1
|
Amer TAM, Palanisamy S, So PB, Vijayaraghavan P, Tzou SC, Lu TT, Lin CH, Wang YM. Sustained Releasable Copper and Zinc Biogenic Ions Co-Assembled in Metal-Organic Frameworks Reinforced Bacterial Eradication and Wound Mitigation in Diabetic Mice. Bioconjug Chem 2023; 34:1688-1703. [PMID: 37552618 DOI: 10.1021/acs.bioconjchem.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.
Collapse
Affiliation(s)
- Tarik Abdelkareem Mostafa Amer
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Pamela Berilyn So
- Department of Chemistry, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Priya Vijayaraghavan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Demircan K, Chillon TS, Bracken T, Bulgarelli I, Campi I, Du Laing G, Fafi-Kremer S, Fugazzola L, Garcia A, Heller R, Hughes DJ, Ide L, Klingenberg GJ, Komarnicki P, Krasinski Z, Lescure A, Mallon P, Moghaddam A, Persani L, Petrovic M, Ruchala M, Solis M, Vandekerckhove L, Schomburg L. Association of COVID-19 mortality with serum selenium, zinc and copper: Six observational studies across Europe. Front Immunol 2022; 13:1022673. [PMID: 36518764 PMCID: PMC9742896 DOI: 10.3389/fimmu.2022.1022673] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tommy Bracken
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ilaria Bulgarelli
- Laboratorio Analisi Cliniche, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Irene Campi
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alejandro Abner Garcia
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Raban Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,Clinic of Traumatology and Orthopaedics, Bundeswehr Hospital Berlin, Berlin, Germany,Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
| | - David J. Hughes
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Louis Ide
- Laboratory Medicine, AZ Jan Palfijn AV, Gent, Belgium
| | - Georg Jochen Klingenberg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pawel Komarnicki
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Krasinski
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poznan, Poland
| | - Alain Lescure
- Architecture et Réactivité de l’ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Luca Persani
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mirko Petrovic
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Marek Ruchala
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Morgane Solis
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Linos Vandekerckhove
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Lutz Schomburg,
| |
Collapse
|