1
|
Hameed H, Hussain J, Cláudia Paiva-Santos A, Zaman M, Hamza A, Sajjad I, Asad F. Comprehensive insights on treatment modalities with conventional and herbal drugs for the treatment of duodenal ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8211-8229. [PMID: 38837070 DOI: 10.1007/s00210-024-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Areas of the body accessible to gastric secretions, such as the stomach and duodenum, are most commonly damaged by circumscribed lesions of the upper gastrointestinal tract mucosa. Peptic ulcer disease is the term for this illness (PUD). About 80% of peptic ulcers are duodenal ulcers, with stomach ulcers accounting for the remaining 20%. Duodenal ulcers are linked to the two primary results about Helicobacter pylori infection and COX inhibitor users. Additional causes might include drinking, smoking, stress, and coffee consumption. The indications and symptoms of a duodenal ulcer depend on the patient's age and the lesion's location. For duodenal ulcers, proton pump inhibitors (PPIs) are the usual course of treatment. This comprehensive study included an in-depth literature search in the literature and methods section using electronic databases such as PubMed, ScienceDirect, and Google Scholar. The search method included publications published from the inception of the relevant database to the present. Inclusion criteria included studies investigating different treatment options for duodenal ulcer disease, including traditional pharmacotherapy and naturopathic treatments. Data mining includes information on treatment techniques, treatment outcomes, and possible synergies between conventional and herbal treatments. In addition, this review critically examines the available information on the effectiveness, safety, and possible side effects of different treatments. The inclusion of conventional and herbal treatments is intended to provide a comprehensive overview of the many treatment options available for duodenal ulcer disease. A more comprehensive and personalized treatment plan can be achieved by incorporating dietary changes, lifestyle modifications, and, if necessary, herbal therapies to complement other treatments normally.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Jahangir Hussain
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ali Hamza
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Irsa Sajjad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Faria Asad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Panaro MA, Budriesi R, Calvello R, Cianciulli A, Mattioli LB, Corazza I, Rotondo NP, Porro C, Lamonaca A, Ferraro V, Muraglia M, Corbo F, Clodoveo ML, Monaci L, Cavalluzzi MM, Lentini G. Lentil Waste Extracts for Inflammatory Bowel Disease (IBD) Symptoms Control: Anti-Inflammatory and Spasmolytic Effects. Nutrients 2024; 16:3327. [PMID: 39408293 PMCID: PMC11478658 DOI: 10.3390/nu16193327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES In the contest of agro-industrial waste valorization, we focused our attention on lentil seed coats as a source of health-promoting phytochemicals possibly useful in managing inflammatory bowel diseases (IBDs), usually characterized by inflammation and altered intestinal motility. METHODS Both traditional (maceration) and innovative microwave-assisted extractions were performed using green solvents, and the anti-inflammatory and spasmolytic activities of the so-obtained extracts were determined through in vitro and ex vivo assays, respectively. RESULTS The extract obtained through the microwave-assisted procedure using ethyl acetate as the extraction solvent (BEVa) proved to be the most useful in inflammation and intestinal motility management. In LPS-activated Caco-2 cells, BEVa down-regulated TLR4 expression, reduced iNOS expression and the pro-inflammatory cytokine IL-1 production, and upregulated the anti-inflammatory cytokine IL-10 production, thus positively affecting cell inflammatory responses. Moreover, a significant decrease in the longitudinal and circular tones of the guinea pig ileum, with a reduction of transit speed and pain at the ileum level, together with reduced transit speed, pain, and muscular tone at the colon level, was observed with BEVa. HPLC separation combined with an Orbitrap-based high-resolution mass spectrometry (HRMS) technique indicated that 7% of all the identified metabolites were endowed with proven anti-inflammatory and antispasmodic activities, among which niacinamide, apocynin, and p-coumaric acid were the most abundant. CONCLUSIONS Our results suggest that lentil hull extract consumption could contribute to overall intestinal health maintenance, with BEVa possibly representing a dietary supplementation and a promising approach to treating intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (R.B.); (L.B.M.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (R.B.); (L.B.M.)
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy;
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy;
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, 70126 Bari, Italy
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Marilena Muraglia
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, 70124 Bari, Italy;
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| |
Collapse
|
3
|
Huang WR, Fang QH, Yu XB, Ge WH, Yu Y. The Potential Application of Aloe Barbadensis Mill. as Chinese Medicine for Constipation: Mini-Review. Drug Des Devel Ther 2024; 18:307-324. [PMID: 38328440 PMCID: PMC10849880 DOI: 10.2147/dddt.s446563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Aloe barbadensis Mill. has a long history of medicinal use in the annals of traditional Chinese medicine, wherein it has garnered considerable renown. Its multifaceted therapeutic properties, characterized by its anti-inflammatory and antibacterial attributes, alongside its established efficacy as a laxative agent, have been extensively documented. This review commences with an exploration of the nomenclature, fundamental characteristics, and principal constituents of Aloe barbadensis Mill. responsible for its laxative effects. Subsequently, we delve into an extensive examination of the molecular mechanisms underlying Aloe barbadensis Mill.'s laxative properties, types of constipation treatments, commercially available preparations, considerations pertaining to toxicity, and its clinical applications. This review aims to serve as a comprehensive reference point for healthcare professionals and researchers, fostering an enhanced understanding of the optimal utilization of Aloe barbadensis Mill. in the treatment of constipation.
Collapse
Affiliation(s)
- Wei-Rui Huang
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Quan-Hui Fang
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Xiang-Bin Yu
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Wei-Hong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People’s Republic of China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR, 999078, People’s Republic of China
| | - Yue Yu
- School of Pharmacy & Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
4
|
Bawish BM, Rabab MA, Gohari ST, Khattab MS, AbdElkader NA, Elsharkawy SH, Ageez AM, Zaki MM, Kamel S, Ismail EM. Promising effect of Geranium robertianum L. leaves and Aloe vera gel powder on Aspirin ®-induced gastric ulcers in Wistar rats: anxiolytic behavioural effect, antioxidant activity, and protective pathways. Inflammopharmacology 2023; 31:3183-3201. [PMID: 37184667 PMCID: PMC10692037 DOI: 10.1007/s10787-023-01205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Many drugs have been restricted in the treatment of gastric ulcers (GU). So, herbal medicines are now in great demand for their better cultural acceptability, compatibility, and minimal side effects. Therefore, our study aimed to assess the protective efficacy of Aloe vera gel and Geranium robertianum extracts against Aspirin®-induced GU in Wistar rats. METHODS Antioxidant activity and chemical composition of both herbs were analysed. Then, we divided forty female Wistar rats into five groups: a negative control group, a positive control group of Aspirin®-induced GU, and pretreated groups with Aloe Vera, geranium, and Famotidine (reference drug). The locomotor disability, anxiety-like behaviour, and ultrasonography were assessed. Ultimately, scarification of animals to determine gastric juice pH and ulcer index. Then the collection of stomach and liver for histopathological and immunohistochemical examinations, besides tracing the oxidative stress biomarkers and related genes. RESULTS High content of polyphenols was revealed in both extracts. The pretreatment with Aloe vera gel and geranium showed significant antioxidant activities with free radical scavenging and ferric-reducing power (FRAP). Moreover, they improved the stomach architecture and alleviated anxiety-like behaviour and motor deficits. They significantly reduced the expression of proinflammatory cytokine (TNF-α), inflammatory, and oxidative stress genes (NF-KB, HO-1, Nrf-2) while increasing the Keap-1 in gastric mucosa. CONCLUSION Data presented a significant protective effect of Aloe vera gel and geranium against Aspirin®-induced GU; they reduced gastric mucosal injury with potential anxiolytic effects through their anti-inflammatory and antioxidant properties. Therefore, they may be considered promising agents for preventing or treating gastric ulceration.
Collapse
Affiliation(s)
- Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mariem A Rabab
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October City, 12573, Egypt
| | - Safaa T Gohari
- Department of Nutrition, Food Science and Home Economics, Faculty of Specific Education, Ain Shams University, Ain Shams, 11566, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Naglaa A AbdElkader
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar H Elsharkawy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amr M Ageez
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October City, 12573, Egypt
| | - Manal M Zaki
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Ismail
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
5
|
Choi SH, Eom JY, Kim HJ, Seo W, Kwun HJ, Kim DK, Kim J, Cho YE. Aloe-derived nanovesicles attenuate inflammation and enhance tight junction proteins for acute colitis treatment. Biomater Sci 2023; 11:5490-5501. [PMID: 37367827 DOI: 10.1039/d3bm00591g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the digestive tract that causes pain and weight loss and also increases the risk of colon cancer. Inspired by the benefits of plant-derived nanovesicles and aloe, we herein report aloe-derived nanovesicles, including aloe vera-derived nanovesicles (VNVs), aloe arborescens-derived nanovesicles (ANVs), and aloe saponaria-derived nanovesicles (SNVs) and evaluate their therapeutic potential and molecular mechanisms in a dextran sulfate sodium (DSS)-induced acute experimental colitis mouse model. Aloe-derived nanovesicles not only facilitate markedly reduced DSS-induced acute colonic inflammation, but also enable the restoration of tight junction (TJ) and adherent junction (AJ) proteins to prevent gut permeability in DSS-induced acute colonic injury. These therapeutic effects are ascribed to the anti-inflammatory and anti-oxidant effects of aloe-derived nanovesicles. Therefore, aloe-derived nanovesicles are a safe treatment option for IBD.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Jung-Young Eom
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Hyun-Jin Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
6
|
Kweon DY, Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Park JM, Lee ES, Choi WS, Hwang DY. Therapeutic Effects of Aloe saponaria against Ulcerative Colitis Induced by Dextran Sulfate Sodium. Curr Issues Mol Biol 2023; 45:1483-1499. [PMID: 36826041 PMCID: PMC9955819 DOI: 10.3390/cimb45020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aloe vera (A. vera) has been studied as a treatment option for ulcerative colitis (UC), but there is a lack of scientific evidence showing whether treatment with Aloe saponaria (A. saponaria) can also be beneficial. To investigate the therapeutic potential of A. saponaria as a treatment for UC, clinical symptoms, histopathological characteristics of the colon, inflammatory response, and toxicity were analyzed in dextran sulfate sodium (DSS)-induced UC mice after administration of aqueous extracts of A. saponaria (AAS) for 7 days. The total polyphenol and tannin content of AAS was 272 µg/g and 163 µg/g, respectively. AAS exhibited significant antioxidant activity. Several clinical symptoms, including body weight, colon length, and hematochezia, remarkably improved in the DSS+AAS treated group compared to the DSS+Vehicle-treated group. In addition, similar improvements were detected in the histopathological characteristics and mucin-secreting ability in the colon of DSS-induced UC mice after the administration of AAS. The levels of infiltrated inflammatory cells and cytokine expression were significantly decreased in a dose-dependent manner in the colon of the DSS+AAS-treated group. These alterations in inflammatory response were accompanied by a significant recovery of the protein kinase C/extracellular signal-regulated kinase (PKC/ERK) and phosphatidylinositol-3-kinase/serine-threonine protein kinase (PI3K/Akt) signaling pathways. However, the levels of key markers for hepatotoxicity and nephrotoxicity consistently remained between those of the DSS+AAS-treated and the No groups. Therefore, the results of the present study provide novel evidence that AAS may improve the clinical symptoms and attenuate the inflammatory response in DSS-induced UC mice and does not have any significant hepatotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Do Yeong Kweon
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju Min Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Suk Lee
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Won Sik Choi
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Glycyrrhiza Polysaccharide Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1345852. [PMID: 35432562 PMCID: PMC9012628 DOI: 10.1155/2022/1345852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Background Licorice is one of the most ubiquitous herbs in traditional Chinese medicine, with notable anti-inflammatory and antiulcerative effects as well as potent digestive disease therapeutic impacts; yet, its active components and mechanisms remain unclear. There is a lot of evidence that Glycyrrhiza polysaccharide (GPS) has antioxidants, improving intestinal flora, anti-inflammatory effects, etc. Hypothesis/Purpose. Here, we investigated the effects of GPS on dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC) mice and its possible mechanisms. Methods GPS (100, 200, and 400 mg/kg) or the positive control drug sulfasalazine (SASP) (200 mg/kg) were orally administered to mice for 8 days. Body weight was recorded daily. Symptoms associated with UC, such as disease activity index (DAI), colon length, spleen weight, and mucosal damage were detected. The possible mechanism of GPS ameliorating enteritis symptoms was explored by detecting intestinal permeability and serum levels of inflammatory factors, and changes in intestinal permeability were expressed by serum concentration of FITC-dextran and D-lactic acid. Results The results demonstrated that GPS administration alleviated UC symptoms in colitis mice, including weight loss, DAI index, shorting colon length, and mucosal damage. Mechanistic evaluation revealed that GPS treatment reduced intestinal permeability and serum levels of inflammatory factors: IL-1, IL-6, and TNF-α, while increasing serum levels of the anti-inflammatory factor IL-10, suggesting that GPS's mechanism in UC is related to reducing intestinal permeability and inhibiting the inflammatory response, with intestinal permeability implicated as the initiating mechanism. Conclusion This study highlights GPS as a promising therapeutic agent, with high therapeutic efficacy and a good safety profile, for enteritis and beyond.
Collapse
|
8
|
Gupta M, Mishra V, Gulati M, Kapoor B, Kaur A, Gupta R, Tambuwala MM. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology 2022; 30:397-434. [PMID: 35212849 PMCID: PMC8948151 DOI: 10.1007/s10787-022-00931-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. Several conventional treatments for UC such as corticosteroids, immunosuppressive agents, tumor necrosis factor antagonist, integrin blockers, and interleukin antagonist, and salicylates are available but are associated with the various limitations and side-effects. None of the above treatments helps to achieve the ultimate goal of the therapy, i.e., maintenance of remission in the long-term. Natural remedies for the treatment of UC show comparatively less side effects as compared to conventional approaches, and affordable. The current review presents details on the role of herbal drugs in the treatment and cure of UC. Google, PubMed, Web of Science, and Scopus portals have been searched for potentially relevant literature to get the latest developments and updated information related to use of natural drugs in the treatment of UC. Natural products have been used over centuries to treat UC. Some of the essential herbal constituents exhibiting antiulcerogenic activity include gymnemic acid (Gymnema sylvestre), shagoal (Zingiber officinale), catechin (Camellia sinensis), curcumin (Curcuma longa), arctigenin (Arctium lappa), and boswellic acid (Boswellia serrata). Although many plant-derived products have been recommended for UC, further research to understand the exact molecular mechanism is still warranted to establish their usefulness clinically.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Amrinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
9
|
Anti-Inflammatory, Antioxidant, and Healing-Promoting Effects of Aloe vera Extract in the Experimental Colitis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9945244. [PMID: 34912469 PMCID: PMC8668319 DOI: 10.1155/2021/9945244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023]
Abstract
Background. Ulcerative colitis is a worldwide chronic gastrointestinal disease characterized by variable extensions of colon mucosal inflammation. The available drugs have an incomplete response with various side effects and socioeconomic impacts. Aloe barbadensis Miller (Aloe vera) is a well-known medicinal plant with diverse pharmacological and therapeutic activities. As a result, in the current study, Aloe vera was selected to evaluate its therapeutic effects on experimental colitis in rats. Methods. This study is intended to evaluate the possible beneficial effect of Aloe vera for the treatment of experimental colitis. Trinitrobenzenesulfonic acid (TNBS) was used to induce experimental colitis in 60 of 70 Wistar rats. The rats were grouped in 7 clusters including healthy control, negative, positive control (received sulfasalazine), and test groups treated with Aloe vera extracts via oral or rectal routes. Macroscopic and histologic factors as well as the biochemical parameters were evaluated on day 7. Results. In the present study, it was found that serum levels of tumor necrosis factor-α (75 vs. 44 pg./ml), interleukin-6 (41 vs. 21 pg/ml), and nitric oxide (24 vs. 6 μm/ml) in TNBS-induced untreated colitis treatment were significantly increased as compared to healthy control. Similar patterns were also observed in malondialdehyde (76.41 vs. 236.35 μg/mg) and myeloperoxidase (4.24 vs. 29.38 U/mg) in colonic tissue. Among different treatments, rectal administration of Aloe vera extract (400 mg/kg) exhibited the best result in which serum concentration of tumor necrosis factor-α (55 pg/ml), interleukin-6 (24 pg/ml), and nitric oxide (10 μm/ml) and the levels of malondialdehyde (102.67 μg/mg), as well as myeloperoxidase (12.29 U/mg) in colon tissue, were reduced as compared to the untreated group. Also, the body weight and colon weight/length ratios were more improved in the treated group with 400 mg/kg Aloe vera extract, rectally. Conclusion. Aloe vera extract exhibited a therapeutic effect in TNBS-induced colitis, and local, rectal administration of Aloe vera extract was more effective than oral administration.
Collapse
|
10
|
Therapeutic Promises of Medicinal Plants in Bangladesh and Their Bioactive Compounds against Ulcers and Inflammatory Diseases. PLANTS 2021; 10:plants10071348. [PMID: 34371551 PMCID: PMC8309353 DOI: 10.3390/plants10071348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
When functioning properly, the stomach is the center of both physical and mental satisfaction. Gastrointestinal disorders, or malfunctioning of the stomach, due to infections caused by various biological entities and physiochemical abnormalities, are now widespread, with most of the diseases being inflammatory, which, depending on the position and degree of inflammation, have different names such as peptic or gastric ulcers, irritable bowel diseases, ulcerative colitis, and so on. While many synthetic drugs, such as non-steroidal anti-inflammatory drugs, are now extensively used to treat these diseases, their harmful and long-term side effects cannot be ignored. To treat these diseases safely and successfully, different potent medicinal plants and their active components are considered game-changers. In consideration of this, the present review aimed to reveal a general and comprehensive updated overview of the anti-ulcer and anti-inflammatory activities of medicinal plants. To emphasize the efficacy of the medicinal plants, various bioactive compounds from the plant extract, their experimental animal models, and clinical trials are depicted.
Collapse
|