1
|
Modi H, Baranger DAA, Paul SE, Gorelik AJ, Hornstein A, Balbona JV, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between prenatal caffeine exposure and child development: Longitudinal results from the Adolescent Brain Cognitive Development (ABCD) Study. Neurotoxicol Teratol 2025; 107:107404. [PMID: 39592017 DOI: 10.1016/j.ntt.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Though caffeine use during pregnancy is common, its longitudinal associations with child behavioral and physical health outcomes remain poorly understood. Here, we estimated associations between prenatal caffeine exposure, body mass index (BMI), and behavior as children enter adolescence. METHOD Longitudinal data and caregiver-reported prenatal caffeine exposure were obtained from the ongoing Adolescent Brain and Cognitive Development (ABCD)SM Study, which recruited 11,875 children aged 9-11 years at baseline from 21 sites across the United States starting June 1, 2016. Prenatal caffeine exposure was analyzed as a 4-level categorical variable, and further group contrasts were used to characterize "any exposure" and "daily exposure" groups. Outcomes included psychopathology characteristics in children, sleep problems, and BMI. Potentially confounding covariates included familial (e.g., income, familial psychopathology), pregnancy (e.g., prenatal substance exposure), and child (e.g., caffeine use) variables. RESULTS Among 10,873 children (5686 boys [52.3 %]; mean [SD] age, 9.9 [0.6] years) with nonmissing prenatal caffeine exposure data, 6560 (60 %) were exposed to caffeine prenatally. Relative to no exposure, daily caffeine exposure was associated with higher child BMI (β = 0.08; FDR-corrected p = 0.02), but was not associated with child behavior following correction for multiple testing. Those exposed to two or more cups of caffeine daily (n = 1028) had greater sleep problems than those with lower/no exposure (β > 0.92; FDR-corrected p < 0.04). CONCLUSION Daily prenatal caffeine exposure is associated with heightened childhood BMI, and when used multiple times a day greater sleep problems even after accounting for potential confounds. Whether this relationship is a consequence of prenatal caffeine exposure or its correlated factors remains unknown.
Collapse
Affiliation(s)
- Hailey Modi
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University in Saint Louis, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah E Paul
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aaron J Gorelik
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Alana Hornstein
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jared V Balbona
- Department of Psychiatry, Washington University in Saint Louis, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in Saint Louis, USA
| | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Modi H, Baranger DAA, Paul SE, Gorelik AJ, Hornstein A, Balbona JV, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between prenatal caffeine exposure and child development: Longitudinal results from the Adolescent Brain Cognitive Development (ABCD) Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309117. [PMID: 38946960 PMCID: PMC11213099 DOI: 10.1101/2024.06.18.24309117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Though caffeine use during pregnancy is common, its longitudinal associations with child behavioral and physical health outcomes remain poorly understood. Here, we estimated associations between prenatal caffeine exposure, body mass index (BMI), and behavior as children enter adolescence. Method Longitudinal data and caregiver-reported prenatal caffeine exposure were obtained from the ongoing Adolescent Brain and Cognitive Development (ABCD) SM Study, which recruited 11,875 children aged 9-11 years at baseline from 21 sites across the United States starting June 1, 2016. Prenatal caffeine exposure was analyzed as a 4-level categorical variable, and further group contrasts were used to characterize "any exposure" and "daily exposure" groups. Outcomes included psychopathology characteristics in children, sleep problems, and BMI. Potentially confounding covariates included familial (e.g., income, familial psychopathology), pregnancy (e.g., prenatal substance exposure), and child (e.g., caffeine use) variables. Results Among 10,873 children (5,686 boys [52.3%]; mean [SD] age, 9.9 [0.6] years) with nonmissing prenatal caffeine exposure data, 6,560 (60%) were exposed to caffeine prenatally. Relative to no exposure, daily caffeine exposure was associated with higher child BMI (β=0.08; FDR-corrected p=0.02), but was not associated with child behavior. Those exposed to two or more cups of caffeine daily (n=1,028) had greater sleep problems than those with lower/no exposure (β>0.92; FDR-corrected p<0.04). Conclusion Daily prenatal caffeine exposure is associated with heightened childhood BMI, and when used multiple times a day greater sleep problems even after accounting for potential confounds. Whether this relationship is a consequence of prenatal caffeine exposure or its correlated factors remains unknown.
Collapse
Affiliation(s)
- Hailey Modi
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in Saint Louis
| | - David AA Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah E Paul
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aaron J Gorelik
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Alana Hornstein
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jared V Balbona
- Department of Psychiatry, Washington University in Saint Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in Saint Louis
| | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Souza LL, Moura EG, Lisboa PC. Can mothers consume caffeine? The issue of early life exposure and metabolic changes in offspring. Toxicol Lett 2024; 393:96-106. [PMID: 38387763 DOI: 10.1016/j.toxlet.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/02/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Caffeine is a substance with central and metabolic effects. Although it is recommended that its use be limited during pregnancy, many women continue to consume caffeine. Direct and indirect actions of caffeine in fetuses and newborns promote adaptive changes, according to the Developmental Origins of Health and Diseases (DOHaD) concept. In fact, epidemiological and experimental evidence reveals the impact of early caffeine exposure. Here, we reviewed these findings with an emphasis on experimental models with rodents. The similarity of human and rodent caffeine metabolism allows the comprehension of molecular mechanisms affected by prenatal caffeine exposure. Maternal caffeine intake affects the body weight and endocrine system of offspring at birth and has long-term effects on the endocrine system, liver function, glucose and lipid metabolism, the cardiac system, the reproductive system, and behavior. Interestingly, some of these effects are sex dependent. Thus, the dose of caffeine considered safe for pregnant women may not be adequate for the prenatal period.
Collapse
Affiliation(s)
- Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Loube JM, Gidner S, Venezia J, Ryan H, Neptune ER, Mitzner W, Dalesio NM. Nebulized caffeine alleviates airway hyperresponsiveness in a murine asthma model. Am J Physiol Lung Cell Mol Physiol 2023; 325:L500-L507. [PMID: 37643013 DOI: 10.1152/ajplung.00065.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
The clinical definition of "difficult asthma" has expanded recently to include an ever-growing subset of patients with symptoms that cannot be controlled by conventional means, forcing the medical community to develop innovative therapeutics. Beneficial effects of coffee for subjects with asthma, primarily the effect of methylxanthine components, have long been described. Methylxanthines, including theophylline and caffeine, inhibit phosphodiesterases and downstream cAMP signaling to prevent mast cell degranulation while promoting immunomodulation (Peleman RA, Kips JC, Pauwels RA. Clin Exp Allergy 28: 53-56, 1998; Deshpande DA, Wang WCH, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JSK, Liggett SB. Nat Med 16: 1299-1304, 2010). Caffeine is also a bitter taste receptor agonist, binding to taste-sensing type 2 receptors (TAS2R) before releasing calcium to hyperpolarize airway smooth muscle membranes, inducing bronchodilation (Workman AD, Palmer JN, Adappa ND, Cohen NA. Curr Allergy Asthma Rep 15: 72, 2015; Devillier P, Naline E, Grassin-Delyle S. Pharmacol Ther 155: 11-21, 2015). Theophylline is conventionally used to treat asthma, whereas, according to the literature, the dosage required for orally administered caffeine has yielded modest improvement (Alfaro TM, Monteiro RA, Cunha RA, Cordeiro CR. Clin Respir J 12: 1283-1294, 2018). We sought to determine whether aerosolization of ultrafine caffeine particles (2.5-4 μm) directly to the lungs of susceptible A/J mice challenged with methacholine would improve pulmonary function via forced oscillation technique. In addition, we assessed whether nebulization of caffeine leads to changes in lung pathophysiology and bronchoalveolar lavage cell profiles. We found that mice that received aerosolized caffeine had statistically significant decreases in maximum airway resistance [6.3 vs. 3.9 cmH2O·s/mL at 62.5 mg/mL caffeine; confidence interval (CI) = -4.3, -0.4; P = 0.02] and significant delays in the time required to reach maximum resistance compared with that of controls (64.7 vs. 172.1 sec at 62.5 mg/mL caffeine, CI = 96.0, 118.9; P < 0.0001). Nebulized caffeine yielded a consistent effect on airway hyperresponsiveness at a range of doses without evidence of significant pathology relative to vehicle control.NEW & NOTEWORTHY For decades, coffee has been shown to improve symptoms in patients with asthma. One component, theophylline, is conventionally used to treat asthma, whereas the dosage required for orally administered caffeine has yielded modest improvement. We sought to determine whether aerosolization of caffeine directly to the lungs of susceptible A/J mice challenged with methacholine would alter pulmonary function via forced oscillation technique. We found nebulized caffeine yielded a consistent improvement on murine AHR.
Collapse
Affiliation(s)
- Jeffrey M Loube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Cell Biology & Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States
| | - Sarah Gidner
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Hurley Ryan
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Enid R Neptune
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|