1
|
Corbett GA, Moore R, Feehily C, Killeen SL, O'Brien E, Van Sinderen D, Matthews E, O'Flaherty R, Rudd PM, Saldova R, Walsh CJ, Lawton EM, MacIntyre DA, Corcoran S, Cotter PD, McAuliffe FM. Dietary amino acids, macronutrients, vaginal birth, and breastfeeding are associated with the vaginal microbiome in early pregnancy. Microbiol Spectr 2024; 12:e0113024. [PMID: 39365058 PMCID: PMC11537119 DOI: 10.1128/spectrum.01130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
The vaginal microbiome is a key player in the etiology of spontaneous preterm birth. This study aimed to illustrate maternal environmental factors associated with vaginal microbiota composition and function in pregnancy. Women in healthy pregnancy had vaginal microbial sampling from the posterior vaginal fornix performed at 16 weeks gestation. After shotgun metagenomic sequencing, heatmaps of relative abundance data were generated. Community state type (CST) was assigned, and alpha diversity was calculated. Demography, obstetric history, well-being, exercise, and diet using food frequency questionnaires were collected and compared against microbial parameters. A total of 119 pregnant participants had vaginal metagenomic sequencing performed. Factors with strongest association with beta diversity were dietary lysine (adj-R2 0.113, P = 0.002), valine (adj-R2 0.096, P = 0.004), leucine (adj-R2 0.086, P = 0.003), and phenylalanine (adj-R2 0.085, P = 0.005, Fig. 2D). Previous vaginal delivery and breastfeeding were associated with vaginal beta diversity (adj-R2 0.048, P = 0.003; adj-R2 0.045, P = 0.004), accounting for 8.5% of taxonomy variation on redundancy analysis. Dietary fat, starch, and maltose were positively correlated with alpha diversity (fat +0.002 SD/g, P = 0.025; starch +0.002 SD/g, P = 0.043; maltose +0.440 SD/g, P = 0.013), particularly in secretor-positive women. Functional signature was associated with CST, maternal smoking, and dietary phenylalanine, accounting for 8.9%-11% of the variation in vaginal microbiome functional signature. Dietary amino acids, previous vaginal delivery, and breastfeeding history were associated with vaginal beta diversity. Functional signature of the vaginal microbiome differed with community state type, smoking, dietary phenylalanine, and vitamin K. Increased alpha diversity correlated with dietary fat and starch. These data provide a novel snapshot into the associations between maternal environment, nutrition, and the vaginal microbiome. IMPORTANCE This secondary analysis of the MicrobeMom randomized controlled trial reveals that dietary amino acids, macronutrients, previous vaginal birth, and breastfeeding have the strongest associations with vaginal taxonomy in early pregnancy. Function of the vaginal niche is associated mainly by species composition, but smoking, vitamin K, and phenylalanine also play a role. These associations provide an intriguing and novel insight into the association between host factors and diet on the vaginal microbiome in pregnancy and highlight the need for further investigation into the complex interactions between the diet, human gut, and vaginal microbiome.
Collapse
Affiliation(s)
- Gillian A. Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| | - Rebecca Moore
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Conor Feehily
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eileen O'Brien
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Matthews
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Roisin O'Flaherty
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Pauline M. Rudd
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- Bioprocessing Technology Institute, AStar, Singapore, Singapore
| | - Radka Saldova
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- The Centre for Pathogen Genomics, Department of Microbiology & Immunology, Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - David A. MacIntyre
- Division of the Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, March of Dimes Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Siobhan Corcoran
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, Dublin, Ireland
- National Maternity Hospital, Dublin 2, Ireland
| |
Collapse
|
2
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
4
|
Radocchia G, Brunetti F, Marazzato M, Totino V, Neroni B, Bonfiglio G, Conte AL, Pantanella F, Ciolli P, Schippa S. Women Skin Microbiota Modifications during Pregnancy. Microorganisms 2024; 12:808. [PMID: 38674752 PMCID: PMC11051999 DOI: 10.3390/microorganisms12040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Several studies have shown fluctuations in the maternal microbiota at various body sites (gut, oral cavity, and vagina). The skin microbiota plays an important role in our health, but studies on the changes during pregnancy are limited. Quantitative and qualitative variations in the skin microbiota in pregnant woman could indeed play important roles in modifying the immune and inflammatory responses of the host. These alterations could induce inflammatory disorders affecting the individual's dermal properties, and could potentially predict infant skin disorder in the unborn. The present study aimed to characterize skin microbiota modifications during pregnancy. For this purpose, skin samples were collected from 52 pregnant women in the first, second, and third trimester of non-complicated pregnancies and from 17 age- and sex-matched healthy controls. The skin microbiota composition was assessed by next generation sequencing (NGS) of the V3-V4 region of the bacterial rRNA 16S. Our results indicate that from the first to the third trimester of pregnancy, changes occur in the composition of the skin microbiota, microbial interactions, and various metabolic pathways. These changes could play a role in creating more advantageous conditions for fetal growth.
Collapse
Affiliation(s)
- Giulia Radocchia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Francesca Brunetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Valentina Totino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Policlinico Luigi Di Liegro, 00148 Rome, Italy
| | - Bruna Neroni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Diagnostic Medicine and Radiology, UOC Clinical Pathology, Policlinico Umberto I Hospital, 00161 Rome, Italy
| | - Giulia Bonfiglio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Diagnostic Medicine and Radiology, UOC Clinical Pathology, Policlinico Umberto I Hospital, 00161 Rome, Italy
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Paola Ciolli
- Department of Maternal Infantile and Urological Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| |
Collapse
|
5
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Jia B, Tang L, Liu H, Chen W, Chen Q, Zhong M, Yin A. Potential roles of the interactions between gut microbiota and metabolites in LPS-induced intrauterine inflammation (IUI) and associated preterm birth (PTB). J Transl Med 2024; 22:7. [PMID: 38167140 PMCID: PMC10762855 DOI: 10.1186/s12967-023-04603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in preterm birth (PTB) pathophysiology, increasing the incidence of neurodevelopmental disorders. Gut microbiota and metabolite profile alterations have been reported to be involved in PTB pathophysiology. METHOD AND RESULTS In this study, IUI-exposed PTB mouse model was established and verified by PTB rate and other perinatal adverse reactions; LPS-indued IUI significantly increased the rates of PTB, apoptosis and inflammation in placenta tissue samples. LPS-induced IUI caused no significant differences in species richness and evenness but significantly altered the species abundance distribution. Non-targeted metabolomics analysis indicated that the metabolite profile of the preterm mice was altered, and differential metabolites were associated with signaling pathways including pyruvate metabolism. Furthermore, a significant positive correlation between Parasutterella excrementihominis and S4572761 (Nb-p-coumaroyltryptamine) and Mreference-1264 (pyruvic acid), respectively, was observed. Lastly, pyruvic acid treatment partially improved LPS-induced IUI phenotypes and decreased PTB rates and decreased the apoptosis and inflammation in placenta tissue samples. CONCLUSION This study revealed an association among gut microbiota dysbiosis, metabolite profile alterations, and LPS-induced IUI and PTB in mice models. Our investigation revealed the possible involvement of gut microbiota in the pathophysiology of LPS-induced IUI and PTB, which might be mediated by metabolites such as pyruvic acid. Future studies should be conducted to verify the findings through larger sample-sized animal studies and clinical investigations.
Collapse
Affiliation(s)
- Bei Jia
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Lijun Tang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Huibing Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Ailan Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
7
|
Buthgamuwa I, Fenelon JC, Roser A, Meer H, Johnston SD, Dungan AM. Gut microbiota in the short-beaked echidna (Tachyglossus Aculeatus) shows stability across gestation. Microbiologyopen 2023; 12:e1392. [PMID: 38129978 PMCID: PMC10721944 DOI: 10.1002/mbo3.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.
Collapse
Affiliation(s)
- Isini Buthgamuwa
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jane C. Fenelon
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Colossal Laboratories and BiosciencesDallasTexasUSA
| | - Alice Roser
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Haley Meer
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Stephen D. Johnston
- School of EnvironmentThe University of QueenslandGattonQueenslandAustralia
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Ashley M. Dungan
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Hu F, Sun X, Su Y, Huang M. The Dynamic Changes in the Composition and Diversity of Vaginal Microbiota in Women of Different Pregnancy Periods. Microorganisms 2023; 11:2686. [PMID: 38004698 PMCID: PMC10673304 DOI: 10.3390/microorganisms11112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The vaginal microbiota undergoes subtle changes during pregnancy, which may affect different pregnancy responses. This study used the Illumina MiSeq high-throughput sequencing method to analyze the 16S rRNA gene amplicons of pregnant women and the vaginal microbiota structure of pregnant women at different pregnancy periods. There were a total of 15 pregnant women, with 45 samples were taken from these women, within half a year before becoming pregnant, in the last trimester, and 42 days postpartum. Before and after pregnancy, the female vaginal microbiota was mainly composed of Firmicutes, followed by Actinobacteriota and Proteobacteria. The abundance of Lactobacillus was relatively high. The α-diversity and microbial abundance were relatively low, and there was no significant difference in microbial composition between the two. After childbirth, the diversity and abundance of women's vaginal bacterial communities were higher, with a decrease in the number of Firmicutes and a higher abundance of Actinobacteria, Proteobacteria, and Bacteroidota. There was a significant difference in the microbial community structure before and after pregnancy. This study showed that the microbiota structure of the vagina of pregnant women was similar to before pregnancy, but after childbirth, there were significant changes in the microbiota of the vagina, with a decrease in the number of probiotics and an increase in the number of harmful bacteria, increasing the risk of illness.
Collapse
Affiliation(s)
| | | | | | - Mingli Huang
- Department of Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (F.H.); (X.S.); (Y.S.)
| |
Collapse
|
9
|
Taylor JY, Barcelona V, Magny-Normilus C, Wright ML, Jones-Patten A, Prescott L, Potts-Thompson S, Santos HP. A roadmap for social determinants of health and biological nursing research in the National Institute of Nursing Research 2022-2026 Strategic Plan: Optimizing health and advancing health equity using antiracist framing. Nurs Outlook 2023; 71:102059. [PMID: 37863707 PMCID: PMC10803078 DOI: 10.1016/j.outlook.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Health equity is essential for improving the well-being of all individuals and groups, and research remains a critical element for understanding barriers to health equity. While considering how to best support research that acknowledges current health challenges, it is crucial to understand the role of social justice frameworks within health equity research and the contributions of minoritized researchers. Additionally, there should be an increased understanding of the influence of social determinants of health on biological mechanisms. PURPOSE Biological health equity research seeks to understand and address health disparities among historically excluded populations. DISCUSSION While there are examples of studies in this area led by minoritized researchers, some individuals and groups remain understudied due to underfunding. Research within minoritized populations must be prioritized to authentically achieve health equity. Furthermore, there should be increased funding from National Institutes of Health to support minoritized researchers working in this area.
Collapse
Affiliation(s)
- Jacquelyn Y Taylor
- Center for Research on People of Color, Columbia University School of Nursing, New York, NY.
| | - Veronica Barcelona
- Center for Research on People of Color, Columbia University School of Nursing, New York, NY
| | | | | | | | - Laura Prescott
- Center for Research on People of Color, Columbia University School of Nursing, New York, NY
| | | | - Hudson P Santos
- School of Nursing & Health Studies, University of Miami, Coral Gables, FL
| |
Collapse
|
10
|
Hadley M, Oppong AY, Coleman J, Powell AM. Structural Racism and Adverse Pregnancy Outcomes Through the Lens of the Maternal Microbiome. Obstet Gynecol 2023; 142:911-919. [PMID: 37678901 PMCID: PMC10510805 DOI: 10.1097/aog.0000000000005345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 09/09/2023]
Abstract
Microbiome science offers a glimpse into personalized medicine by characterizing health and disease states according to an individual's microbial signatures. Without a critical examination of the use of race as a variable, microbiome studies may be susceptible to the same pitfalls as other areas of science grounded in racist biology. We will examine the use of race as a biological variable in pregnancy-related microbiome research. Emerging data from studies that investigate the intestinal microbiome in pregnancy suggest strong influence of a poor diet on adverse pregnancy outcomes. Differences in the vaginal microbiome implicated in adverse pregnancy outcomes are frequently attributed to race. We review evidence that links systemic racism to pregnancy health outcome differences with a focus on the vaginal and intestinal microbiomes as well as diet. We also review how structural racism ultimately contributes to inequitable access to healthy food and higher risk environmental exposures among pregnant people of lower socioeconomic status and exacerbates common pregnancy comorbidities.
Collapse
Affiliation(s)
- Megan Hadley
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; and the University of Chicago School of Medicine, Chicago, Illinois
| | | | | | | |
Collapse
|
11
|
Koerner R, Prescott S, McSkimming D, Alman A, Duffy A, Groer M. The Salivary Microbiome During Pregnancy: Associations With Clinical and Sociodemographic Characteristics. J Perinat Neonatal Nurs 2023; 37:287-294. [PMID: 37878513 DOI: 10.1097/jpn.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE Poor oral health has been associated with adverse pregnancy outcomes, and the oral microbiome may play a role in these mechanisms. We aimed to examine the salivary microbiome for alterations in diversity or relative abundance throughout pregnancy and its associations with adverse pregnancy outcomes and sociodemographic characteristics. STUDY DESIGN AND METHODS We conducted an ancillary study from a previous cohort study of 37 women during their second and third trimesters of pregnancy using preexisting, participant-collected salivary samples to examine the oral microbiome using 16S rRNA sequencing. RESULTS The salivary microbiome demonstrated stability throughout pregnancy, as there were no significant differences in alpha or beta diversity. Individuals who were diagnosed with preeclampsia had differences in beta diversity at the genus level (F = 2.65, df = 1, P = .015). There were also differences in beta diversity at the species level in Hispanic individuals compared with non-Hispanic individuals (F = 1.7183, df = 1, P = .04). CONCLUSION The salivary microbiome demonstrated stability throughout the second and third trimesters but may be different in Hispanics or those diagnosed with preeclampsia. As such, clinical providers need to demonstrate culturally competent care during pregnancy and continue to educate women about the importance of oral healthcare during the perinatal period. Future research is needed to examine the mechanisms associated with oral microbiome dysbiosis in Hispanic women during pregnancy and in women with preeclampsia.
Collapse
Affiliation(s)
- Rebecca Koerner
- University of South Florida College of Nursing, Tampa, Florida (Drs Koerner, Prescott, Duffy, and Groer); State University of New York at Buffalo State, Buffalo (Dr McSkimming); and University of South Florida College of Public Health, Tampa (Dr Alman)
| | | | | | | | | | | |
Collapse
|
12
|
Koerner R, Prescott S, Alman A, Duffy A, Groer M. The Oral Microbiome Throughout Pregnancy: A Scoping Review. MCN Am J Matern Child Nurs 2023; 48:200-208. [PMID: 37365703 DOI: 10.1097/nmc.0000000000000930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Oral health is associated with systemic health, including adverse pregnancy outcomes. Understanding the oral microbiome during pregnancy may lead to targeted interventions for prevention of adverse outcomes. The purpose of this review is to examine the literature on the oral microbiome throughout pregnancy. METHODS We conducted a literature search with four electronic databases for original research conducted between 2012 and 2022 that examined the oral microbiome longitudinally using 16s rRNA sequencing during pregnancy. RESULTS We identified six studies that examined the oral microbiome longitudinally throughout pregnancy, though comparisons of oral niches, oral microbiome measures, and findings between studies were not consistent. Three studies identified alterations in alpha diversity throughout pregnancy and two studies identified increased pathogenic bacteria during pregnancy. Three studies reported no changes in the oral microbiome throughout pregnancy, and one study identified differences in the composition of the microbiome based on socioeconomic status and antibiotic exposure. Two studies examined adverse pregnancy outcomes in association with the oral microbiome, one reporting no associations and one reported difference in community gene composition in those diagnosed with preeclampsia. CLINICAL IMPLICATIONS There is limited research on the composition of the oral microbiome throughout pregnancy. There may be alterations in the oral microbiome during pregnancy such as increased relative abundance of pathogenic bacteria. Socioeconomic status, antibiotic use, and education may contribute to differences in the microbiome composition over time. Clinicians should evaluate oral health and educate on the importance of oral health care during the prenatal and perinatal time period.
Collapse
|
13
|
Yu HR, Tsai CC, Chan JYH, Lee WC, Wu KLH, Tain YL, Hsu TY, Cheng HH, Huang HC, Huang CH, Pan WH, Yeh YT. A Higher Abundance of Actinomyces spp. in the Gut Is Associated with Spontaneous Preterm Birth. Microorganisms 2023; 11:1171. [PMID: 37317145 DOI: 10.3390/microorganisms11051171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Preterm birth is a major challenge in pregnancy worldwide. Prematurity is the leading cause of death in infants and may result in severe complications. Nearly half of preterm births are spontaneous, but do not have recognizable causes. This study investigated whether the maternal gut microbiome and associated functional pathways might play a key role in spontaneous preterm birth (sPTB). Two hundred eleven women carrying singleton pregnancies were enrolled in this mother-child cohort study. Fecal samples were freshly collected at 24-28 weeks of gestation before delivery, and the 16S ribosomal RNA gene was sequenced. Microbial diversity and composition, core microbiome, and associated functional pathways were then statistically analyzed. Demographic characteristics were collected using records from the Medical Birth Registry and questionnaires. The result showed that the gut microbiome of mothers with over-weight (BMI ≥ 24) before pregnancy have lower alpha diversity than those with normal BMI before pregnancy. A higher abundance of Actinomyces spp. was filtered out from the Linear discriminant analysis (LDA) effect size (LEfSe), Spearman correlation, and random forest model, and was inversely correlated with gestational age in sPTB. The multivariate regression model showed that the odds ratio of premature delivery was 3.274 [95% confidence interval (CI): 1.349; p = 0.010] in the group with over-weight before pregnancy with a cutoff Hit% > 0.022 for Actinomyces spp. The enrichment of Actinomyces spp. was negatively correlated with glycan biosynthesis and metabolism in sPTB by prediction from the Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) platform. Maternal gut microbiota showing a lower alpha diversity, increased abundance of Actinomyces spp., and dysregulated glycan metabolism may be associated with sPTB risk.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsieh Huang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 83130, Taiwan
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83130, Taiwan
- BioMed Analysis Center, Fooyin University Hospital, Pingtung 92847, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83130, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yao-Tsung Yeh
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 83130, Taiwan
| |
Collapse
|
14
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A, Ciavattini A. Microbiome Changes in Pregnancy Disorders. Antioxidants (Basel) 2023; 12:463. [PMID: 36830021 PMCID: PMC9952029 DOI: 10.3390/antiox12020463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The human microbiota comprises all microorganisms, such as bacteria, fungi, and viruses, found within a specific environment that live on our bodies and inside us. The last few years have witnessed an explosion of information related to the role of microbiota changes in health and disease. Even though the gut microbiota is considered the most important in maintaining our health, other regions of the human body, such as the oral cavity, lungs, vagina, and skin, possess their own microbiota. Recent work suggests a correlation between the microbiota present during pregnancy and pregnancy complications. The aim of our literature review was to provide a broad overview of this growing and important topic. We focused on the most significant changes in the microbiota in the four more common obstetric diseases affecting women's health. Thus, our attention will be focused on hypertensive disorders, gestational diabetes mellitus, preterm birth, and recurrent miscarriage. Pregnancy is a unique period in a woman's life since the body undergoes different adaptations to provide an optimal environment for fetal growth. Such changes also involve all the microorganisms, which vary in composition and quantity during the three trimesters of gestation. In addition, special attention will be devoted to the potential and fundamental advances in developing clinical applications to prevent and treat those disorders by modulating the microbiota to develop personalized therapies for disease prevention and tailored treatments.
Collapse
Affiliation(s)
- Luca Giannella
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Camilla Grelloni
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Dayana Quintili
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Alessia Fiorelli
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Ramona Montironi
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Jacopo Di Giuseppe
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| |
Collapse
|
15
|
Fransson E, Gudnadottir U, Hugerth LW, Itzel EW, Hamsten M, Boulund F, Pennhag A, Du J, Schuppe-Koistinen I, Brusselaers N, Engstrand L. Cohort profile: the Swedish Maternal Microbiome project (SweMaMi) - assessing the dynamic associations between the microbiome and maternal and neonatal adverse events. BMJ Open 2022; 12:e065825. [PMID: 36288838 PMCID: PMC9615996 DOI: 10.1136/bmjopen-2022-065825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The Swedish Maternal Microbiome (SweMaMi) project was initiated to better understand the dynamics of the microbiome in pregnancy, with longitudinal microbiome sampling, shotgun metagenomics, extensive questionnaires and health registry linkage. PARTICIPANTS Pregnant women were recruited before the 20th gestational week during 2017-2021 in Sweden. In total, 5439 pregnancies (5193 unique women) were included. For 3973 pregnancies (73%), samples were provided at baseline, and for 3141 (58%) at all three timepoints (second and third trimester and postpartum). In total, 38 591 maternal microbiome samples (vaginal, faecal and saliva) and 3109 infant faecal samples were collected. Questionnaires were used to collect information on general, reproductive and mental health, diet and lifestyle, complemented by linkage to the nationwide health registries, also used to follow up the health of the offspring (up to age 10). FINDINGS TO DATE The cohort is fairly representative for the total Swedish pregnant population (data from 2019), with 41% first-time mothers. Women with university level education, born in Sweden, with normal body mass index, not using tobacco-products and aged 30-34 years were slightly over-represented. FUTURE PLANS The sample and data collection were finalised in November 2021. The next steps are the characterisation of the microbial DNA and linkage to the health and demographic information from the questionnaires and registries. The role of the microbiome on maternal and neonatal outcomes and early-childhood diseases will be explored (including preterm birth, miscarriage) and the role and interaction of other risk factors and confounders (including endometriosis, polycystic ovarian syndrome, diet, drug use). This is currently among the largest pregnancy cohorts in the world with longitudinal design and detailed and standardised microbiome sampling enabling follow-up of both mothers and children. The findings are expected to contribute greatly to the field of reproductive health focusing on pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Emma Fransson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Unnur Gudnadottir
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Luisa W Hugerth
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Eva Wiberg Itzel
- Department of Obstetrics and Gynecology, Södersjukhuset AB, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Marica Hamsten
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Alexandra Pennhag
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Global Health Institute, University of Antwerp, Antwerpen, Belgium
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| |
Collapse
|
16
|
Li J, George Markowitz RH, Brooks AW, Mallott EK, Leigh BA, Olszewski T, Zare H, Bagheri M, Smith HM, Friese KA, Habibi I, Lawrence WM, Rost CL, Lédeczi Á, Eeds AM, Ferguson JF, Silver HJ, Bordenstein SR. Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes. PLoS Biol 2022; 20:e3001758. [PMID: 35998206 PMCID: PMC9397868 DOI: 10.1371/journal.pbio.3001758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.
Collapse
Affiliation(s)
- Junhui Li
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert H George Markowitz
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrew W Brooks
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Stanford University Genetics Department, Stanford University, Palo Alto, California, United States of America
| | - Elizabeth K Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany A Leigh
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy Olszewski
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Hamid Zare
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Minoo Bagheri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Katie A Friese
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Ismail Habibi
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - William M Lawrence
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charlie L Rost
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ákos Lédeczi
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Angela M Eeds
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jane F Ferguson
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heidi J Silver
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States of America
| | - Seth R Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
17
|
Tang M, Weaver NE, Frank DN, Ir D, Robertson CE, Kemp JF, Westcott J, Shankar K, Garces AL, Figueroa L, Tshefu AK, Lokangaka AL, Goudar SS, Somannavar M, Aziz S, Saleem S, McClure EM, Hambidge KM, Hendricks AE, Krebs NF. Longitudinal Reduction in Diversity of Maternal Gut Microbiota During Pregnancy Is Observed in Multiple Low-Resource Settings: Results From the Women First Trial. Front Microbiol 2022; 13:823757. [PMID: 35979501 PMCID: PMC9376441 DOI: 10.3389/fmicb.2022.823757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To characterize the changes in gut microbiota during pregnancy and determine the effects of nutritional intervention on gut microbiota in women from sub-Saharan Africa (the Democratic Republic of the Congo, DRC), South Asia (India and Pakistan), and Central America (Guatemala). Methods Pregnant women in the Women First (WF) Preconception Maternal Nutrition Trial were included in this analysis. Participants were randomized to receive a lipid-based micronutrient supplement either ≥3 months before pregnancy (Arm 1); started the same intervention late in the first trimester (Arm 2); or received no nutrition supplements besides those self-administered or prescribed through local health services (Arm 3). Stool and blood samples were collected during the first and third trimesters. Findings presented here include fecal 16S rRNA gene-based profiling and systemic and intestinal inflammatory biomarkers, including alpha (1)-acid glycoprotein (AGP), C-reactive protein (CRP), fecal myeloperoxidase (MPO), and calprotectin. Results Stool samples were collected from 640 women (DRC, n = 157; India, n = 102; Guatemala, n = 276; and Pakistan, n = 105). Gut microbial community structure did not differ by intervention arm but changed significantly during pregnancy. Richness, a measure of alpha-diversity, decreased over pregnancy. Community composition (beta-diversity) also showed a significant change from first to third trimester in all four sites. Of the top 10 most abundant genera, unclassified Lachnospiraceae significantly decreased in Guatemala and unclassified Ruminococcaceae significantly decreased in Guatemala and DRC. The change in the overall community structure at the genus level was associated with a decrease in the abundances of certain genera with low heterogeneity among the four sites. Intervention arms were not significantly associated with inflammatory biomarkers at 12 or 34 weeks. AGP significantly decreased from 12 to 34 weeks of pregnancy, whereas CRP, MPO, and calprotectin did not significantly change over time. None of these biomarkers were significantly associated with the gut microbiota diversity. Conclusion The longitudinal reduction of individual genera (both commensals and potential pathogens) and alpha-diversity among all sites were consistent and suggested that the effect of pregnancy on the maternal microbiota overrides other influencing factors, such as nutrition intervention, geographical location, diet, race, and other demographical variables.
Collapse
Affiliation(s)
- Minghua Tang
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicholas E. Weaver
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Daniel N. Frank
- Department of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diana Ir
- Department of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer F. Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jamie Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ana L. Garces
- Institute of Nutrition in Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Antoinette K. Tshefu
- Institute of Nutrition in Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Adrien L. Lokangaka
- Institute of Nutrition in Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Shivaprasad S. Goudar
- KLE Academy of Higher Education and Research (Deemed-to-be-University), Jawaharlal Nehru Medical College, Belagavi, India
| | - Manjunath Somannavar
- KLE Academy of Higher Education and Research (Deemed-to-be-University), Jawaharlal Nehru Medical College, Belagavi, India
| | - Sumera Aziz
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Sarah Saleem
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | | | - K. Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Audrey E. Hendricks
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Nancy F. Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Volker E, Tessier C, Rodriguez N, Yager J, Kozyrskyj A. Pathways of atopic disease and neurodevelopmental impairment: assessing the evidence for infant antibiotics. Expert Rev Clin Immunol 2022; 18:901-922. [PMID: 35822921 DOI: 10.1080/1744666x.2022.2101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Epidemiologic studies are starting to report associations between antibiotic use in early life and neurodevelopmental disorders. Through mechanisms within the gut microbiota-brain axis, indeed, it is plausible that infant antibiotic treatment plays a role in the development of atopic disease and neurodevelopmental disorders. AREAS COVERED This narrative review summarizes and interprets published evidence on infant antibiotic use in future outcomes of atopic disease, and neurodevelopmental delay and disorders, including attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). To this end, we critically assess study bias from 2 main confounding factors, maternal/infant infection and infant feeding status. We also discuss common mechanisms that link atopy and neurodevelopment, and propose hypotheses related to immune activation and the gut microbiome. EXPERT OPINION Atopic disease and neurodevelopmental disorders share many risk factors and biological pathways. Infant antibiotic use has been linked to both disorders and is likely a marker for prenatal or infant infection. The mediating role of breastfeeding can also not be discounted. The exploration of causal pathways along the gut-brain axis leading towards neurodevelopmental impairment is evolving and of future interest.
Collapse
|
19
|
Markowitz RHG, LaBella AL, Shi M, Rokas A, Capra JA, Ferguson JF, Mosley JD, Bordenstein SR. Microbiome-associated human genetic variants impact phenome-wide disease risk. Proc Natl Acad Sci U S A 2022; 119:e2200551119. [PMID: 35749358 PMCID: PMC9245617 DOI: 10.1073/pnas.2200551119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Human genetic variation associates with the composition of the gut microbiome, yet its influence on clinical traits remains largely unknown. We analyzed the consequences of nearly a thousand gut microbiome-associated variants (MAVs) on phenotypes reported in electronic health records from tens of thousands of individuals. We discovered and replicated associations of MAVs with neurological, metabolic, digestive, and circulatory diseases. Five significant MAVs in these categories correlate with the relative abundance of microbes down to the strain level. We also demonstrate that these relationships are independently observed and concordant with microbe by disease associations reported in case-control studies. Moreover, a selective sweep and population differentiation impacted some disease-linked MAVs. Combined, these findings establish triad relationships among the human genome, microbiome, and disease. Consequently, human genetic influences may offer opportunities for precision diagnostics of microbiome-associated diseases but also highlight the relevance of genetic background for microbiome modulation and therapeutics.
Collapse
Affiliation(s)
- Robert H. George Markowitz
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | | | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - John A. Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143
| | - Jane F. Ferguson
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan D. Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Seth R. Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
20
|
Sun S, Serrano MG, Fettweis JM, Basta P, Rosen E, Ludwig K, Sorgen AA, Blakley IC, Wu MC, Dole N, Thorp JM, Siega-Riz AM, Buck GA, Fodor AA, Engel SM. Race, the Vaginal Microbiome, and Spontaneous Preterm Birth. mSystems 2022; 7:e0001722. [PMID: 35582911 PMCID: PMC9238383 DOI: 10.1128/msystems.00017-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies have investigated the associations between the vaginal microbiome and preterm birth, with the aim of determining whether differences in community patterns meaningfully alter risk and could therefore be the target of intervention. We report on vaginal microbial analysis of a nested case-control subset of the Pregnancy, Infection, and Nutrition (PIN) Study, including 464 White women (375 term birth and 89 spontaneous preterm birth, sPTB) and 360 Black women (276 term birth and 84 sPTB). We found that the microbiome of Black women has higher alpha-diversity, higher abundance of Lactobacillus iners, and lower abundance of Lactobacillus crispatus. However, among women who douche, there were no significant differences in microbiome by race. The sPTB-associated microbiome exhibited a lower abundance of L. crispatus, while alpha diversity and L. iners were not significantly associated with sPTB. For each order of magnitude increase in the normalized relative abundance of L. crispatus, multivariable adjusted odds of sPTB decreased by approximately 20% (odds ratio, 0.81; 95% confidence interval, 0.70, 0.94). When we considered the impact of douching, associations between the microbiome and sPTB were limited to women who do not douche. We also observed strong intercorrelations between a range of maternal factors, including poverty, education, marital status, age, douching, and race, with microbiome effect sizes in the range of 1.8 to 5.2% in univariate models. Therefore, race may simply be a proxy for other socially driven factors that differentiate microbiome community structures. Future work will continue to refine reliable microbial biomarkers for preterm birth across diverse cohorts. IMPORTANCE Approximately 10% of all pregnancies in the United States end in preterm birth, and over 14% of pregnancies end in preterm birth among Black women. Knowledge on the associations between vaginal microbiome and preterm birth is important for understanding the potential cause and assessing risk of preterm birth. Our study is one of the largest studies performed to date to investigate the associations between vaginal microbiome and spontaneous preterm birth (sPTB), with stratified design for Black and White women. We found that the vaginal microbiome was different between Black and White women. The vaginal microbiome was associated with sPTB, and a lower abundance of L. crispatus increased the risk of sPTB independent of racial differences in microbial community structures. Furthermore, we also found that vaginal douching obscured the associations between vaginal microbiome, race, and preterm birth, suggesting that vaginal douching is an important factor to consider in future studies.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Myrna G. Serrano
- Department of Microbiology and Immunology and the Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer M. Fettweis
- Department of Microbiology and Immunology and the Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Patricia Basta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emma Rosen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kim Ludwig
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alicia A. Sorgen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ivory C. Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Michael C. Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nancy Dole
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John M. Thorp
- Department of Obstetrics and Gynaecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Maria Siega-Riz
- School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Gregory A. Buck
- Department of Microbiology and Immunology and the Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Wright ML, Dunlop AL, Dunn AB, Mitchell RM, Wissel EF, Corwin EJ. Factors Associated with Vaginal Lactobacillus Predominance Among African American Women Early in Pregnancy. J Womens Health (Larchmt) 2022; 31:682-689. [PMID: 34448602 PMCID: PMC9133973 DOI: 10.1089/jwh.2021.0148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Vaginal Lactobacillus is considered protective of some adverse reproductive health outcomes, including preterm birth. However, factors that increase or decrease the likelihood of harboring Lactobacillus in the vaginal microbiome remain largely unknown. In this study, we sought to identify risk and protective factors associated with vaginal Lactobacillus predominance within a cohort of pregnant African American women. Materials and Methods: Vaginal microbiome samples were self-collected by African American women (N = 436) during their 8-14th week of pregnancy. Sociodemographic information and measures of health behaviors, including substance use, antibiotic exposure, sexual practices, frequency of vaginal intercourse, and the use of vaginal products, were collected through participant self-report. The V3-V4 region of the 16S rRNA gene was targeted for amplification and sequencing using Illumina HiSeq, with bacterial taxonomy assigned using the PECAN classifier. Univariate and a series of multivariate logistic regression models identified factors predictive of diverse vaginal microbiota or Lactobacillus predominance. Results: Participants who used marijuana in the past 30 days (aOR 1.80, 95% CI 1.08-2.98) were more likely to have diverse non-Lactobacillus-predominant vaginal microbiota, as were women not living with their partners (aOR 1.90, 95% CI 1.20-3.01). Cohabitating or marijuana usage were not associated with type of Lactobacillus (non-iners Lactobacillus vs. Lactobacillus iners) predominance (aOR 1.11, 95% CI 0.52-2.38 and aOR 0.56, 95% CI 0.21-1.47, respectively). Conclusions: Living with a partner is conducive to vaginal Lactobacillus predominance. As such, cohabitation may be in important covariate to consider in vaginal microbiome studies.
Collapse
Affiliation(s)
- Michelle L. Wright
- School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Women's Health, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Anne L. Dunlop
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Alexis B. Dunn
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Rebecca M. Mitchell
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Emily F. Wissel
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
22
|
Influence of Maternal Microbiome and Inflammatory Response in Preterm Birth: Recent Aspects of the Prevention of Preterm Birth. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres13010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preterm birth (PTB) is a global health issue and one of the most challenging problems affecting 12.9 million births worldwide. PTB is a multi-etiological disease and remains incompletely understood. The major cause of PTB is infection or inflammation and disruption of the vaginal microbiome, which affects the maternal immunologic response leading to PTB. The vaginal microbiome composition changes by a shift in the community are typically dominated by Lactobacillus during pregnancy. There are complex interactions between the maternal microbiome in pregnancy and the development of PTB, therefore, researchers have struggled to connect the maternal microbiome with the dysregulation of the maternal immune response in cases of PTB. The host microbiome affects alterations of the microorganisms with external stimuli such as disease, nutrition, immunity, and behavior. In this review, we discuss the complex association between the maternal microbiome and the risk of PTB and also focus on recent aspects of the prevention of PTB.
Collapse
|
23
|
Braveman P, Dominguez TP, Burke W, Dolan SM, Stevenson DK, Jackson FM, Collins JW, Driscoll DA, Haley T, Acker J, Shaw GM, McCabe ERB, Hay WW, Thornburg K, Acevedo-Garcia D, Cordero JF, Wise PH, Legaz G, Rashied-Henry K, Frost J, Verbiest S, Waddell L. Explaining the Black-White Disparity in Preterm Birth: A Consensus Statement From a Multi-Disciplinary Scientific Work Group Convened by the March of Dimes. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:684207. [PMID: 36303973 PMCID: PMC9580804 DOI: 10.3389/frph.2021.684207] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
In 2017-2019, the March of Dimes convened a workgroup with biomedical, clinical, and epidemiologic expertise to review knowledge of the causes of the persistent Black-White disparity in preterm birth (PTB). Multiple databases were searched to identify hypothesized causes examined in peer-reviewed literature, 33 hypothesized causes were reviewed for whether they plausibly affect PTB and either occur more/less frequently and/or have a larger/smaller effect size among Black women vs. White women. While definitive proof is lacking for most potential causes, most are biologically plausible. No single downstream or midstream factor explains the disparity or its social patterning, however, many likely play limited roles, e.g., while genetic factors likely contribute to PTB, they explain at most a small fraction of the disparity. Research links most hypothesized midstream causes, including socioeconomic factors and stress, with the disparity through their influence on the hypothesized downstream factors. Socioeconomic factors alone cannot explain the disparity's social patterning. Chronic stress could affect PTB through neuroendocrine and immune mechanisms leading to inflammation and immune dysfunction, stress could alter a woman's microbiota, immune response to infection, chronic disease risks, and behaviors, and trigger epigenetic changes influencing PTB risk. As an upstream factor, racism in multiple forms has repeatedly been linked with the plausible midstream/downstream factors, including socioeconomic disadvantage, stress, and toxic exposures. Racism is the only factor identified that directly or indirectly could explain the racial disparities in the plausible midstream/downstream causes and the observed social patterning. Historical and contemporary systemic racism can explain the racial disparities in socioeconomic opportunities that differentially expose African Americans to lifelong financial stress and associated health-harming conditions. Segregation places Black women in stressful surroundings and exposes them to environmental hazards. Race-based discriminatory treatment is a pervasive stressor for Black women of all socioeconomic levels, considering both incidents and the constant vigilance needed to prepare oneself for potential incidents. Racism is a highly plausible, major upstream contributor to the Black-White disparity in PTB through multiple pathways and biological mechanisms. While much is unknown, existing knowledge and core values (equity, justice) support addressing racism in efforts to eliminate the racial disparity in PTB.
Collapse
Affiliation(s)
- Paula Braveman
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Tyan Parker Dominguez
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| | - Wylie Burke
- University of Washington School of Medicine, Seattle, WA, United States
| | - Siobhan M. Dolan
- Albert Einstein College of Medicine, New York, NY, United States
| | | | | | - James W. Collins
- Northwestern University School of Medicine, Chicago, IL, United States
| | - Deborah A. Driscoll
- University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Terinney Haley
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Julia Acker
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Gary M. Shaw
- Stanford University School of Medicine, Stanford, CA, United States
| | - Edward R. B. McCabe
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | | | - Kent Thornburg
- School of Medicine, Oregon State University, Portland, OR, United States
| | | | - José F. Cordero
- University of Georgia College of Public Health, Athens, GA, United States
| | - Paul H. Wise
- Stanford University School of Medicine, Stanford, CA, United States
| | - Gina Legaz
- March of Dimes, White Plains, NY, United States
| | | | | | - Sarah Verbiest
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
24
|
Jang H, Patoine A, Wu TT, Castillo DA, Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep 2021; 11:16870. [PMID: 34413437 PMCID: PMC8377136 DOI: 10.1038/s41598-021-96495-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding changes in oral flora during pregnancy, its association to maternal health, and its implications to birth outcomes is essential. We searched PubMed, Embase, Web of Science, and Cochrane Library in May 2020 (updated search in April and June 2021), and conducted a systematic review and meta-analyses to assess the followings: (1) oral microflora changes throughout pregnancy, (2) association between oral microorganisms during pregnancy and maternal oral/systemic conditions, and (3) implications of oral microorganisms during pregnancy on birth outcomes. From 3983 records, 78 studies were included for qualitative assessment, and 13 studies were included in meta-analysis. The oral microflora remains relatively stable during pregnancy; however, pregnancy was associated with distinct composition/abundance of oral microorganisms when compared to postpartum/non-pregnant status. Oral microflora during pregnancy appears to be influenced by oral and systemic conditions (e.g. gestational diabetes mellitus, pre-eclampsia, etc.). Prenatal dental care reduced the carriage of oral pathogens (e.g. Streptococcus mutans). The Porphyromonas gingivalis in subgingival plaque was more abundant in women with preterm birth. Given the results from meta-analyses were inconclusive since limited studies reported outcomes on the same measuring scale, more future studies are needed to elucidate the association between pregnancy oral microbiota and maternal oral/systemic health and birth outcomes.
Collapse
Affiliation(s)
- Hoonji Jang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexa Patoine
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
- Perinatal Oral Health, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, 14620, USA.
| |
Collapse
|
25
|
Dunlop AL, Satten GA, Hu YJ, Knight AK, Hill CC, Wright ML, Smith AK, Read TD, Pearce BD, Corwin EJ. Vaginal Microbiome Composition in Early Pregnancy and Risk of Spontaneous Preterm and Early Term Birth Among African American Women. Front Cell Infect Microbiol 2021; 11:641005. [PMID: 33996627 PMCID: PMC8117784 DOI: 10.3389/fcimb.2021.641005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the association between the early pregnancy vaginal microbiome and spontaneous preterm birth (sPTB) and early term birth (sETB) among African American women. Methods Vaginal samples collected in early pregnancy (8-14 weeks' gestation) from 436 women enrolled in the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Study underwent 16S rRNA gene sequencing of the V3-V4 region, taxonomic classification, and community state type (CST) assignment. We compared vaginal CST and abundance of taxa for women whose pregnancy ended in sPTB (N = 44) or sETB (N= 84) to those who delivered full term (N = 231). Results Nearly half of the women had a vaginal microbiome classified as CST IV (Diverse CST), while one-third had CST III (L. iners dominated) and just 16% had CST I, II, or V (non-iners Lactobacillus dominated). Compared to vaginal CST I, II, or V (non-iners Lactobacillus dominated), both CST III (L. iners dominated) and CST IV (Diverse) were associated with sPTB with an adjusted odds ratio (95% confidence interval) of 4.1 (1.1, infinity) and 7.7 (2.2, infinity), respectively, in multivariate logistic regression. In contrast, no vaginal CST was associated with sETB. The linear decomposition model (LDM) based on amplicon sequence variant (ASV) relative abundance found a significant overall effect of the vaginal microbiome on sPTB (p=0.034) but not sETB (p=0.320), whereas the LDM based on presence/absence of ASV found no overall effect on sPTB (p=0.328) but a significant effect on sETB (p=0.030). In testing for ASV-specific effects, the LDM found that no ASV was significantly associated with sPTB considering either relative abundance or presence/absence data after controlling for multiple comparisons (FDR 10%), although in marginal analysis the relative abundance of Gardnerella vaginalis (p=0.011), non-iners Lactobacillus (p=0.016), and Mobiluncus curtisii (p=0.035) and the presence of Atopobium vaginae (p=0.049), BVAB2 (p=0.024), Dialister microaerophilis (p=0.011), and Prevotella amnii (p=0.044) were associated with sPTB. The LDM identified the higher abundance of 7 ASVs and the presence of 13 ASVs, all commonly residents of the gut, as associated with sETB at FDR < 10%. Conclusions In this cohort of African American women, an early pregnancy vaginal CST III or IV was associated with an increased risk of sPTB but not sETB. The relative abundance and presence of distinct taxa within the early pregnancy vaginal microbiome was associated with either sPTB or sETB.
Collapse
Affiliation(s)
- Anne L. Dunlop
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
- Department of Family & Preventive Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Glen A. Satten
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Anna K. Knight
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cherie C. Hill
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Michelle L. Wright
- School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Bradley D. Pearce
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | | |
Collapse
|
26
|
Wang B, Xu Y, Zhang M, Zhang J, Hou X, Li J, Cai Y, Sun Z, Ban Y, Wang W. Oral and intestinal microbial features in pregnant women with hypothyroidism and their correlations with pregnancy outcomes. Am J Physiol Endocrinol Metab 2020; 319:E1044-E1052. [PMID: 33017219 DOI: 10.1152/ajpendo.00234.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to explore the characteristics of oral and intestinal microbiota of pregnant women with hypothyroidism during pregnancy, and to find the correlations between the changes of flora and pregnancy outcome of pregnant women with hypothyroidism during pregnancy. In this study, oral and intestinal microbial composition was surveyed by using the 16S rRNA sequencing approach in 61 pregnant women (30 with hypothyroidism and 31 normal controls). Sequentially, we validated the differential microbial features by using the quantitative real-time PCR (qPCR) approach in 10 randomly selected pregnant women (5 with hypothyroidism and 5 normal controls). Furthermore, general clinical data and serological indices were added to the analysis to examine the links between oral and intestinal microbiota and pregnancy outcomes. The 16S rRNA results showed that the relative abundances of Gammaproteobacteria were higher in pregnant women in the hypothyroidism group than in those in the control group, whereas the levels of Firmicutes were higher in the control group than in the hypothyroidism group. The serum C-reactive protein level, the weight gain during pregnancy, and the incidence of fetal distress were higher in the hypothyroidism group than in the control group. The QPCR results also showed the same changes of the intestinal microbiota in the two groups. There were significant differences in the oral and intestinal microbiota between pregnant women with hypothyroidism and normal pregnant women. The changes of microbiota is one of the factors influencing the occurrence and development of hypothyroidism during pregnancy.
Collapse
Affiliation(s)
- Biao Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajuan Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingzhe Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofeng Hou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjun Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjie Ban
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wentao Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Shotgun sequencing of the vaginal microbiome reveals both a species and functional potential signature of preterm birth. NPJ Biofilms Microbiomes 2020; 6:50. [PMID: 33184260 PMCID: PMC7665020 DOI: 10.1038/s41522-020-00162-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
An association between the vaginal microbiota and preterm birth (PTB) has been reported in several research studies. Population shifts from high proportions of lactobacilli to mixed species communities, as seen with bacterial vaginosis, have been linked to a twofold increased risk of PTB. Despite the increasing number of studies using next-generation sequencing technologies, primarily involving 16S rRNA-based approaches, to investigate the vaginal microbiota during pregnancy, no distinct microbial signature has been associated with PTB. Shotgun metagenomic sequencing offers a powerful tool to reveal community structures and their gene functions at a far greater resolution than amplicon sequencing. In this study, we employ shotgun metagenomic sequencing to compare the vaginal microbiota of women at high risk of preterm birth (n = 35) vs. a low-risk control group (n = 14). Although microbial diversity and richness did not differ between groups, there were significant differences in terms of individual species. In particular, Lactobacillus crispatus was associated with samples from a full-term pregnancy, whereas one community state-type was associated with samples from preterm pregnancies. Furthermore, by predicting gene functions, the functional potential of the preterm microbiota was different from that of full-term equivalent. Taken together, we observed a discrete structural and functional difference in the microbial composition of the vagina in women who deliver preterm. Importance: with an estimated 15 million cases annually, spontaneous preterm birth (PTB) is the leading cause of death in infants under the age of five years. The ability to accurately identify pregnancies at risk of spontaneous PTB is therefore of utmost importance. However, no single cause is attributable. Microbial infection is a known risk factor, yet the role of vaginal microbes is poorly understood. Using high-resolution DNA-sequencing techniques, we investigate the microbial communities present in the vaginal tracts of women deemed high risk for PTB. We confirm that Lactobacillus crispatus is strongly linked to full-term pregnancies, whereas other microbial communities associate with PTB. Importantly, we show that the specific functions of the microbes present in PTB samples differs from FTB samples, highlighting the power of our sequencing approach. This information enables us to begin understanding the specific microbial traits that may be influencing PTB, beyond the presence or absence of microbial taxa.
Collapse
|
28
|
Rajendiran E, Ramadass B, Ramprasath V. Understanding connections and roles of gut microbiome in cardiovascular diseases. Can J Microbiol 2020; 67:101-111. [PMID: 33079568 DOI: 10.1139/cjm-2020-0043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome encompasses trillions of residing microbes, mainly bacteria, which play a crucial role in maintaining the physiological and metabolic health of the host. The gut microbiome has been associated with several diseases, including cardiovascular disease (CVD). A growing body of evidence suggests that an altered gut environment and gut-microbiome-derived metabolites are associated with CVD events. The gut microbiome communicates with host physiology through different mechanisms, including trimethylamine N-oxide generation, primary and secondary bile acid metabolism pathways, and short-chain fatty acids production. The main focus of this review is to understand the association of the gut microbiome with CVD and its implications on the interactions between the gut microbiome and the host. Manipulation of the gut microbiome through specific dietary intervention is a simple approach to identifying novel targets for therapy or better dietary recommendations, and new preventive measures for screening biomarkers to reduce CVD risk in humans.
Collapse
Affiliation(s)
- Ethendhar Rajendiran
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Balamurugan Ramadass
- Center of Excellence for Clinical Microbiome Research, Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vanu Ramprasath
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| |
Collapse
|
29
|
Moosa Y, Kwon D, de Oliveira T, Wong EB. Determinants of Vaginal Microbiota Composition. Front Cell Infect Microbiol 2020; 10:467. [PMID: 32984081 PMCID: PMC7492712 DOI: 10.3389/fcimb.2020.00467] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that the composition of a woman's vaginal microbiota significantly influences her sexual and reproductive health, including her risk of miscarriage, preterm birth, HIV and other sexually transmitted infections. Efforts to modulate the vaginal microbiota using antibiotic or probiotic therapy have shown limited lasting or reliable success. To explore the natural dynamics and causal pathways responsible for heterogeneity of vaginal microbiota composition we review the existing literature on its determinants, from the perspective of microorganism- and host-related factors. We then discuss how molecular approaches can be harnessed to advance our understanding of individual and population-level vaginal microbiota composition patterns. Work has been done to investigate determinants of microbial composition patterns in other body niches, but very little in the female genital tract so far. There is an urgent need to better understand vaginal microbiota composition patterns, across the lifespan, outside of the context of sexual health clinics, and in Sub-Saharan African women in whom vaginal microbiota composition may be a risk factor for HIV acquisition. More work is needed to clarify causal relationships between clinical symptoms, host genetic, host behavior, and molecular vaginal microbiota profiles. These insights will lay the groundwork for novel and targeted interventional approaches to improve women's sexual and reproductive health.
Collapse
Affiliation(s)
- Yumna Moosa
- Africa Health Research Institute, Durban, South Africa
- KwaZulu-Natal Research and Innovation Sequencing Platform, University of KwaZulu Natal, Durban, South Africa
| | - Douglas Kwon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tulio de Oliveira
- KwaZulu-Natal Research and Innovation Sequencing Platform, University of KwaZulu Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Emily B. Wong
- Africa Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
30
|
Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Semin Immunopathol 2020; 42:487-499. [PMID: 32797272 PMCID: PMC7508933 DOI: 10.1007/s00281-020-00817-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Preterm birth is a global health concern and continues to contribute to substantial neonatal morbidity and mortality despite advances in obstetric and neonatal care. The underlying aetiology is multi-factorial and remains incompletely understood. In this review, the complex interplay between the vaginal microbiome in pregnancy and its association with preterm birth is discussed in depth. Advances in the study of bacteriology and an improved understanding of the human microbiome have seen an improved awareness of the vaginal microbiota in both health and in disease.
Collapse
Affiliation(s)
- Erna Bayar
- Imperial College Parturition Research Group, Institute for Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute for Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London, W12 0HS, UK.
- March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK.
| | - Denise Chan
- Imperial College Parturition Research Group, Institute for Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Lynne Sykes
- Imperial College Parturition Research Group, Institute for Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London, W12 0HS, UK
- March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute for Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London, W12 0HS, UK
- March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| |
Collapse
|
31
|
Nsereko E, Moreland PJ, Dunlop AL, Nzayirambaho M, Corwin EJ. Consideration of Cultural Practices When Characterizing the Vaginal Microbiota Among African and African American Women. Biol Res Nurs 2020; 23:91-99. [PMID: 32666817 DOI: 10.1177/1099800420940788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This manuscript considers intravaginal practices prevalent among African and African-American women, with the aim of providing a framework for how these practices may affect vaginal health and the vaginal microbiota, and consequently, impact pregnancy outcomes. Intravaginal practices are influenced by traditional socio-cultural beliefs and gender norms, with prominent practices including intravaginal insertion of substances (herbs and traditional medicines), intravaginal cleansing (douching), and anatomical modification of the female organs (labia elongation and female genital mutilation). Common motivations for such practices included hygiene, prevention of infection, enhancement of sexual pleasure, and compliance with societal or cultural norms. The use of soaps and other chemicals for vaginal douching has been reported to reduce diversity of the vaginal microbiota and lower pH, thus increasing the chances of bacterial vaginosis, but the evidence is minimal. The practice of vaginal insertion of natural or other substances is associated with physical abrasions, disruption of the vaginal flora, bacterial vaginosis, and HIV and other infections, but effects on pregnancy outcomes and the vaginal microbiota are unclear. Finally, female genital mutation has been reported to have immediate and prolonged physiological and psychological effects, including frequent infections and chronic inflammation, but similar to most other practices, consequences for preterm birth remain understudied and for the vaginal microbiota, unknown. Overall, findings identify the need for additional research, focusing on how these common practices influence both birth outcomes and the vaginal microbiota, so that nurses, midwives, physicians, and other providers worldwide are better equipped to assess and care for pregnant women.
Collapse
|
32
|
Molina NM, Sola-Leyva A, Saez-Lara MJ, Plaza-Diaz J, Tubić-Pavlović A, Romero B, Clavero A, Mozas-Moreno J, Fontes J, Altmäe S. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules 2020; 10:E593. [PMID: 32290428 PMCID: PMC7226034 DOI: 10.3390/biom10040593] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Current knowledge suggests that the uterus harbours its own microbiota, where the microbes could influence the uterine functions in health and disease; however, the core uterine microbial composition and the host-microbial relationships remain to be fully elucidated. Different studies are indicating, based on next-generation sequencing techniques, that microbial dysbiosis could be associated with several gynaecological disorders, such as endometriosis, chronic endometritis, dysfunctional menstrual bleeding, endometrial cancer, and infertility. Treatments using antibiotics and probiotics and/or prebiotics for endometrial microbial dysbiosis are being applied. Nevertheless there is no unified protocol for assessing the endometrial dysbiosis and no optimal treatment protocol for the established dysbiosis. With this review we outline the microbes (mostly bacteria) identified in the endometrial microbiome studies, the current treatments offered for bacterial dysbiosis in the clinical setting, and the future possibilities such as pro- and prebiotics and microbial transplants for modifying uterine microbial composition.
Collapse
Affiliation(s)
- Nerea M. Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Maria Jose Saez-Lara
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
| | | | - Barbara Romero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Juan Mozas-Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Departament of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Fontes
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Competence Centre on Health Technologies, 50410 Tartu, Estonia
| |
Collapse
|