1
|
Abdelgadir A, Adnan M, Patel M, Saxena J, Alam MJ, Alshahrani MM, Singh R, Sachidanandan M, Badraoui R, Siddiqui AJ. Probiotic Lactobacillus salivarius mediated synthesis of silver nanoparticles (AgNPs-LS): A sustainable approach and multifaceted biomedical application. Heliyon 2024; 10:e37987. [PMID: 39347420 PMCID: PMC11437860 DOI: 10.1016/j.heliyon.2024.e37987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) has emerged as an eco-friendly and sustainable approach with diverse biological applications. This study presents synthesis of AgNPs-LS using a probiotic strain Lactobacillus salivarius (L. salivarius) and explores their multifaceted biological activities, including antibacterial, antibiofilm, anti-quorum sensing, antifungal, antioxidant, anticancer, anticoagulant and thrombolytic properties. The biosynthesis of AgNPs-LS was successfully achieved using L. salivarius cell free supernatants, resulting in well-characterized nanoparticles as confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential analysis. The AgNPs-LS demonstrated potent antibacterial activity against different pathogenic bacteria (C. violaceum, P. aeruginosa, S. aureus, E. coli and S. marcescens), emphasizing their potential in combating bacterial infections. Moreover, these AgNPs-LS were effective in inhibiting biofilm formation (>60 % at 1/2 MIC), a key mechanism of bacterial virulence, highlighting their utility in preventing biofilm-related infections. AgNPs-LS exhibited anti-quorum sensing activity, disrupting bacterial communication systems and potentially reducing virulence factor such as, violacein production in C. violaceum, pyocyanin production in P. aeruginosa and prodigiosin production in S. marcescens. Additionally, AgNPs-LS also exhibited notable antifungal activity towards a different pathogenic fungus (F. proliferatum, P. purpurogenum, A. niger and R. stolonifer). In terms of health applications, the AgNPs-LS displayed significant antioxidant activity, effectively scavenging DPPH• (IC50 = 42.65 μg/mL) and ABTS•+ (IC50 = 53.77 μg/mL) free radicals. Furthermore, AgNPs-LS showed cytotoxicity against breast cancer cells (MCF-7) (IC50 = 52.29 μg/mL), positioning them as promising candidates for cancer therapy. Moreover, AgNPs-LS were also shown promising anticoagulant and thrombolytic activities under practical conditions. Therefore, the biogenic synthesis of AgNPs-LS using L. salivarius offers a sustainable and cost-effective route for producing AgNPs with an array of biological activities. These AgNPs-LS have the potential to address various challenges in healthcare, ranging from antimicrobial, anticancer applications to biofilm inhibition, antioxidant therapy, anticoagulant and thrombolytic agents.
Collapse
Affiliation(s)
- Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, 391760, India
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
2
|
Ahmad F, Sachdeva P, Sachdeva B, Singh G, Soni H, Tandon S, Rafeeq MM, Alam MZ, Baeissa HM, Khalid M. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Mol Biotechnol 2024; 66:663-686. [PMID: 36513873 DOI: 10.1007/s12033-022-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Glioblastoma multiforme (GBM), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) are some of the most prevalent neurodegenerative disorders in humans. Even after a variety of advanced therapies, prognosis of all these disorders is not favorable, with survival rates of 14-20 months only. To further improve the prognosis of these disorders, it is imperative to discover new compounds which will target effector proteins involved in these disorders. In this study, we have focused on in silico screening of marine compounds against multiple target proteins involved in AD, GBM, ALS, and PD. Fifty marine-origin compounds were selected from literature, out of which, thirty compounds passed ADMET parameters. Ligand docking was performed after ADMET analysis for AD, GBM, ALS, and PD-associated proteins in which four protein targets Keap1, Ephrin A2, JAK3 Kinase domain, and METTL3-METTL14 N6-methyladenosine methyltransferase (MTA70) were found to be binding strongly with the screened compound Dioxinodehydroeckol (DHE). Molecular dynamics simulations were performed at 100 ns with triplicate runs to validate the docking score and assess the dynamics of DHE interactions with each target protein. The results indicated Dioxinodehydroeckol, a novel marine compound, to be a putative inhibitor among all the screened molecules, which might be effective against multiple target proteins involved in neurological disorders, requiring further in vitro and in vivo validations.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India.
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, University of Delhi, Delhi, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
- Kusuma School of Biological Sciences, India Institute of Technology, Delhi, India
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanadi M Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
3
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
4
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Abdelbasset WK, Bokov DO, Jasim SA, Yasin G, Abbas H, Alkadir OKA, Taifi A, Jalil AT, Aravindhan S. Evaluating the secondary bioactive metabolites in Geodia corticostylifera. BRAZ J BIOL 2024; 84:e260090. [DOI: 10.1590/1519-6984.260090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Ophiactis savignyi could be discovered all over the world in tropical marine environments. People could have aided in the spread of O. savignyi, particularly in the western and eastern populations of Panama's Isthmus. The brittle star Ophiactis savignyi, often known as savigny's brittle star, coexists alongside the sponge Geodia corticostylifera. The focus of this research has been to assess the functional relevance of G. corticostylifera secondary metabolites as antifoulant against mussels, protection against generalist fish, and chemical cues to affiliated brittle stars. Both in flow-through and static seawater laboratory studies, O. savignyi which has previously been connected with sponges, was given both treated and control mimics at the same time. The sponge extract was also tested for its ability to protect fish against predators and fouling. Deterrence test using chemicals indicated that the normal level of the sponge extract may also suppress generalist fish predation in the field as well as the mussel Perna perna’s normal attachment in clinical contexts. According to the findings, G. corticostylifera crude extract has many roles in the aquatic environments, apparently being accountable for this sponge's tighter relationship with O. savignyi, which protects the ophiuroid and inhibits epibionts on itself.
Collapse
Affiliation(s)
- W. K. Abdelbasset
- Prince Sattam bin Abdulaziz University, Saudi Arabia; Cairo University, Egypt
| | - D. O. Bokov
- Sechenov First Moscow State Medical University, Russian Federation; Federal Research Center of Nutrition, Russian Federation
| | | | - G. Yasin
- Bahauddin Zakariya University, Pakistan
| | | | | | - A. Taifi
- Al-Manara College for Medical Sciences, Iraq
| | - A. T. Jalil
- Yanka Kupala State University of Grodno, Belarus; The Islamic University, Iraq
| | - S. Aravindhan
- Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
6
|
Ashwin RK, Aruna A, Koyyodan J, Kaari M, Venugopal G, Manikkam R. Exploration of fish gut-associated actinobacteria for its antifouling activity. J Basic Microbiol 2023. [PMID: 37127854 DOI: 10.1002/jobm.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
An attempt has been made to screen the fish gut-associated actinobacterial cultures for antifouling compounds. Fifteen morphologically distinct bacterial cultures were recovered from the biofouling samples scraped from the boat surfaces and other maritime structures in the Kovalam beach (Lat. 12.7870°N; Long. 80.2504°E) coastal areas in Tamil Nadu, India. All the bacterial isolates were identified at generic level from which two isolates namely KB6 and KB7 as Staphylococcus sp. were found the exhibit strong biofilm formation. Four actinobacterial strains viz., IM20, PYA9, F8, and SQA4 were evaluated for inhibitory properties against biofouling bacteria using the agar plug method. Strain IM20 which strongly inhibited the biofouling bacteria was chosen as prospective strain for further studies. When compared to submerged fermentation, IM20 produced a high amount of antifouling chemicals on the agar surface fermentation. Among the solvents tested, better extraction of antifouling compounds was seen in ethyl acetate extract. Antifouling compound production by the strain IM20 was found to be influenced by a number of variables such as glucose, fructose, glutamine, malt extract, pH 7 and 9, temperature 30 and 40° C and NaCl at 2.5% and 5% concentrations. Gas chromatography-mass spectrometry (GC-MS) analysis of the strain IM20 extract revealed the presence of pyrrolo (1,2-a]pyrazine-1,4-dione, hexahydro) in significant amount. In the present study, the fish gut-associated Streptomyces sp. IM20 was identified as an unusual and newly added source for the isolation of antifouling compounds.
Collapse
Affiliation(s)
- Ramesh K Ashwin
- Department of Biotechnology, Madha Engineering College, Kundrathur, Chennai, India
| | - Arunachalam Aruna
- Department of Biotechnology, Madha Engineering College, Kundrathur, Chennai, India
| | - Jisha Koyyodan
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Chennai, India
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute for Science and Technology, Chennai, India
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute for Science and Technology, Chennai, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute for Science and Technology, Chennai, India
| |
Collapse
|
7
|
Vera-Villalobos H, Riquelme C, Silva-Aciares F. Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. MEMBRANES 2023; 13:membranes13050454. [PMID: 37233515 DOI: 10.3390/membranes13050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Biofouling refers to the undesirable growth of microorganisms on water-submerged surfaces. Microfouling, the initial state of biofouling, is characterized by aggregates of microbial cells enclosed in a matrix of extracellular polymeric substances (EPSs). In seawater desalination plants, filtration systems, such as reverse-osmosis membranes (ROMs), are affected by microfouling, which decreases their efficiency in obtaining permeate water. The existing chemical and physical treatments are expensive and ineffective; therefore, controlling microfouling on ROMs is a considerable challenge. Thus, new approaches are necessary to improve the current ROM cleaning treatments. This study demonstrates the application of Alteromonas sp. Ni1-LEM supernatant as a cleaning agent for ROMs in a desalination seawater plant in northern Chile (Aguas Antofagasta S.A.), which is responsible for supplying drinking water to the city of Antofagasta. ROMs treated with Altermonas sp. Ni1-LEM supernatant exhibited statistically significant results (p < 0.05) in terms of seawater permeability (Pi), permeability recovery (PR), and the conductivity of permeated water compared with control biofouling ROMs and those treated with the chemical cleaning protocol applied by the Aguas Antofagasta S.A. desalination plant.
Collapse
Affiliation(s)
- Hernán Vera-Villalobos
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Carlos Riquelme
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Fernando Silva-Aciares
- Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
- Departamento de Biotecnología, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
8
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
10
|
Armes AC, Walton JL, Buchan A. Quorum Sensing and Antimicrobial Production Orchestrate Biofilm Dynamics in Multispecies Bacterial Communities. Microbiol Spectr 2022; 10:e0261522. [PMID: 36255295 PMCID: PMC9769649 DOI: 10.1128/spectrum.02615-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often "hot spots" for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems (pgaRI and phaRI) as well as a nonribosomal peptide synthase gene (igi) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine (pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities.
Collapse
Affiliation(s)
- April C. Armes
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jillian L. Walton
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
11
|
Egbert S, Hoffman JR, McMullin RT, Lendemer JC, Sorensen JL. Unraveling usnic acid: a comparison of biosynthetic gene clusters between two reindeer lichen (Cladonia rangiferina and C. uncialis). Fungal Biol 2022; 126:697-706. [PMID: 36517138 DOI: 10.1016/j.funbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Lichenized fungi are known for their production of a diversity of secondary metabolites, many of which have broad biological and pharmacological applications. By far the most well-studied of these metabolites is usnic acid. While this metabolite has been well-known and researched for decades, the gene cluster responsible for its production was only recently identified from the species Cladonia uncialis. Usnic acid production varies considerably in the genus Cladonia, even among closely related taxa, and many species, such as C. rangiferina, have been inferred to be incapable of producing the metabolite based on analysis by thin-layer chromatography (TLC). We sequenced and examined the usnic acid biosynthetic gene clusters, or lack thereof, from four closely related Cladonia species (C. oricola, C. rangiferina, C. stygia, and C. subtenuis), and compare them against those of C. uncialis. We complement this comparison with tiered chemical profile analyses to confirm the presence or absence of usnic acid in select samples, using both HPLC and LC-MS. Despite long-standing reporting that C. rangiferina lacks the ability to produce usnic acid, we observed functional gene clusters from the species and detected usnic acid when extracts were examined by LC-MS. By contrast, C. stygia and C. oricola, have been previously described as lacking the ability to produce usnic acid, lacked the gene cluster entirely, and no usnic acid could be detected in C. oricola extracts via HPLC or LC-MS. This work suggests that chemical profiles attained through inexpensive and low-sensitivity methods like TLC may fail to detect low abundance metabolites that can be taxonomically informative. This study also bolsters understanding of the usnic acid gene cluster in lichens, revealing differences among domains of the polyketide synthase which may explain observed differences in expression. These results reinforce the need for comprehensive characterization of lichen secondary metabolite profiles with sensitive LC-MS methods.
Collapse
Affiliation(s)
- Susan Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan R Hoffman
- Department of Biology, Graduate Center, City University of New York, The New York, USA; Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - R Troy McMullin
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario, K1P 6P4, Canada
| | - James C Lendemer
- Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA.
| | - John L Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
12
|
Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022; 10:microorganisms10051026. [PMID: 35630468 PMCID: PMC9145448 DOI: 10.3390/microorganisms10051026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography–mass spectrometry (GC–MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC–MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.
Collapse
|
13
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
14
|
Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Mahmood D, Azad ZRAA, Patel M, Mehmood K, Danciu C, Ashraf SA. Anti-Adhesion and Antibiofilm Activity of Eruca sativa Miller Extract Targeting Cell Adhesion Proteins of Food-Borne Bacteria as a Potential Mechanism: Combined In Vitro-In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:610. [PMID: 35270080 PMCID: PMC8912376 DOI: 10.3390/plants11050610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/05/2023]
Abstract
Bacterial cells have the ability to form biofilm onto the surfaces of food matrixes and on food processing equipment, leading to a source of food contamination posing serious health implications. Therefore, our study aimed to determine the effect of Eruca sativa Miller (E. sativa) crude extract against biofilms of food-borne bacteria along with in silico approaches to investigate adhesion proteins responsible for biofilm activity against the identified phytochemicals. The antibacterial potential of crude extract was evaluated using agar well diffusion technique and combinations of light and scanning electron microscopy to assess the efficacy of crude extract against the developed biofilms. Our results showed that crude extract of E. sativa was active against all tested food-borne bacteria, exhibiting a rapid kinetics of killing bacteria in a time-dependent manner. MIC and MBC values of E. sativa crude extract were found to be ranging from 125 to 500 µg/mL and 250 to 1000 µg/mL respectively. Furthermore, inhibition of developed biofilm by E sativa was found to be ranging from 58.68% to 73.45% for all the tested strains. The crude extract also reduced the viability of bacterial cells within biofilms and amount of EPS (ranging 59.73-82.77%) in the biofilm matrix. Additionally, the microscopic images also revealed significant disruption in the structure of biofilms. A molecular docking analysis of E. sativa phytochemicals showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV b pilin of S. aureus, E. coli, P. aeruginosa, and S. enterica ser. typhi, respectively. Thus, our findings represent the first demonstration of E. sativa crude extract's bioactivity and potency against food-borne bacteria in their planktonic forms, as well as against the developed biofilms. Therefore, a possible mechanistic approach for inhibition of biofilm via targeting adhesion proteins can be explored further to target biofilm producing food-borne bacterial pathogens.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 6688, Qassim 51452, Saudi Arabia;
| | - Z. R. Azaz Ahmad Azad
- Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| |
Collapse
|
15
|
Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, Alreshidi M, Snoussi M, Rizvi SMD, Bardakci F, Jamal A, Sachidanandan M, Adnan M. Inhibition of Bacterial Adhesion and Antibiofilm Activities of a Glycolipid Biosurfactant from Lactobacillus rhamnosus with Its Physicochemical and Functional Properties. Antibiotics (Basel) 2021; 10:1546. [PMID: 34943758 PMCID: PMC8698754 DOI: 10.3390/antibiotics10121546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| |
Collapse
|
16
|
Huang YZ, Jin Z, Wang ZM, Qi LB, Song S, Zhu BW, Dong XP. Marine Bioactive Compounds as Nutraceutical and Functional Food Ingredients for Potential Oral Health. Front Nutr 2021; 8:686663. [PMID: 34926539 PMCID: PMC8675007 DOI: 10.3389/fnut.2021.686663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Oral diseases have received considerable attention worldwide as one of the major global public health problems. The development of oral diseases is influenced by socioeconomic, physiological, traumatic, biological, dietary and hygienic practices factors. Currently, the main prevention strategy for oral diseases is to inhibit the growth of biofilm-producing plaque bacteria. Tooth brushing is the most common method of cleaning plaque, aided by mouthwash and sugar-free chewing gum in the daily routine. As the global nutraceutical market grows, marine bioactive compounds are becoming increasingly popular among consumers for their antibacterial, anti-inflammatory and antitumor properties. However, to date, few systematic summaries and studies on the application of marine bioactive compounds in oral health exist. This review provides a comprehensive overview of different marine-sourced bioactive compounds and their health benefits in dental caries, gingivitis, periodontitis, halitosis, oral cancer, and their potential use as functional food ingredients for oral health. In addition, limitations and challenges of the application of these active ingredients are discussed and some observations on current work and future trends are presented in the conclusion section.
Collapse
Affiliation(s)
- Yi-Zhen Huang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zheng Jin
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhe-Ming Wang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Li-Bo Qi
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
17
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|
18
|
Singh P, Xie J, Qi Y, Qin Q, Jin C, Wang B, Fang W. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Mar Drugs 2021; 19:md19090516. [PMID: 34564178 PMCID: PMC8472358 DOI: 10.3390/md19090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.
Collapse
Affiliation(s)
- Pratiksha Singh
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Jin Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Qijian Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| |
Collapse
|
19
|
Fahmy NM, Abdel-Tawab AM. Isolation and characterization of marine sponge-associated Streptomyces sp. NMF6 strain producing secondary metabolite(s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. J Genet Eng Biotechnol 2021; 19:102. [PMID: 34264405 PMCID: PMC8281025 DOI: 10.1186/s43141-021-00203-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Background Actinomycetes associated with marine sponge represent a promising source of bioactive compounds. Herein, we report the isolation, identification, and bioactivity evaluation of Streptomyces sp. NMF6 associated with the marine sponge Diacarnus ardoukobae. Results Results showed that the strain belonged to the genus Streptomyces, and it was designated as Streptomyces sp. NMF6 with the GenBank accession number MW015111. Ethyl acetate (EtOAc) extract of the strain NMF6 demonstrated a promising antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Vibrio damsela, and Candida albicans and a strong antioxidant activity, which were confirmed by DPPH, ferric-reducing power, and phosphomolybdenum assays; results are expressed as ascorbic acid equivalents. NMF6 extract also demonstrated cytotoxicity against breast cancer cell line (MCF-7), hepatocellular carcinoma cell line (Hep-G2), and human colon carcinoma cell line (HCT-116); the selectivity index values were < 2. The extract showed promising antiviral activity against HSV-1, CoxB4, and hepatitis A viruses at concentrations that were nontoxic to the host cells, with the selectivity index values being 13.25, 9.42, and 8.25, respectively. GC-MS analysis of the extract showed the presence of 20 compounds, with bis(2-ethylhexyl) phthalate being the major component (48%). Conclusions Our study indicates that the marine sponge–associated Streptomyces sp. NMF6 strain is a potential source of bioactive compounds that could be developed into therapeutic agents.
Collapse
Affiliation(s)
- Nayer Mohamed Fahmy
- Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | - Asmaa Mohamed Abdel-Tawab
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| |
Collapse
|
20
|
Whitaker RD, Altintzoglou T, Lian K, Fernandez EN. Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Curr Pharm Des 2021; 27:1353-1364. [PMID: 33155895 DOI: 10.2174/1381612824999201105164000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Collapse
|
21
|
Ashraf SA, Siddiqui AJ, Elkhalifa AEO, Khan MI, Patel M, Alreshidi M, Moin A, Singh R, Snoussi M, Adnan M. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144990. [PMID: 33736303 DOI: 10.1016/j.scitotenv.2021.144990] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 05/14/2023]
Abstract
A rapid increase in world population is leading to the rise in global demand of food and agriculture (agri) products. Nanotechnology and its applications have emerged as one of the most pioneering and promising technology for transforming conventional food and agri industries, with the aim of sustainable farming, improving the food security, quality and safety which could revolutionize the food and agri industries. Current developments in nanotechnology have led to the new paths progressively and bringing the radical changes the way food is perceived throughout the farming, transportation, processing, packaging, storage, monitoring and consumption. This review brings the current updates on novel nanomaterials in food and agri industries. Emphasis is given on the importance of nanotechnological applications, offering complete food solutions from farm to fork; including nutraceutical and functional foods, improving bioavailability, efficiency, nutritional status, nano-additives, food texture, color, taste and packaging. Agricultural sector also witnessed several nano-based products, such as nano-fertilizer, nano-pesticide, nano growth promoters and many more for the development of sustainable farming and crop improvement. Despite of numerous advantages of nanotechnology, there are still toxicity challenges, safety concerns, which needs to be addressed and demands transformations in regulatory policies. Rapid development is projected to transform several foods and agri sectors, with rapid increase in market stake and investment. Government agencies, private research centers as well as academicians are also coming together to explore the benefits of nanotechnology to improve food scarcity in the coming years.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Abd Elmoneim O Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Mohammed Idrees Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Qassim, Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia; Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia.
| |
Collapse
|
22
|
Bibi F, Naseer MI, Azhar EI. Assessing the diversity of bacterial communities from marine sponges and their bioactive compounds. Saudi J Biol Sci 2021; 28:2747-2754. [PMID: 34025160 PMCID: PMC8117107 DOI: 10.1016/j.sjbs.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
23
|
TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces. J Antibiot (Tokyo) 2021; 74:464-469. [PMID: 33707649 DOI: 10.1038/s41429-021-00415-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/08/2022]
Abstract
TMKS8A (1), a new chlorinated α-lapachone derivative, along with five known related metabolites, A80915 C (2), SF2415B1 (3), chlorinated dihydroquinone 3 (4), SF2415B3 (5), and A80915 C (6), were identified from the culture extract of Streptomyces sp. TMKS8, which was isolated from a sea slug, Paromoionchis tumidus. The structure of 1 was determined by the analysis of NMR and MS spectral data, assisted by NMR chemical shift prediction using DFT-based calculation. The absolute configuration was determined to be R by comparison of experimental and calculated ECD spectra. Compound 1 displayed antimicrobial activity against Gram-positive bacteria with MIC values ranging from 6.25 to 12.5 μg ml-1 and cytotoxicity against murine leukemia P388 cells with IC50 9.8 μM.
Collapse
|
24
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
25
|
Reddy MN, Adnan M, Alreshidi MM, Saeed M, Patel M. Evaluation of Anticancer, Antibacterial and Antioxidant Properties of a Medicinally Treasured Fern Tectaria coadunata with its Phytoconstituents Analysis by HR-LCMS. Anticancer Agents Med Chem 2020; 20:1845-1856. [DOI: 10.2174/1871520620666200318101938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Background:
Tectaria coadunata (T. coadunata) is an important fern species with a number of
medicinal properties. It has been evidently found for its effectiveness in ethanomedicinal usage, which can also
emerge as one of the most promising sources for nutraceuticals.
Objective:
This study aims to examine the phytochemistry of the whole crude extract of T. coadunata for the
first time with evaluation of antibacterial, antioxidant and anticancer activity.
Methods:
High Resolution Liquid Chromatography Mass Spectrometry analysis (HR-LCMS) was performed for
confirming the presence of biologically active constituents in the extract of T. coadunata followed by antibacterial,
antioxidant and anticancer activity.
Results:
With the detailed Mass spectra data, absorbance spectra and retention times, chemical composition of
T. coadunata holds a diverse group of bioactive/chemical components such as sugars, sugar alcohol, flavonoids,
terpenoids and phenolics. The results for antioxidant activity showed that T. coadunata crude extract had higher
scavenging potential against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals than H2O2 molecules, which
was followed by positive antibacterial activity against several pathogenic bacteria like Shigella flexneri, Staphylococcus
aureus and Salmonella typhi.
Discussion:
The ethanolic extract of T. coadunata showed favorable antiproliferation activity against three
leukemic (KG1, MOLT-3 and K-562) cells in a dose dependent manner, especially for KG1 42.850±1.24μg/ml.
Conclusion:
This study has provided a better understanding of the presence of biologically active phytochemical
constituents in the extract of T. coadunata, which can be the reason for its bioactive potential. Moreover,
T. coadunata has significant anticancer activities against human leukemic cancer cell lines, indicating it as a potential
anticancer agent.
Collapse
Affiliation(s)
- Mandadi N. Reddy
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd. Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, PO Box 2440, Saudi Arabia
| | - Mousa M. Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il, PO Box 2440, Saudi Arabia
| | - Mohd. Saeed
- Department of Biology, College of Science, University of Ha’il, Ha’il, PO Box 2440, Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
26
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Patel M, Ashraf MS, Siddiqui AJ, Ashraf SA, Sachidanandan M, Snoussi M, Adnan M, Hadi S. Profiling and Role of Bioactive Molecules from Puntius sophore (Freshwater/Brackish Fish) Skin Mucus with Its Potent Antibacterial, Antiadhesion, and Antibiofilm Activities. Biomolecules 2020; 10:E920. [PMID: 32560562 PMCID: PMC7355610 DOI: 10.3390/biom10060920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epidermal fish mucus comprises of diverse bioactive metabolites which plays an immense role in defense mechanisms and other important cellular activities. Primarily, this study aims to screen the unexplored mucus extract of Puntius sophore(P. sophore) for its antagonistic potential against common pathogens, which are commonly implicated in foodborne and healthcare associated infections, with effects on their adhesion and biofilm formation. Profiling of the skin mucus was carried out by High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS), followed by antibacterial activity and assessment of antibiofilm potency and efficacy on the development, formation, and texture of biofilms. Furthermore, bacterial cell damage, viability within the biofilm, checkerboard test, and cytotoxicity were also evaluated. As a result, P. sophore mucus extract was found to be effective against all tested strains. It also impedes the architecture of biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total exopolysaccharide content. A synergy was observed between P. sophore mucus extract and gentamicin for Escherichia coli(E. coli), Pseudomonas aeruginosa(P. aeruginosa), and Bacillus subtilis(B. subtilis), whereas, an additive effect for Staphylococcus aureus(S. aureus). Thus, our findings represent the potent bioactivities of P. sophore mucus extract for the first time, which could be explored further as an alternative to antibiotics or chemically synthesized antibiofilm agents.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi 17472, Saudi Arabia;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
28
|
Boutin S, Dalpke AH. The Microbiome: A Reservoir to Discover New Antimicrobials Agents. Curr Top Med Chem 2020; 20:1291-1299. [DOI: 10.2174/1568026620666200320112731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/01/2023]
Abstract
Nature offered mankind the first golden era of discovery of novel antimicrobials based on
the ability of eukaryotes or micro-organisms to produce such compounds. The microbial world proved
to be a huge reservoir of such antimicrobial compounds which play important functional roles in every
environment. However, most of those organisms are still uncultivable in a classical way, and therefore,
the use of extended culture or DNA based methods (metagenomics) to discover novel compounds
promises usefulness. In the past decades, the advances in next-generation sequencing and bioinformatics
revealed the enormous diversity of the microbial worlds and the functional repertoire available for
studies. Thus, data-mining becomes of particular interest in the context of the increased need for new
antibiotics due to antimicrobial resistance and the rush in antimicrobial discovery. In this review, an
overview of principles will be presented to discover new natural compounds from the microbiome. We
describe culture-based and culture-independent (metagenomic) approaches that have been developed to
identify new antimicrobials and the input of those methods in the field as well as their limitations.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Hygiene, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
29
|
Ashraf SA, Adnan M, Patel M, Siddiqui AJ, Sachidanandan M, Snoussi M, Hadi S. Fish-based Bioactives as Potent Nutraceuticals: Exploring the Therapeutic Perspective of Sustainable Food from the Sea. Mar Drugs 2020; 18:E265. [PMID: 32443645 PMCID: PMC7281228 DOI: 10.3390/md18050265] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments in nutraceuticals and functional foods have confirmed that bioactive components present in our diet play a major therapeutic role against human diseases. Moreover, there is a huge emphasis on food scientists for identifying and producing foods with better bioactive activity, which can ultimately provide wellness and well-being to human health. Among the several well-known foods with bioactive constituents, fish has always been considered important, due to its rich nutritional values and by-product application in food industries. Nutritionists, food scientists, and other scientific communities have been working jointly to uncover new bioactive molecules that could increase the potential and therapeutic benefits of these bioactive components. Despite the innumerable benefits of fish and known fish bioactive molecules, its use by food or pharmaceutical industries is scarce, and even research on fish-based nutraceuticals is not promising. Therefore, this review focuses on the current information/data available regarding fish bioactive components, its application as nutraceuticals for therapeutic purposes in the treatment of chronic diseases, ethnic issues related to consumption of fish or its by-products. Especial emphasis is given on the utilization of fish wastes and its by-products to fulfill the world demand for cheap dietary supplements specifically for underdeveloped/least developed countries.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
30
|
Adnan M, Patel M, Deshpande S, Alreshidi M, Siddiqui AJ, Reddy MN, Emira N, De Feo V. Effect of Adiantum philippense Extract on Biofilm Formation, Adhesion With Its Antibacterial Activities Against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An in vitro-in silico Approach. Front Microbiol 2020; 11:823. [PMID: 32477292 PMCID: PMC7237743 DOI: 10.3389/fmicb.2020.00823] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Adiantum philippense (A. philippense), an ethnomedicinally important fern, has become an interesting herb in the search for novel bioactive metabolites, which can also be used as therapeutic agents. Primarily, in this study, A. philippense crude extract was screened for its phytochemical constituents, antagonistic potential, and effect on bacterial adhesion and biofilm formation against common food pathogens. Phytochemical profiling of A. philippense was carried out by using High Resolution-Liquid Chromatography and Mass Spectroscopy (HR-LCMS) followed by antibacterial activity via agar cup/well diffusion, broth microdilution susceptibility methods, and growth curve analysis. Antibiofilm potency and efficacy were assessed on the development, formation, and texture of biofilms through light microscopy, fluorescent microscopy, scanning electron microscopy, and the assessment of exopolysaccharide production. Correspondingly, a checkerboard test was performed to evaluate the combinatorial effect of A. philippense and chloramphenicol. Lastly, molecular docking studies of identified phytochemicals with adhesin proteins of tested food pathogens, which helps the bacteria in surface attachment and leads to biofilm formation, were assessed. A. philippense crude extract was found to be active against all tested food pathogens, displaying the rapid time-dependent kinetics of bacterial killing. A. philippense crude extract also impedes the biofilm matrix by reducing the total content of exopolysaccharide, and, likewise, the microscopic images revealed a great extent of disruption in the architecture of biofilms. A synergy was observed between A. philippense crude extract and chloramphenicol for E. coli, S. aureus, and P. aeruginosa, whereas an additive effect was observed for S. flexneri. Various bioactive phytochemicals were categorized from A. philippense crude extract using HR-LCMS. The molecular docking of these identified phytochemicals was interrelated with the active site residues of adhesin proteins, IcsA, Sortase A, OprD, EspA, and FimH from S. flexneri, S. aureus, P. aeruginosa, and E. coli, respectively. Thus, our findings represent the bioactivity and potency of A. philippense crude extract against food pathogens not only in their planktonic forms but also against/in biofilms for the first time. We have also correlated these findings with the possible mechanism of biofilm inhibition via targeting adhesin proteins, which could be explored further to design new bioactive compounds against biofilm producing foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Sumukh Deshpande
- Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mandadi Narsimha Reddy
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Noumi Emira
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy
| |
Collapse
|
31
|
Kilic T, Coleri Cihan A. Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Reconstruction and in silico analysis of new Marinobacter adhaerens t76_800 with potential for long-chain hydrocarbon bioremediation associated with marine environmental lipases. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Exploring the Pharmacological Potentials of Biosurfactant Derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 2020; 77:452-459. [PMID: 31897664 DOI: 10.1007/s00284-019-01850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Therapeutic potential of biosurfactant (BS) has been improved in recent years. Our present study deals with production of BS from Planococcus maritimus SAMP MCC 3013 in a mineral salt medium (MSM) supplemented with glucose (1.5% w/v). Further, BS has been purified and partially characterized as glycolipid type through our previous publication. Current research article aimed to evaluate biological potential of BS against Mycobacterium tuberculosis, Plasmodium falciparum and cancerous cell lines. Planococcus derived glycolipid BS was found to be a promising inhibitor of M. tuberculosis (MTB) H37Ra at IC50 64.11 ± 1.64 μg/mL and MIC at 160.8 ± 1.64 μg/mL. BS also showed growth inhibition of P. falciparum at EC50 34.56 ± 0.26 µM. Additionally, BS also displayed the cytotoxicity against HeLa (IC50 41.41 ± 4.21 μg/mL), MCF-7 (IC50 42.79 ± 6.07 μg/mL) and HCT (IC50 31.233 ± 5.08 μg/mL) cell lines. Molecular docking analysis was carried for the most popular glycolipid type BS namely Rhamnolipid (RHL) aiming to interpret the possible binding interaction for anti-tubercular and anti-cancer activity. This analysis revealed the involvement of RHL binding with enoyl reductase (InhA) of M. tuberculosis. Docking studies of RHL with tubulin directed several hydrophobic and Vander Waal interactions to exhibit anti-cancer potential. The present study will be helpful for further development of marine bioactive molecules for therapeutic applications. Their anti-tubercular, anti-plasmodial and cytotoxic activities make BS molecules as a noteworthy candidate to combat several diseases. To the best of our knowledge, this is the first report on projecting the pharmacological potential of Planococcus derived BS.
Collapse
|
34
|
López Y, Soto SM. The Usefulness of Microalgae Compounds for Preventing Biofilm Infections. Antibiotics (Basel) 2019; 9:E9. [PMID: 31878164 PMCID: PMC7168277 DOI: 10.3390/antibiotics9010009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Biofilms play an important role in infectious diseases. It has been estimated that most medical infections are due to bacterial biofilms, and about 60-70% of nosocomial infections are also caused by the formation of a biofilm. Historically, microalgae are an important source of bioactive compounds, having novel structures and potential biological functions that make them attractive for different industries such as food, animal feed, aquaculture, cosmetics, and pharmaceutical. Several studies have described compounds produced by microalgae and cyanobacteria species with antimicrobial activity. However, studies on the antibiofilm activity of extracts and/or molecules produced by these microorganisms are scarce. Quorum-sensing inhibitor and anti-adherent agents have, among others, been isolated from microalgae and cyanobacteria species. The use of tools such as nanotechnology increase their power of action and can be used for preventing and treating biofilm-related infections.
Collapse
Affiliation(s)
| | - Sara M. Soto
- Department, ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain;
| |
Collapse
|
35
|
Alshammari E, Patel M, Sachidanandan M, Kumar P, Adnan M. Potential Evaluation and Health Fostering Intrinsic Traits of Novel Probiotic Strain Enterococcus durans F3 Isolated from the Gut of Fresh Water Fish Catla catla. Food Sci Anim Resour 2019; 39:844-861. [PMID: 31728452 PMCID: PMC6837897 DOI: 10.5851/kosfa.2019.e57] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022] Open
Abstract
Over the last few years, marine environment was found to be a source of surplus
natural products and microorganisms with new bioactive secondary metabolites of
interest which can divulge nutritional and biological impact on the host. This
study aims to assess the possible, inherent and functional probiotic properties
of a novel probiotic strain Enterococcus durans F3 (E.
durans F3) isolated from the gut of fresh water fish Catla
catla. Parameters for evaluating and describing the probiotics
described in FAD/WHO guidelines were followed. E. durans F3
demonstrated affirmative results including simulated bile, acid and gastric
juice tolerance with exhibited significant bactericidal effect against pathogens
Staphylococcus aureus, Salmonella Typhi,
Escherichia coli and Pseudomonas
aeruginosa. This can be due to the enterocin produced by E.
durans F3 strain, which was resolute by sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE) gel with amplification of the
anticipated fragment of a structural gene; enterocin A, followed by antibiotic
susceptibility assessment. Effective antioxidant potentiality against
α-diphenyl-α-picrylhydrazyl free radicals including lipase, bile
salt hydrolase activity with auto-aggregation and cell surface hydrophobicity
was similarly observed. Results are proving the potentiality of E.
durans F3, which can also be used as probiotic starter culture in
dairy industries for manufacturing new products that imparts health benefits to
the host. Finding the potent and novel probiotic strains will also satisfy the
current developing market demand for probiotics.
Collapse
Affiliation(s)
- Eyad Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India
| | | | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
| |
Collapse
|
36
|
Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. Int J Mol Sci 2019; 20:ijms20143549. [PMID: 31331112 PMCID: PMC6678755 DOI: 10.3390/ijms20143549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
The extracts of two mangrove species, Bruguiera cylindrica and Laguncularia racemosa, have been analyzed at sub-lethal concentrations for their potential to modulate biofilm cycles (i.e., adhesion, maturation, and detachment) on a bacterium, yeast, and filamentous fungus. Methanolic leaf extracts were also characterized, and MS/MS analysis has been used to identify the major compounds. In this study, we showed the following. (i) Adhesion was reduced up to 85.4% in all the models except for E. coli, where adhesion was promoted up to 5.10-fold. (ii) Both the sum and ratio of extracellular polysaccharides and proteins in mature biofilm were increased up to 2.5-fold and 2.6-fold in comparison to the negative control, respectively. Additionally, a shift toward a major production of exopolysaccharides was found coupled with a major production of both intracellular and extracellular reactive oxygen species. (iii) Lastly, detachment was generally promoted. In general, the L. racemosa extract had a higher bioactivity at lower concentrations than the B. cylindrica extract. Overall, our data showed a reduction in cells/conidia adhesion under B. cylindrica and L. racemosa exposure, followed by an increase of exopolysaccharides during biofilm maturation and a variable effect on biofilm dispersal. In conclusion, extracts either inhibited or enhanced biofilm development, and this effect depended on both the microbial taxon and biofilm formation step.
Collapse
|
37
|
Shan K, Wang C, Liu W, Liu K, Jia B, Hao L. Genome sequence and transcriptomic profiles of a marine bacterium, Pseudoalteromonas agarivorans Hao 2018. Sci Data 2019; 6:10. [PMID: 30918266 PMCID: PMC6437646 DOI: 10.1038/s41597-019-0012-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Members of the marine genus Pseudoalteromonas have attracted great interest because of their ability to produce a large number of biologically active substances. Here, we report the complete genome sequence of Pseudoalteromonas agarivorans Hao 2018, a strain isolated from an abalone breeding environment, using second-generation Illumina and third-generation PacBio sequencing technologies. Illumina sequencing offers high quality and short reads, while PacBio technology generates long reads. The scaffolds of the two platforms were assembled to yield a complete genome sequence that included two circular chromosomes and one circular plasmid. Transcriptomic data for Pseudoalteromonas were not available. We therefore collected comprehensive RNA-seq data using Illumina sequencing technology from a fermentation culture of P. agarivorans Hao 2018. Researchers studying the evolution, environmental adaptations and biotechnological applications of Pseudoalteromonas may benefit from our genomic and transcriptomic data to analyze the function and expression of genes of interest. Design Type(s) | transcription profiling design • source-based data analysis objective | Measurement Type(s) | whole genome sequencing assay • transcription profiling assay | Technology Type(s) | DNA sequencing • RNA sequencing | Factor Type(s) | | Sample Characteristic(s) | Pseudoalteromonas agarivorans • ocean biome |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
Affiliation(s)
- Kai Shan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chunlei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenlin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kai Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Baolei Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. .,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Lujiang Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. .,School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
38
|
Chen R, Wong HL, Burns BP. New Approaches to Detect Biosynthetic Gene Clusters in the Environment. MEDICINES 2019; 6:medicines6010032. [PMID: 30823559 PMCID: PMC6473659 DOI: 10.3390/medicines6010032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
Microorganisms in the environment can produce a diverse range of secondary metabolites (SM), which are also known as natural products. Bioactive SMs have been crucial in the development of antibiotics and can also act as useful compounds in the biotechnology industry. These natural products are encoded by an extensive range of biosynthetic gene clusters (BGCs). The developments in omics technologies and bioinformatic tools are contributing to a paradigm shift from traditional culturing and screening methods to bioinformatic tools and genomics to uncover BGCs that were previously unknown or transcriptionally silent. Natural product discovery using bioinformatics and omics workflow in the environment has demonstrated an extensive distribution of BGCs in various environments, such as soil, aquatic ecosystems and host microbiome environments. Computational tools provide a feasible and culture-independent route to find new secondary metabolites where traditional approaches cannot. This review will highlight some of the advances in the approaches, primarily bioinformatic, in identifying new BGCs, especially in environments where microorganisms are rarely cultured. This has allowed us to tap into the huge potential of microbial dark matter.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
39
|
Nagabhishek SN, Madankumar A. A novel apoptosis-inducing metabolite isolated from marine sponge symbiont Monascus sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells. RSC Adv 2019; 9:5878-5890. [PMID: 35517301 PMCID: PMC9060890 DOI: 10.1039/c8ra09886g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/27/2019] [Indexed: 01/19/2023] Open
Abstract
The marine environment has a remarkable source of natural products mainly from marine fungi, which have been a central source of novel pharmacologically bioactive secondary metabolites. In this study, the search for a new potential apoptosis-inducing metabolite is focused on marine sponge-associated symbionts. A total of sixteen different sponges were obtained from the Gulf of Mannar region, India, and twenty-three different marine fungal strains were isolated and tested for antiproliferative activity by the MTT assay. Out of these, Monascus sp. NMK7 associated with the marine sponge Clathria frondifera was found to have a promising antiproliferative property. Furthermore, to isolate the pure active metabolite, the crude material was subjected to column chromatography and HPLC. Structural characterization was conducted by a variety of spectroscopic techniques including UV, IR, MS and NMR. The obtained results from the MS and NMR spectroscopy determined 418.5 Da to be the molecular weight and C24H34O6 to be the molecular formula of the metabolite, indicating the presence of monacolin X (NMKD7). NMKD7 was found to induce dose-dependent cytotoxicity in different human breast cancer cell lines MCF-7, T47D, MDA-MB-231, MDA-MB-468 and MCF-10A normal breast cell after 24 h of exposure. For elucidating the possible mode of cell death, T47D and MDA-MB-468 cells were treated with NMKD7 for 24 h to examine the morphological change of the chromatin (PI & AO/EB). Therefore, it has been suggested as the possible mechanism of apoptosis, and apart from this, it has also exhibited antibacterial and anti-migratory properties as well as induced the ROS stress (DCFH-DA), which causes the mitochondrial membrane potential difference (Rhodamine-123), the loss of cell membrane integrity and eventually cell death. Thus, the present study features a novel promising apoptosis-inducing metabolite (NMKD7) with minimal toxicity, suggesting its potential for biotechnological applications, and substantiates that it should be further considered for the elucidation of molecular targets and signal transduction pathways.
Collapse
Affiliation(s)
- Sirpu Natesh Nagabhishek
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| | - Arumugam Madankumar
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| |
Collapse
|