sediments both in bulk sediment and in intact, viable resting stages. Here, we assess the potential for combined use of ancient, environmental, DNA and timeseries of resurrected long-term dormant organisms, to reconstruct trophic interactions and evolutionary adaptation to changing environments. These new methods, coupled with independent evidence of biotic and abiotic forcing factors, can provide a holistic view of past ecosystems beyond that offered by standard palaeoecology, help us assess implications of ecological and molecular change for contemporary ecosystem functioning and services, and improve our ability to predict adaptation to environmental stress. Ellegaard et al. discuss the potential for using ancient environmental DNA (eDNA), combined with resurrection ecology, to analyse trophic interactions and evolutionary adaptation to changing environments. Their Review suggests that these techniques will improve our ability to predict genetic and phenotypic adaptation to environmental stress.
Collapse
|
8
|
Paul C, Filippidou S, Jamil I, Kooli W, House GL, Estoppey A, Hayoz M, Junier T, Palmieri F, Wunderlin T, Lehmann A, Bindschedler S, Vennemann T, Chain PSG, Junier P. Bacterial spores, from ecology to biotechnology. ADVANCES IN APPLIED MICROBIOLOGY 2018; 106:79-111. [PMID: 30798805 DOI: 10.1016/bs.aambs.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The production of a highly specialized cell structure called a spore is a remarkable example of a survival strategy displayed by bacteria in response to challenging environmental conditions. The detailed analysis and description of the process of sporulation in selected model organisms have generated a solid background to understand the cellular processes leading to the formation of this specialized cell. However, much less is known regarding the ecology of spore-formers. This research gap needs to be filled as the feature of resistance has important implications not only on the survival of spore-formers and their ecology, but also on the use of spores for environmental prospection and biotechnological applications.
Collapse
Affiliation(s)
- Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Isha Jamil
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Wafa Kooli
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Hayoz
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Tina Wunderlin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anael Lehmann
- Laboratory of stable isotope geochemistry, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Torsten Vennemann
- Laboratory of stable isotope geochemistry, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Di Cesare A, Petrin S, Fontaneto D, Losasso C, Eckert EM, Tassistro G, Borello A, Ricci A, Wilson WH, Pruzzo C, Vezzulli L. ddPCR applied on archived Continuous Plankton Recorder samples reveals long-term occurrence of class 1 integrons and a sulphonamide resistance gene in marine plankton communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:458-464. [PMID: 30022610 DOI: 10.1111/1758-2229.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance is a rising threat for human health. Although in clinical settings and terrestrial environments the rise of antibiotic resistant bacteria is well documented, their dissemination and spread in the marine environment, covering almost two-thirds of the Earth's surface, is still poorly understood. In this study, the presence and abundance of sulphonamide resistance gene (sul2) and class 1 integron-integrase gene (intI1), used as markers for the occurrence and spread of antibiotic resistance genes since the beginning of the antibiotic era, were investigated. Twenty-nine archived formalin-fixed samples, collected by the Continuous Plankton Recorder (CPR) survey in the Atlantic Ocean and North Sea from 1970 to 2011, were analysed using Droplet Digital PCR (ddPCR) applied for the first time on CPR samples. The two marker genes were present in a large fraction of the samples (48% for sul2 and 76% for intI1). In contrast, results from Real-Time PCR performed on the same samples greatly underestimate their occurrence (21% for sul2 and 52% for intI1). Overall, besides providing successful use of ddPCR for the molecular analysis of CPR samples, this study reveals long-term occurrence and spread of sul2 gene and class 1 integrons in the plankton-associated bacterial communities in the ocean.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Sara Petrin
- O.U. Microbial Ecology, Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Diego Fontaneto
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Verbania, Italy
| | - Carmen Losasso
- O.U. Microbial Ecology, Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Ester M Eckert
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Verbania, Italy
| | - Giovanni Tassistro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Alessio Borello
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Antonia Ricci
- O.U. Microbial Ecology, Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - William H Wilson
- CPR Survey, Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Paul C, Bayrychenko Z, Junier T, Filippidou S, Beck K, Bueche M, Greub G, Bürgmann H, Junier P. Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ 2018; 6:e4989. [PMID: 29942682 PMCID: PMC6015491 DOI: 10.7717/peerj.4989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of tet(W) and sul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus Clostridium was identified as a potential specific vector for the dissemination of tet(W), due to a strong correlation with tet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.
Collapse
Affiliation(s)
- Christophe Paul
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Zhanna Bayrychenko
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sevasti Filippidou
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Matthieu Bueche
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|