1
|
Sankar J, Chauhan A, Singh R, Mahajan D. Isoniazid-historical development, metabolism associated toxicity and a perspective on its pharmacological improvement. Front Pharmacol 2024; 15:1441147. [PMID: 39364056 PMCID: PMC11447295 DOI: 10.3389/fphar.2024.1441147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Despite the extraordinary anti-tubercular activity of isoniazid (INH), the drug-induced hepatotoxicity and peripheral neuropathy pose a significant challenge to its wider clinical use. The primary cause of INH-induced hepatotoxicity is in vivo metabolism involving biotransformation on its terminal -NH2 group owing to its high nucleophilic nature. The human N-acetyltransferase-2 enzyme (NAT-2) exploits the reactivity of INH's terminal -NH2 functional group and inactivates it by transferring the acetyl group, which subsequently converts to toxic metabolites. This -NH2 group also tends to react with vital endogenous molecules such as pyridoxine, leading to their deficiency, a major cause of peripheral neuropathy. The elevation of liver functional markers is observed in 10%-20% of subjects on INH treatment. INH-induced risk of fatal hepatitis is about 0.05%-1%. The incidence of peripheral neuropathy is 2%-6.5%. In this review, we discuss the genesis and historical development of INH, and different reported mechanisms of action of INH. This is followed by a brief review of various clinical trials in chronological order, highlighting treatment-associated adverse events and their occurrence rates, including details such as geographical location, number of subjects, dosing concentration, and regimen used in these clinical studies. Further, we elaborated on various known metabolic transformations highlighting the involvement of the terminal -NH2 group of INH and corresponding host enzymes, the structure of different metabolites/conjugates, and their association with hepatotoxicity or neuritis. Post this deliberation, we propose a hydrolysable chemical derivatives-based approach as a way forward to restrict this metabolism.
Collapse
Affiliation(s)
- Jishnu Sankar
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anjali Chauhan
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Dinesh Mahajan
- Centre for Drug Discovery, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Centre for Tuberculosis Research, BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
2
|
Gutka HJ, Bondoc JMG, Patwell R, Khan S, Grzelak EM, Goswami R, Voskuil MI, Movahedzadeh F. Rv0100: An essential acyl carrier protein from M. tuberculosis important in dormancy. PLoS One 2024; 19:e0304876. [PMID: 38848336 PMCID: PMC11161019 DOI: 10.1371/journal.pone.0304876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.
Collapse
Affiliation(s)
- Hiten J. Gutka
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jasper Marc G. Bondoc
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ryan Patwell
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neuropeptide Research, Central Institute for Mental Health, Mannheim, Germany
| | - Shahebraj Khan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Edyta M. Grzelak
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rajendra Goswami
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Martin I. Voskuil
- Department of Microbiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Singh K, Barik BS, Das S, Hussain T, Gupta B, Das D, Pati S. Drug susceptibility testing and line probe assay of first-line anti-tuberculosis drugs among presumptive tuberculosis patients attending a secondary care hospital in Bhubaneswar. J Family Med Prim Care 2024; 13:2491-2498. [PMID: 39027826 PMCID: PMC11254078 DOI: 10.4103/jfmpc.jfmpc_736_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Pyrazinamide (PZA) is important for identification in multi-drug-resistant tuberculosis patients before starting therapy. PZA drug susceptibility testing (DST) is essential for the management of drug-resistant and susceptible TB patients. Aims The degree of drug resistance among TB patients and discrepancy between DST results of the phenotype and genotype were assessed. Materials and Methods Socio-demographic and clinical profiles of TB patients recruited in the study were documented. Sputum samples were processed for diagnosis using TrueNat Xpert MTB, TrueNat Xpert MTB Plus, and MGIT culture. Results Rifampicin (RIF) line probe assay (LPA) showed the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100%, whereas isoniazid (INH) LPA testing showed a sensitivity of 85.7%, a specificity and PPV of 100%, and NPV of 94.8%. The gene mutation for RIF resistance was between the codon, 530-533 of rpoB gene, and that for INH resistance was at the codon, 315 of katG gene. Conclusion Our findings demonstrated high prevalence of mono- and poly-drug resistance as well as pyrazinamide resistance.
Collapse
Affiliation(s)
- Khusbu Singh
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Braja S. Barik
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Shritam Das
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Tahziba Hussain
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Dasarathi Das
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Rajmani RS, Surolia A. Antimycobacterial and healing effects of Pranlukast against MTB infection and pathogenesis in a preclinical mouse model of tuberculosis. Front Immunol 2024; 15:1347045. [PMID: 38756781 PMCID: PMC11096513 DOI: 10.3389/fimmu.2024.1347045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
It is essential to understand the interactions and relationships between Mycobacterium tuberculosis (Mtb) and macrophages during the infection in order to design host-directed, immunomodulation-dependent therapeutics to control Mtb. We had reported previously that ornithine acetyltransferase (MtArgJ), a crucial enzyme of the arginine biosynthesis pathway of Mtb, is allosterically inhibited by pranlukast (PRK), which significantly reduces bacterial growth. The present investigation is centered on the immunomodulation in the host by PRK particularly the activation of the host's immune response to counteract bacterial survival and pathogenicity. Here, we show that PRK decreased the bacterial burden in the lungs by upregulating the population of pro-inflammatory interstitial macrophages (IMs) and reducing the population of Mtb susceptible alveolar macrophages (AMs), dendritic cells (DCs), and monocytes (MO). Additionally, we deduce that PRK causes the host macrophages to change their metabolic pathway from fatty acid metabolism to glycolytic metabolism around the log phage of bacterial multiplication. Further, we report that PRK reduced tissue injury by downregulating the Ly6C-positive population of monocytes. Interestingly, PRK treatment improved tissue repair and inflammation resolution by increasing the populations of arginase 1 (Arg-1) and Ym1+Ym2 (chitinase 3-like 3) positive macrophages. In summary, our study found that PRK is useful not only for reducing the tubercular burden but also for promoting the healing of the diseased tissue.
Collapse
Affiliation(s)
- Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Dr. Reddy's Institute of Life Sciences, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Ma Y, Zhang Y, Huang Y, Chen Z, Xian Q, Su R, Jiang Q, Wang X, Xiao G. One-Pot Assembly of Mannose-Capped Lipoarabinomannan Motifs up to 101-Mer from the Mycobacterium tuberculosis Cell Wall. J Am Chem Soc 2024; 146:4112-4122. [PMID: 38226918 DOI: 10.1021/jacs.3c12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Qingyun Xian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
6
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Zhang J, Cui Y, Zang X, Feng T, Chen F, Wang H, Dang G, Liu S. PE12 interaction with TLR4 promotes intracellular survival of Mycobacterium tuberculosis by suppressing inflammatory response. Int J Biol Macromol 2023; 253:127547. [PMID: 37863130 DOI: 10.1016/j.ijbiomac.2023.127547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Macrophages serve as the primary immune cells responsible for the innate immune defense against Mycobacterium tuberculosis (MTB) infection within the host. Specifically, NLRP3, a member of the NLRs family, plays a significant role in conferring resistance against MTB infection. Conversely, MTB evades innate immune killing by impeding the activation of the NLRP3 inflammasome, although the precise mechanism remains uncertain. In this study, we have identified PE12 (Rv1172c), a member of the PE/PPE family proteins, as an extracellular protein of MTB. PE12 interacts with Toll like receptor 4 (TLR4) in macrophages, forming the PE12-TLR4 complex which subsequently inhibits the transcription and expression of NLRP3. As a result, the transcription and secretion of IL-1β are reduced through the PE12-TLR4-NLRP3-IL-1β immune pathway. In vitro and in vivo experiments using a PE12-deficient strain (H37RvΔPE12) demonstrate a weakening of the suppression of the inflammatory response to MTB infection. Our findings highlight the role of the PE12 protein in not only inhibiting the transcription and release of inflammatory cytokines but also mediating the killing of MTB escape macrophages through TLR4 and inducing lung injury in MTB-infected mice. These results provide evidence that PE12 plays a significant role in the inhibition of the host immune response by MTB.
Collapse
Affiliation(s)
- Jiajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Xinxin Zang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Tingting Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Fanruo Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China.
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, NO.678, Haping Street, Harbin 150069, PR China.
| |
Collapse
|
8
|
Fernandes RS, Kumari J, Sriram D, Dey N. Fluorescent Nanoassembly of Tetrazole-Based Dyes with Amphoteric Surfactants: Investigation of Cyanide Sensing and Antitubercular Activity. ACS APPLIED BIO MATERIALS 2023; 6:4158-4167. [PMID: 37737110 DOI: 10.1021/acsabm.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Tetrazole-based easily synthesizable fluorogenic probes have been developed that can form self-assembled nanostructures in the aqueous medium. Though the compounds could achieve detection of cyanide ions in apolar solvents, such as, THF, significant interference was observed from other basic anions, such as F-, AcO-, H2PO4-, etc. On the other hand, a highly specific response was observed for CN- ions in the aqueous medium. However, the sensitivity was so poor that it could hardly be useful for real-life sample analysis. Interestingly, the co-assembly of such probe molecules with hydroxyethyl-anchored amphoteric surfactants could drastically improve the sensitivity toward CN- ions in water without dampening their excellent selectivity. Also, it was observed that the degree of fluorescence response for CN- ions depends on the nature of the polyaromatic scaffolds (naphthyl vs anthracenyl), the nature of the surfactant assembly (micelle vs vesicle), etc. The mechanistic investigation indicates the hydrogen bonding interaction between the tetrazole -NH group and cyanide ions in the aqueous medium, which can effectively change the electronics of the tetrazole unit, resulting in alteration in the extent of charge transfer interaction. Then, the biocompatible composite materials (dye-surfactant assemblies at different ratios) were tested for antituberculosis activity. Fortunately, in a few cases, the compositions were found to be as effective as the commercially available antituberculosis drug, ethambutol.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Jyothi Kumari
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
9
|
Chowdhury K, Ahmad R, Sinha S, Dutta S, Haque M. Multidrug-Resistant TB (MDR-TB) and Extensively Drug-Resistant TB (XDR-TB) Among Children: Where We Stand Now. Cureus 2023; 15:e35154. [PMID: 36819973 PMCID: PMC9938784 DOI: 10.7759/cureus.35154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/20/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) has continued to be a global health cataclysm. It is an arduous condition to tackle but is curable with the proper choice of drug and adherence to the drug therapy. WHO has introduced newer drugs with all-oral shorter regimens, but the COVID-19 pandemic has disrupted the achievements and raised the severity. The COVID-19 controlling mechanism is based on social distancing, using face masks, personal protective equipment, medical glove, head shoe cover, face shield, goggles, hand hygiene, and many more. Around the globe, national and international health authorities impose lockdown and movement control orders to ensure social distancing and prevent transmission of COVID-19 infection. Therefore, WHO proposed a TB control program impaired during a pandemic. Children, the most vulnerable group, suffer more from the drug-resistant form and act as the storehouse of future fatal cases. It has dire effects on physical health and hampers their mental health and academic career. Treatment of drug-resistant cases has more success stories in children than adults, but enrollment for treatment has been persistently low in this age group. Despite that, drug-resistant childhood tuberculosis has been neglected, and proper surveillance has not yet been achieved. Insufficient reporting, lack of appropriate screening tools for children, less accessibility to the treatment facility, inadequate awareness, and reduced funding for TB have worsened the situation. All these have resulted in jeopardizing our dream to terminate this deadly condition. So, it is high time to focus on this issue to achieve our Sustainable Development Goals (SDGs), the goal of ending TB by 2030, as planned by WHO. This review explores childhood TB's current position and areas to improve. This review utilized electronic-based data searched through PubMed, Google Scholar, Google Search Engine, Science Direct, and Embase.
Collapse
Affiliation(s)
- Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Physiology, Khulna City Medical College, Khulna, BGD
| | - Siddhartha Dutta
- Pharmacology, All India Institute of Medical Sciences, Rajkot, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
10
|
Safety, Tolerability, Pharmacokinetics, and Metabolism of Telacebec (Q203) for the Treatment of Tuberculosis: a Randomized, Placebo-Controlled, Multiple Ascending Dose Phase 1B Trial. Antimicrob Agents Chemother 2023; 67:e0112322. [PMID: 36507677 PMCID: PMC9872581 DOI: 10.1128/aac.01123-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A phase 1b, randomized, placebo-controlled, double-blind, multiple ascending dose study (NCT02858973) was conducted to assess the safety, tolerability, and pharmacokinetics of the new antituberculosis agent telacebec (Q203). A total of 47 healthy adult subjects entered the study; 36 received telacebec, and 11 received placebo. Telacebec at doses of 20, 50, 100, 160, 250, and 320 mg was orally administered once daily with a standard meal for 14 days. Multiple oral doses of telacebec up to 320 mg daily for 14 days appeared to be safe and well tolerated by healthy adult subjects in this study. There were no deaths, serious adverse events, or subject discontinuations due to adverse events. Following oral doses of telacebec, the overall extent (AUCτ) and peak (Cmax) exposures of telacebec increased from 538.94 to 10,098.47 ng·h/mL and from 76.43 to 1502.33 ng/mL, respectively, with increasing telacebec doses from 20 mg to 320 mg. A steady state was achieved for plasma telacebec by day 12, and there was 1.9- to 3.1-fold accumulation in the extent of telacebec exposure after daily doses for 14 days. Analysis of plasma samples from the participants indicated that telacebec was the primary circulating entity with no significant metabolites. Three potential metabolites of telacebec have been identified, which may be relatively minimal compared to the parent drug. Consistent with findings from preclinical and previous single-dose clinical studies, these results also support the potential of telacebec for further development as a safe and effective agent for the treatment of tuberculosis.
Collapse
|
11
|
Girardini M, Ferlenghi F, Annunziato G, Degiacomi G, Papotti B, Marchi C, Sammartino JC, Rasheed SS, Contini A, Pasca MR, Vacondio F, Evans JC, Dick T, Müller R, Costantino G, Pieroni M. Expanding the knowledge around antitubercular 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides: Hit-to-lead optimization and release of a novel antitubercular chemotype via scaffold derivatization. Eur J Med Chem 2023; 245:114916. [PMID: 36399878 PMCID: PMC10583863 DOI: 10.1016/j.ejmech.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Tuberculosis is one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extensively drug-resistant strains is a reason for concern. We have previously reported a series of substituted 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides with growth inhibitory activity against Mycobacterium tuberculosis strains and low propensity to be substrate of efflux pumps. Encouraged by these preliminary results, we have undertaken a medicinal chemistry campaign to determine the metabolic fate of these compounds and to delineate a reliable body of Structure-Activity Relationships. Keeping intact the (thiazol-4-yl)isoxazole-3-carboxamide core, as it is deemed to be the pharmacophore of the molecule, we have extensively explored the structural modifications able to confer good activity and avoid rapid clearance. Also, a small set of analogues based on isostere manipulation of the 2-aminothiazole were prepared and tested, with the aim to disclose novel antitubercular chemotypes. These studies, combined, were instrumental in designing improved compounds such as 42g and 42l, escaping metabolic degradation by human liver microsomes and, at the same time, maintaining good antitubercular activity against both drug-susceptible and drug-resistant strains.
Collapse
Affiliation(s)
- Miriam Girardini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesca Ferlenghi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | | | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - José Camilla Sammartino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Sari S Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Anna Contini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | - Joanna C Evans
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington DC, USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Gabriele Costantino
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy; Centro Interdipartimentale Misure (CIM) 'G. Casnati', University of Parma, Parma, Italy
| | - Marco Pieroni
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy.
| |
Collapse
|
12
|
Fekadu G, Tolossa T, Turi E, Bekele F, Fetensa G. Pretomanid development and its clinical roles in treating tuberculosis. J Glob Antimicrob Resist 2022; 31:175-184. [PMID: 36087906 DOI: 10.1016/j.jgar.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide. Despite the development of different antituberculosis drugs, managing resistant mycobacteria is still challenging. The discovery of novel drugs and new methods of targeted drug delivery have the potential to improve treatment outcomes, lower the duration of treatment, and reduce adverse events. Following bedaquiline and delamanid, pretomanid is the third medicine approved as part of a novel drug regimen for treating drug-resistant TB. It is a promising drug that has the capacity to shape TB treatment and achieve the End TB strategy set by the World Health Organization. The effectiveness of pretomanid has been reported in different observational and clinical studies. However, long-term safety data in humans are not yet available and the pretomanid-based regimen is recommended under an operational research framework that prohibits its wider and programmatic use. Further research is needed before pretomanid can be celebrated as a promising candidate for the treatment of different categories of TB and specific patients. This review covers the update on pretomanid development and its clinical roles in treating Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong; Department of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia.
| | - Tadesse Tolossa
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Deakin Health Economics, Institute for Health Transformation, Deakin University, Geelong, Victoria
| | - Ebisa Turi
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Deakin Health Economics, Institute for Health Transformation, Deakin University, Geelong, Victoria
| | - Firomsa Bekele
- Department of Pharmacy, College of Health Science, Mattu University, Mattu, Ethiopia
| | - Getahun Fetensa
- Department of Nursing, School of Nursing and Midwifery, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia; Department of Health behaviour and Society, Faculty of Public Health, Jimma Medical Center, Jimma University, Ethiopia
| |
Collapse
|
13
|
Pan Y, Yu Y, Lu J, Yi Y, Dou X, Zhou L. Drug Resistance Patterns and Trends in Patients with Suspected Drug-Resistant Tuberculosis in Dalian, China: A Retrospective Study. Infect Drug Resist 2022; 15:4137-4147. [PMID: 35937782 PMCID: PMC9348136 DOI: 10.2147/idr.s373125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose The emergence of drug-resistant tuberculosis (DR-TB) represents a threat to the control of tuberculosis. This study aimed to estimate the patterns and trends of DR-TB in patients with suspected DR-TB. In addition, risk factors for multidrug-resistant tuberculosis (MDR-TB) were identified among suspected DR-TB patients in Dalian, China. Patients and Methods A total of 5661 patients with suspected DR-TB from Jan 1, 2013 to Dec 31, 2020 were included in the final analysis. The resistance pattern of all resistant strains was determined by drug susceptibility testing (DST) using the conventional Lowenstein-Jensen Proportion Method (LJ). DR-TB trends were estimated from 2013 to 2020. During the research period, the chi-square test was employed to analyze the significance of linear drug-resistance trends across time. Bivariate and multivariate logistic regression were performed to assess factors associated with MDR-TB. Results From 2013 to 2020, the resistance rates of rifampicin (RFP) and isoniazid (INH) decreased significantly, whereas the resistance rates of ethambutol (EMB) and streptomycin (SM) increased in patients with suspected DR-TB. From 2013 to 2020, the prevalence of DR-TB decreased in all patients from 34.71% to 28.01% with an average annual decrease of 3.02%. Among new cases, from 2013 to 2020, the prevalence of DR-TB (from 26.67% to 24.75%), RFP-resistant TB (RR-TB) (from 15.09% to 3.00%) and MDR-TB (from 6.08% to 2.62%) showed a significant downward trend. Among patients with a previous treatment history, DR-TB (from 54.70% to 37.50%), RR-TB (from 44.16% to 11.49%) and MDR-TB (from 26.90% to 10.34%) showed a significant downward trend from 2013 to 2020. Males (AOR 1.28, 95% CI 1.035–1.585), patients 45 to 64 years of age (AOR 1.75, 95% CI 1.342–2.284), patients 65 years and older (AOR 1.65, 95% CI 1.293–2.104), rural residents (AOR 1.24, 95% CI 1.014–1.519) and a previous treatment history (AOR 3.94, 95% CI 3.275–4.741) were risk factors for MDR-TB. Conclusion The prevalence of DR-TB, RR-TB and MDR-TB was significantly reduced from 2013 to 2020. Considerable progress has been made in the prevention and treatment of DR-TB during this period. However, the increasing rate of drug resistance in EMB and SM should be taken seriously. Suspected DR-TB patients who are male, older than 45 years of age, live in rural areas, and have a history of TB treatment should be given priority by health care providers.
Collapse
Affiliation(s)
- Yuanping Pan
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Yingying Yu
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Jiachen Lu
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Yaohui Yi
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Xiaofeng Dou
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Ling Zhou
- School of Public Health, Dalian Medical University, Dalian, 116000, People’s Republic of China
- Correspondence: Ling Zhou, School of Public Health, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, People’s Republic of China, Tel +86 411 8611 0368, Email
| |
Collapse
|
14
|
Massud A, Syed Sulaiman SA, Ahmad N, Shafqat M, Chiau Ming L, Khan AH. Frequency and Management of Adverse Drug Reactions Among Drug-Resistant Tuberculosis Patients: Analysis From a Prospective Study. Front Pharmacol 2022; 13:883483. [PMID: 35747749 PMCID: PMC9211428 DOI: 10.3389/fphar.2022.883483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) management is often linked with a higher rate of adverse drug reactions (ADRs) needing effective and timely management of these ADRs, which, if left untreated, may result in a higher rate of loss to follow-up of drug-resistant patients. Study objective: The study was aimed at prospectively identifying the nature, frequency, suspected drugs, and management approaches for ADRs along with risk factors of ADRs occurrence among DR-TB patients at Nishtar Medical University, Hospital, Multan, Pakistan. Materials and Methods: The prospective study included all the DR-TB patients enrolled for treatment from January 2016 to May 2017 at the study site. Patients were evaluated for the treatment-induced ADRs as per standard criteria of the National Tuberculosis Program, Pakistan. Multivariate logistic regression was used to assess the independent variables associated with the occurrence of ADRs. Results: Out of 271 DR-TB patients included in the final analysis, it was observed that 55 patients (20.3%) experienced at least three ADRs. A total of 50 (18.5%) patients experienced zero adverse effects, while 15 (5.5%), 33 (12.2%), and 53 (19.6%) patients experienced one, two, and four ADRs, respectively. Gastrointestinal disturbances (66.7%), nervous system disorders (59.4%), and electrolyte disturbances (55.7%) remained the highest reported ADRs during therapy, followed by arthralgia (49.1%), ototoxicity (24%), pruritic reactions/rash (12.9%), dyspnoea (12.5%), and tinnitus (8.8%). Pulmonary cavitation at the baseline visit (p-value 0.001, OR 3.419; 95% CI (1.694–6.902) was significantly associated with the occurrence of ADRs among DR-TB patients. Conclusion: The frequency of ADRs was high among the study cohort; however, these were managed effectively. Patients with recognized risk factors for ADRs occurrence need continuous clinical management efforts.
Collapse
Affiliation(s)
- Asif Massud
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town, Malaysia.,Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Azhar Syed Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town, Malaysia
| | - Nafees Ahmad
- Faculty of Pharmacy, University of Balochistan, Quetta, Pakistan
| | - Muhammad Shafqat
- Programmatic Management of Drug-Resistant Tuberculosis (PMDT) Unit, Nishtar Medical University Hospital, Multan, Pakistan
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town, Malaysia
| |
Collapse
|
15
|
Hegde PV, Howe MD, Zimmerman MD, Boshoff HIM, Sharma S, Remache B, Jia Z, Pan Y, Baughn AD, Dartois V, Aldrich CC. Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). Eur J Med Chem 2022; 232:114201. [PMID: 35219151 PMCID: PMC8941652 DOI: 10.1016/j.ejmech.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is one of the world's most deadly infectious diseases resulting in nearly 1.3 million deaths annually and infecting nearly one-quarter of the population. para-Aminosalicylic acid (PAS), an important second-line agent for treating drug-resistant Mycobacterium tuberculosis, has moderate bioavailability and rapid clearance that necessitate high daily doses of up to 12 g per day, which in turn causes severe gastrointestinal disturbances presumably by disruption of gut microbiota and host epithelial cells. We first synthesized a series of alkyl, acyloxy and alkyloxycarbonyloxyalkyl ester prodrugs to increase the oral bioavailability and thereby prevent intestinal accumulation as well as undesirable bioactivation by the gut microbiome to non-natural folate species that exhibit cytotoxicity. The pivoxyl prodrug of PAS was superior to all of the prodrugs examined and showed nearly quantitative absorption. While the conceptually simple prodrug approach improved the oral bioavailability of PAS, it did not address the intrinsic rapid clearance of PAS mediated by N-acetyltransferase-1 (NAT-1). Thus, we next modified the PAS scaffold to reduce NAT-1 catalyzed inactivation by introduction of groups to sterically block N-acetylation and fluorination of the aryl ring of PAS to attenuate N-acetylation by electronically deactivating the para-amino group. Among the mono-fluorinated analogs prepared, 5-fluoro-PAS, exhibited the best activity and an 11-fold decreased rate of inactivation by NAT-1 that translated to a 5-fold improved exposure as measured by area-under-the-curve (AUC) following oral dosing to CD-1 mice. The pivoxyl prodrug and fluorination at the 5-position of PAS address the primary limitations of PAS and have the potential to revitalize this second-line TB drug.
Collapse
Affiliation(s)
- Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Howe
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Remache
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Ziyi Jia
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Anthony D Baughn
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Chu H, Hu Y, Zhang B, Sun Z, Zhu B. DNA Methyltransferase HsdM Induce Drug Resistance on Mycobacterium tuberculosis via Multiple Effects. Antibiotics (Basel) 2021; 10:antibiotics10121544. [PMID: 34943756 PMCID: PMC8698436 DOI: 10.3390/antibiotics10121544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Besides the genomic variants, epigenetic mechanisms such as DNA methylation also have an effect on drug resistance. This study aimed to investigate the methylomes of totally/extensively drug-resistant M. tuberculosis clinical isolates using the PacBio single-molecule real-time technology. The results showed they were almost the same as the pan-susceptible ones. Genetics and bioinformatics analysis confirmed three DNA methyltransferases-MamA, MamB, and HsdM. Moreover, anti-tuberculosis drug treatment did not change the methylomes. In addition, the knockout of the DNA methyltransferase hsdM gene in the extensively drug-resistant clinical isolate 11826 revealed that the motifs of GTAYN4ATC modified by HsdM were completely demethylated. Furthermore, the results of the methylated DNA target analysis found that HsdM was mainly involved in redox-related pathways, especially the prodrug isoniazid active protein KatG. HsdM also targeted three drug-targeted genes, eis, embB, and gyrA, and three drug transporters (Rv0194, Rv1410, and Rv1877), which mildly affected the drug susceptibility. The overexpression of HsdM in M. smegmatis increased the basal mutation rate. Our results suggested that DNA methyltransferase HsdM affected the drug resistance of M. tuberculosis by modulating the gene expression of redox, drug targets and transporters, and gene mutation.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Yongfei Hu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhaogang Sun
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
- Correspondence: (Z.S.); (B.Z.)
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (Z.S.); (B.Z.)
| |
Collapse
|
17
|
Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New Antituberculosis Agent, in Healthy Subjects. Antimicrob Agents Chemother 2021; 66:e0143621. [PMID: 34694872 DOI: 10.1128/aac.01436-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telacebec (Q203) is a potent drug candidate under clinical development for the treatment of drug-naïve and drug-resistant tuberculosis. The first-in-human randomized, placebo-controlled, double-blind, dose-escalation Phase 1A trial (Q203-TB-PI-US001) was conducted to evaluate the safety, tolerability, and pharmacokinetics of telacebec. A total of 56 normal, healthy, male and female subjects (42 active and 14 placebo) were enrolled in the study. The doses of telacebec were 10 mg (Cohort 1), 30 mg (Cohort 2), 50 mg (Cohort 3), 100 mg (Cohort 4), 200 mg (Cohort 5), 400 mg (Cohort 6), and 800 mg (Cohort 7) in a fasted state. Subjects participating in Cohort 4 were also enrolled in Cohort 8 to investigate the food effect on the pharmacokinetics of telacebec after a high-fat meal. In all subjects dosed with telacebec (10 - 800 mg), telacebec was well tolerated and did not lead to any significant or serious adverse events. Following a single oral administration of telacebec (10 - 800 mg), telacebec plasma concentration reached the maximal plasma concentration (Cmax) in average 2.0 - 3.5 h and showed multi-exponential decline thereafter. The area under the plasma concentration vs. time curve (AUC) was approximately dose-proportional. A significant increase in plasma concentrations was observed in the fed condition compared with the fasted condition with the geometric mean ratio of 3.93 for Cmax. Moderate delay in Tmax (4.5 h) was also observed in the fed condition. These results, combined with the demonstrated activity against drug-sensitive and multidrug-resistant Mycobacterium tuberculosis, support further investigation of telacebec for the treatment of tuberculosis.
Collapse
|
18
|
Fekadu G, To KKW, You JHS. WITHDRAWN: Pretomanid for the treatment of Mycobacterium tuberculosis: Evidence on the development and clinical roles. J Infect Public Health 2021:S1876-0341(21)00324-5. [PMID: 34742640 DOI: 10.1016/j.jiph.2021.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong.
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong.
| | - Joyce H S You
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong.
| |
Collapse
|
19
|
Fekadu G, Chow DYW, You JHS. The pharmacotherapeutic management of pulmonary tuberculosis: an update of the state-of-the-art. Expert Opin Pharmacother 2021; 23:139-148. [PMID: 34402698 DOI: 10.1080/14656566.2021.1967930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pulmonary tuberculosis (TB) remains an important global health challenge of the 21st century, and the emerging resistance against anti-TB drugs is still a growing concern. And while there was a significant cumulative reduction in the incidence of TB between 2015 and 2019, 2.8% of all TB cases in 2019 were reported to be drug resistant. AREA COVERED This review provides the reader with an update on pharmacotherapy for patients with TB susceptible or resistant to drug therapy. The authors also include promising investigational drugs herein. Finally, the authors share with the reader their expert opinions on the current state of the art and their future perspectives. EXPERT OPINION The current pharmacotherapeutic management aims to enhance favorable treatment outcomes and reduce treatment-related adverse events. One approach is to use shorter and all-oral regimens for eligible patients. Traditional longer regimens for most patients are also optimized to lower incidence of treatment failure and serious adverse events.
Collapse
Affiliation(s)
- Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dilys Yan-Wing Chow
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Joyce H S You
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
20
|
Cama J, Leszczynski R, Tang PK, Khalid A, Lok V, Dowson CG, Ebata A. To Push or To Pull? In a Post-COVID World, Supporting and Incentivizing Antimicrobial Drug Development Must Become a Governmental Priority. ACS Infect Dis 2021; 7:2029-2042. [PMID: 33606496 PMCID: PMC7931625 DOI: 10.1021/acsinfecdis.0c00681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The COVID-19 pandemic has refocused attention worldwide on the dangers of infectious diseases, in terms of both global health and the effects on the world economy. Even in high income countries, health systems have been found wanting in dealing with the new infectious agent. However, the even greater long-term danger of antimicrobial resistance in pathogenic bacteria and fungi is still under-appreciated, especially among the general public. Although antimicrobial drug development faces significant scientific challenges, the gravest challenge at the moment appears to be economic, where the lack of a viable market has led to a collapse in drug development pipelines. There is therefore a critical need for governments across the world to further incentivize the development of antimicrobials. Most incentive strategies over the past decade have focused on so-called "push" incentives that bridge the costs of antimicrobial research and development, but these have been insufficient for reviving the pipeline. In this Perspective, we analyze the current incentive strategies in place for antimicrobial drug development, and focus on "pull" incentives, which instead aim to improve revenue generation and thereby resolve the antimicrobial market failure challenge. We further analyze these incentives in a broader "One Health" context and stress the importance of developing and enforcing strict protocols to ensure appropriate manufacturing practices and responsible use. Our analysis reiterates the importance of international cooperation, coordination across antimicrobial research, and sustained funding in tackling this significant global challenge. A failure to invest wisely and continuously to incentivize antimicrobial pipelines will have catastrophic consequences for global health and wellbeing in the years to come.
Collapse
Affiliation(s)
- J. Cama
- Living
Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.
- ,
| | - R. Leszczynski
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
| | - P. K. Tang
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- Faculty
of Life Sciences and Medicine, King’s
College London, Great
Maze Pond, London SE1 1UK, U.K.
| | - A. Khalid
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| | - V. Lok
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School of
Biological and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - C. G. Dowson
- School
of Life Sciences, Gibbet Hill Campus, University
of Warwick, Coventry CV4 7AL, U.K.
- Antibiotic
Research U.K., Genesis 5, York Science Park, Heslington, York YO10 5DQ, U.K.
| | - A. Ebata
- Institute
of Development Studies, Library Road, Brighton BN1 9RE, U.K.
| |
Collapse
|
21
|
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Science Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Science Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
22
|
de Almeida SM, Santana LB, Jr GG, Kussen GB, Nogueira K. Real-time Polymerase Chain Reaction for Mycobacterium tuberculosis Meningitis is More Sensitive in Patients with HIV Co-Infection. Curr HIV Res 2021; 18:267-276. [PMID: 32368978 DOI: 10.2174/1570162x18666200505083728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculous meningitis (TbM) is the most severe complication of extra pulmonary tuberculosis (Tb). There is a higher frequency of positive cerebrospinal fluid (CSF) cultures for Mycobacterium tuberculosis (MTb) in samples from human immunodeficiency virus (HIV) co-infected patients than in those from HIV-negative patients. We hypothesized that real time PCR assays for MTb (MTb qPCR) using CSF would be more sensitive in HIV co-infected patients owing to a greater MTb burden. The present study aimed to verify the diagnostic performance of MTb qPCR in CSF of TbM patients who either were co-infected with HIV or were HIVnegative. METHODS A total of 334 consecutive participants with suspected TbM were divided into two groups: HIV co-infected and HIV-negative; each group was categorized into definite TbM, probable TbM, possible TbM, and TbM-negative subgroups based on clinical, laboratory and imaging data. We evaluated the diagnostic characteristics of MTb qPCR analysis to detect TbM in CSF by comparing the results to those obtained for definite TbM (i.e., positive MTb culture) and/or probable TbM in CSF, as gold standard. RESULTS The sensitivity of MTb qPCR in the definite and probable subgroups of the HIV coinfected participants (n = 14) was 35.7%, with a specificity of 93.8%, negative predictive value (NPV) of 94.4%, and negative clinical utility index (CUI-) of 0.89. Results of the HIV-negative group (n = 7) showed lower sensitivity (14.3%) and similar specificity, NPV, and CUI-. CONCLUSION The findings confirmed our hypothesis, despite the low sensitivity. MTb qPCR may significantly contribute to diagnosis when associated with clinical criteria and complementary examinations.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lucas B Santana
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gilberto Golin Jr
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gislene B Kussen
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Keite Nogueira
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
23
|
Nilamsari WP, Rizqi MF, Regina NO, Wulaningrum PA, Fatmawati U. Adverse drug reaction and its management in tuberculosis patients with multidrug resistance: a retrospective study. J Basic Clin Physiol Pharmacol 2021; 32:783-787. [PMID: 34214373 DOI: 10.1515/jbcpp-2020-0447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study was conducted to assess adverse drug reactions and their management in MDR-TB patients. Indonesia is the fifth highest country with multidrug-resistant tuberculosis (MDR-TB) high burden around the world. The number of MDR-TB patients in Indonesia is increasing every year, but the data regarding ADRs are still limited. Therefore, more data on their characteristics and their management is very valuable for clinicians and pharmacists. METHODS The study is a descriptive study, using retrospective data of MDR-TB patients who completed therapy from January 1st, 2015 to December 31st, 2015 at the Tuberculosis Outpatient unit at the Dr. Soetomo Teaching Hospital Indonesia. Each adverse effect was judged with standards of the clinic and was documented in patients' medical records. RESULTS There were 40 patients included in this study. During therapy, 70% of patients developed at least one adverse drug reaction. The five most prevalent adverse effects found in this study were hyperuricemia (52.5%) followed by gastrointestinal (GI) disturbances (40%), ototoxicity (37.5%), hypokalemia (27.5%), and athralgia (12.5%). Managements that were undertaken to overcome the adverse drug reactions were adding symptomatic drugs and/or modifying the treatment regimen. CONCLUSIONS Because of the small samples we cannot attain a general conclusion. However, the result of this study is very imperative as this data gives us insight regarding adverse effects in MDR-TB patients in Indonesia.
Collapse
Affiliation(s)
- Wenny Putri Nilamsari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Muhammad Fajar Rizqi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Natasya Olga Regina
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Umi Fatmawati
- Department of Pharmacy, Dr. Soetomo Teaching Hospital, Surabaya, Indonesia
| |
Collapse
|
24
|
A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 2021; 45:305-313. [PMID: 31925745 DOI: 10.1007/s13318-019-00604-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.
Collapse
|
25
|
Asaad M, Kaisar Ali M, Abo-Kadoum MA, Lambert N, Gong Z, Wang H, Uae M, Nazou SAE, Kuang Z, Xie J. Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-κB signaling axis. Int Immunopharmacol 2021; 94:107363. [PMID: 33667868 DOI: 10.1016/j.intimp.2020.107363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis infection remains one of the top ten causes of deaths worldwide. M. tuberculosis genome devoted 10% capacity for highly repeated PE/PPE genes family. To explore the role of PPE10 in host-pathogen interaction, PPE10 encoding gene Rv0442c was heterologously expressed in the nonpathogenic M. smegmatis strain. PPE10 altered the bacterial cell surface properties, colony morphology, and biofilm formation. Ms_PPE10 showed more resistance to stress conditions such as diamide, and low pH, as well as higher survival within the macrophage. Moreover, the host's cell apoptosis was regulated via decreased expression of caspases, IL-1, IL-6, and TNF-α through the Linear Ubiquitin Chain Assembly Complex (LUBAC) HOIP-NF-κB signaling axis. The study revealed novel insights into the mechanism of action of the PPE family.
Collapse
Affiliation(s)
- Mohammed Asaad
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Md Kaisar Ali
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - M A Abo-Kadoum
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University Assuit branch, Egypt
| | - Nzungize Lambert
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Hao Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Moure Uae
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Stech A E Nazou
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhongmei Kuang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.
| |
Collapse
|
26
|
Yigzaw WB, Torrelles JB, Wang SH, Tessema B. Magnitude of Phenotypic and MTBDRplus Line Probe Assay First-Line Anti-Tuberculosis Drug Resistance Among Tuberculosis Patients; Northwest Ethiopia. Infect Drug Resist 2021; 14:497-505. [PMID: 33603414 PMCID: PMC7882791 DOI: 10.2147/idr.s292058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/03/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) drug resistance is a key challenge in ending TB. Objective The study aimed to determine anti-TB drug resistance and compare the discordance between phenotypic and genotypic drug-susceptibility testing (DST). Methods Prospective enrollment and sputum collection from patients suspected of active pulmonary TB from May 2018 to December 2019 at the University of Gondar Hospital. Phenotypic DST study for streptomycin, isoniazid, rifampin, and ethambutol was done by MGIT 360 SIRE Kit. Genotypic resistance for isoniazid and rifampin was performed by MTBDRplus v2 line probe assay (LPA) and compared to phenotypic drug resistance. Results A total of 376 patients, median age 32 years, and 53.7% male were enrolled. Mtb was isolated from 126 patients. 106/126 (84%) patients were newly diagnosed with TB and 20 patients with prior TB treatment. Seventy (66.0%) were susceptible to all anti‐TB drugs tested. Twenty-five (19.8%) of the isolates were resistant to isoniazid, 12 (9.5%) to rifampicin and six (5%) were multidrug resistant. Among previously treated TB patients, 4 (20.0%) and 5 (25.0%) were mono-resistant and poly-resistant, respectively. The sensitivity and specificity of LPA resistance for isoniazid were 94.4% and 100%, and for rifampin was 75.0% and 100%, respectively. Conclusion The frequency of mono- and poly-drug resistance among both newly diagnosed and previously treated TB patients was high to the rest of the nation. MTBDRplus showed excellent concordance for isoniazid and rifampin. We concluded that DST should be performed for all patients to improve management and decrease spread of drug-resistant Mtb strains in the community.
Collapse
Affiliation(s)
- Wubet Birhan Yigzaw
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Belay Tessema
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
27
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
28
|
Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis Isolates from Moroccan Patients: Systematic Review. Interdiscip Perspect Infect Dis 2020; 2020:5185896. [PMID: 33133185 PMCID: PMC7568785 DOI: 10.1155/2020/5185896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, the treatment of tuberculosis has been threatened by the increasing number of patients with drug resistance, especially rifampicin resistance, which is the most effective first-line antibiotic against Mycobacterium tuberculosis. Methods We performed a systematic review of the literature by searching the PubMed database for studies of rifampicin-resistant Mycobacterium tuberculosis (MTB) isolates from Moroccan patients, published between 2010 and 2020. The aim of this review was to quantify the frequency of the most common mutations associated with rifampicin resistance, to describe the frequency at which these mutations co-occur. Identified studies were critically appraised according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Results 6 studies met our inclusion criteria. Results show that 99.36% of MTB isolates had a single-point mutation, and the most commonly mutated codon of rpoB gene is 531 with 70.33% of phenotypically resistant strains. However, 10.38% of MTB strains phenotypically resistant to RIF did not exhibit any mutation in the rpoB gene. Conclusion Identification of a resistance-associated mutation to rifampicin can be a good marker of drug-resistant TB, but lack of a mutation in the target sequence must be interpreted with caution.
Collapse
|
29
|
Armstrong T, Lamont M, Lanne A, Alderwick LJ, Thomas NR. Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives. Bioorg Med Chem 2020; 28:115744. [PMID: 33007556 DOI: 10.1016/j.bmc.2020.115744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. 'Direct inhibitors' of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.
Collapse
Affiliation(s)
- Tom Armstrong
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Malcolm Lamont
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Alice Lanne
- Institute of Microbiology and Infection, School of Bioscience, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Bioscience, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Neil R Thomas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
30
|
Shibu V, Daksha S, Rishabh C, Sunil K, Devesh G, Lal S, Jyoti S, Kiran R, Bhavin V, Amit K, Radha T, Sandeep B, Minnie K, Kaur GR, Vaishnavi J, Sudip M, Sameer K, Achutan NS, Sanjeev K, Puneet D. Tapping private health sector for public health program? Findings of a novel intervention to tackle TB in Mumbai, India. Indian J Tuberc 2020; 67:189-201. [PMID: 32553311 DOI: 10.1016/j.ijtb.2020.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND India carries one-fourth of the global tuberculosis (TB) burden. Hence the country has drafted the ambitious National Strategic Plan to eliminate tuberculosis by 2025. To realise this goal, India's Revised National Tuberculosis Control Programme (RNTCP) and partners piloted a novel strategy to engage private-providers for tuberculosis care via a "Private-provider Interface Agency" (PPIA) in Mumbai and other locations. INTERVENTION The program mapped and engaged private-providers, chemists, and laboratories; facilitated TB notification via call centers and field staff; provided free tuberculosis diagnostic tests and anti-TB drugs using novel electronic vouchers; monitored quality of care; and supported patients to ensure anti-TB treatment adherence and completion. This report summarises the descriptive analysis of PPIA implementation data piloted in Mumbai from 2014 to 2017. FINDINGS The program mapped 8789 private doctors, 3438 chemists, and 985 laboratories. Of these, 3836 (44%) doctors, 285 (29%) laboratories, and 353 (10%) chemists were prioritized and engaged in the program. Over three and a half years, the program recorded 60,366 privately-notified tuberculosis patients, of which, 24,146 (40%) were microbiologically-confirmed, 5203 (9%) were rifampicin-resistant, and 4401 (7%) were paediatric TB patients. Mumbai's annual total TB case notification rate increased from a pre-program baseline of 272 per 100,000/year in 2013 to 416 per 100,000/year in 2017. Overall, 42,300 (78%) patients completed the TB treatment, and 4979 (9%) could not be evaluated. INTERPRETATION The PPIA program in Mumbai demonstrated that private-providers can be effectively engaged for TB control in urban India. This program has influenced national policy and has been adapted and funded for a country-wide scale up. The model may also be considered in conditions where private-provider engagement is needed to improve access and quality of care for any area of public health.
Collapse
Affiliation(s)
| | - Shah Daksha
- Department of Health, Muncipal Corporation of Greater Mumbai, India
| | | | - Khaparde Sunil
- Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Gupta Devesh
- Central TB Division, Ministry of Health & Family Welfare, Government of India, New Delhi, India
| | | | | | - Rade Kiran
- World Health Organization, New Delhi, India
| | | | - Karad Amit
- World Health Organization, New Delhi, India
| | | | | | - Khetrapal Minnie
- Department of Health, Muncipal Corporation of Greater Mumbai, India
| | | | | | | | - Kumta Sameer
- Bill & Melinda Gates Foundation, New Delhi, India
| | | | | | - Dewan Puneet
- Independent Public Health Consultant, Seattle, WA, USA
| |
Collapse
|
31
|
Teixeira C, Ventura C, Gomes JRB, Gomes P, Martins F. Cinnamic Derivatives as Antitubercular Agents: Characterization by Quantitative Structure-Activity Relationship Studies. Molecules 2020; 25:molecules25030456. [PMID: 31973244 PMCID: PMC7037561 DOI: 10.3390/molecules25030456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the top ten causes of death worldwide and the main cause of mortality from a single infectious agent. The upsurge of multi- and extensively-drug resistant tuberculosis cases calls for an urgent need to develop new and more effective antitubercular drugs. As the cinnamoyl scaffold is a privileged and important pharmacophore in medicinal chemistry, some studies were conducted to find novel cinnamic acid derivatives (CAD) potentially active against tuberculosis. In this context, we have engaged in the setting up of a quantitative structure–activity relationships (QSAR) strategy to: (i) derive through multiple linear regression analysis a statistically significant model to describe the antitubercular activity of CAD towards wild-type Mtb; and (ii) identify the most relevant properties with an impact on the antitubercular behavior of those derivatives. The best-found model involved only geometrical and electronic CAD related properties and was successfully challenged through strict internal and external validation procedures. The physicochemical information encoded by the identified descriptors can be used to propose specific structural modifications to design better CAD antitubercular compounds.
Collapse
Affiliation(s)
- Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, P-4169-007 Porto, Portugal
- Correspondence: (C.T.); (F.M.)
| | - Cristina Ventura
- Instituto Superior de Educação e Ciências, P-1750-142 Lisboa, Portugal
| | - José R. B. Gomes
- CICECO, Departamento de Química, Universidade de Aveiro, P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, P-4169-007 Porto, Portugal
| | - Filomena Martins
- Centro de Química e Bioquímica (CQB), Centro de Química Estrutural (CQE), Faculdade de Ciências da Universidade de Lisboa, P-1749-016 Lisboa, Portugal
- Correspondence: (C.T.); (F.M.)
| |
Collapse
|
32
|
Sutar YB, Mali JK, Telvekar VN, Rajmani RS, Singh A. Transferrin conjugates of antitubercular drug isoniazid: Synthesis and in vitro efficacy. Eur J Med Chem 2019; 183:111713. [DOI: 10.1016/j.ejmech.2019.111713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
|
33
|
Shah D, Vijayan S, Chopra R, Salve J, Gandhi RK, Jondhale V, Kandasamy P, Mahapatra S, Kumta S. Map, know dynamics and act; a better way to engage private health sector in TB management. A report from Mumbai, India. Indian J Tuberc 2019; 67:65-72. [PMID: 32192620 DOI: 10.1016/j.ijtb.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND India, world's leading Tuberculosis burden country envisions to End-TB by optimally engaging private-sector, in-spite of several unsuccessful attempts of optimal private sector engagement. Private Provider Interface Agency (PPIA), a new initiative for private-sector engagement, studied the private-sector networking and dynamics to understand the spread, typology of providers and facilities and their relations in TB case management, which was critical to design an intervention to engage private-sector. We report the observations of this exercise for a larger readership. METHOD ology: It is a descriptive analysis of mapping data (quantitative) and perceived factors influencing their engagement in the PPIA network (qualitative). RESULTS Of 7396 doctors, 2773 chemists and 747 laboratories mapped, 3776 (51%) doctors, 353 (13%) chemists and 255 (34%) laboratories were prioritized and engaged. While allopathic doctors highly varied between wards (mean ratio 48/100,000 population; range 13-131), non-allopathic doctors were more evenly distributed (mean ratio 58/100,000 population; range 36-83). The mean ratio between non-allopathic to allopathic doctors was 1.75. Return benefit, apprehension on continuity of funding and issues of working with the Government were top three concerns of private providers during engagement. Similarly, irrational business expectations, expectation of advance financing for surety and fear of getting branded as TB clinic were three top reasons for non-engagement. CONCLUSION A systematic study of dynamics of existing networking, typology and spread of private providers and using this information in establishing an ecosystem of referral network for TB control activities is crucial in an effort towards optimal engagement of private health providers. Understanding the factors influencing the network dynamics helped PPIA in effective engagement of private health providers in the project.
Collapse
Affiliation(s)
- Daksha Shah
- Department of Health, Municipal Corporation of Greater Mumbai, India
| | - Shibu Vijayan
- PATH Mumbai Office, Mumbai, India; PATH Headquarter, Seattle, WA, USA.
| | | | | | | | | | | | | | - Sameer Kumta
- Bill & Melinda Gates Foundation, New Delhi, India
| |
Collapse
|
34
|
Xu P, Pang Y, Xu J, Chen H, Tang P, Wu M. Cytokine-induced killer cell therapy as a promising adjunctive immunotherapy for multidrug-resistant pulmonary TB: a case report. Immunotherapy 2019; 10:827-830. [PMID: 30073894 DOI: 10.2217/imt-2017-0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this report, we identified a multidrug-resistant tuberculosis (MDR-TB) patient who remained acid-fast bacilli culture positive despite aggressive WHO-directed therapy. Between July 2014 and February 2015, she received eight courses of cytokine-induced killer (CIK) cell-based adoptive cellular immunotherapy in combination to the second-line anti-TB treatment. This case achieved culture conversion, and experienced no relapse during 2-year follow-up under the treatment with CIK cell-based adoptive cellular immunotherapy. Our data indicate that CIK immunotherapy is a promising adjunctive therapeutic method for improving the efficacy combined with the second-line anti-TB regimens against MDR-TB. Randomized trials are warranted to confirm the efficacy and safety of adjunctive CIK therapy in patients infected with MDR-TB.
Collapse
Affiliation(s)
- Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of Tuberculosis Prevention & Cure of Suzhou, Suzhou, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Junchi Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of Tuberculosis Prevention & Cure of Suzhou, Suzhou, China
| | - Hui Chen
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Peijun Tang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Meiying Wu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China.,Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, China
| |
Collapse
|
35
|
Zhang Q, Liu H, Liu X, Jiang D, Zhang B, Tian H, Yang C, Guddat LW, Yang H, Mi K, Rao Z. Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target. Protein Cell 2019; 9:971-975. [PMID: 29350349 PMCID: PMC6208485 DOI: 10.1007/s13238-017-0502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qingqing Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, 300457, China
| | - Huijuan Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiang Liu
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Dunquan Jiang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bingjie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongliang Tian
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Cheng Yang
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Silvestre R, Torrado E. Metabolomic-Based Methods in Diagnosis and Monitoring Infection Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 109:283-315. [PMID: 30535603 PMCID: PMC7124096 DOI: 10.1007/978-3-319-74932-7_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A robust biomarker screening and validation is crucial for overcoming the current limits in the clinical management of infectious diseases. In this chapter, a general workflow for metabolomics is summarized. Subsequently, an overview of the major contributions of this omics science to the field of biomarkers of infectious diseases is discussed. Different approaches using a variety of analytical platforms can be distinguished to unveil the key metabolites for the diagnosis, prognosis, response to treatment and susceptibility for infectious diseases. To allow the implementation of such biomarkers into the clinics, the performance of large-scale studies employing solid validation criteria becomes essential. Focusing on the etiological agents and after an extensive review of the field, we present a comprehensive revision of the main metabolic biomarkers of viral, bacterial, fungal, and parasitic diseases. Finally, we discussed several articles which show the strongest validation criteria. Following these research avenues, precious clinical resources will be revealed, allowing for reduced misdiagnosis, more efficient therapies, and affordable costs, ultimately leading to a better patient management.
Collapse
Affiliation(s)
- Ricardo Silvestre
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| |
Collapse
|
37
|
Guardia A, Baiget J, Cacho M, Pérez A, Ortega-Guerra M, Nxumalo W, Khanye SD, Rullas J, Ortega F, Jiménez E, Pérez-Herrán E, Fraile-Gabaldón MT, Esquivias J, Fernández R, Porras-De Francisco E, Encinas L, Alonso M, Giordano I, Rivero C, Miguel-Siles J, Osende JG, Badiola KA, Rutledge PJ, Todd MH, Remuiñán M, Alemparte C. Easy-To-Synthesize Spirocyclic Compounds Possess Remarkable in Vivo Activity against Mycobacterium tuberculosis. J Med Chem 2018; 61:11327-11340. [PMID: 30457865 DOI: 10.1021/acs.jmedchem.8b01533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Society urgently needs new, effective medicines for the treatment of tuberculosis. To kick-start the required hit-to-lead campaigns, the libraries of pharmaceutical companies have recently been evaluated for starting points. The GlaxoSmithKline (GSK) library yielded many high-quality hits, and the associated data were placed in the public domain to stimulate engagement by the wider community. One such series, the spiro compounds, are described here. The compounds were explored by a combination of traditional in-house research and open source methods. The series benefits from a particularly simple structure and a short associated synthetic chemistry route. Many members of the series displayed striking potency and low toxicity, and highly promising in vivo activity in a mouse model was confirmed with one of the analogues. Ultimately the series was discontinued due to concerns over safety, but the associated data remain public domain, empowering others to resume the series if the perceived deficiencies can be overcome.
Collapse
Affiliation(s)
- Ana Guardia
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jessica Baiget
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Mónica Cacho
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Arancha Pérez
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Montserrat Ortega-Guerra
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Winston Nxumalo
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Setshaba D Khanye
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Joaquín Rullas
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Fátima Ortega
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Elena Jiménez
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Esther Pérez-Herrán
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | | | - Jorge Esquivias
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Raquel Fernández
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Esther Porras-De Francisco
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Lourdes Encinas
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Marta Alonso
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Ilaria Giordano
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Cristina Rivero
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Juan Miguel-Siles
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Javier G Osende
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Katrina A Badiola
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Peter J Rutledge
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Matthew H Todd
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia.,School of Pharmacy , University College London , 29-39 Brunswick Square , London WC1N 1AX , U.K
| | - Modesto Remuiñán
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Carlos Alemparte
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| |
Collapse
|
38
|
Metabolomic Study to Determine the Mechanism Underlying the Effects of Sagittaria sagittifolia Polysaccharide on Isoniazid- and Rifampicin-Induced Hepatotoxicity in Mice. Molecules 2018; 23:molecules23123087. [PMID: 30486347 PMCID: PMC6321494 DOI: 10.3390/molecules23123087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, a non-targeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to characterize the plasma metabolic profile associated with the protective effects of the Sagittaria sagittifolia polysaccharide (SSP) on isoniazid (INH)—and rifampicin (RFP)-induced hepatotoxicity in mice. Fourteen potential biomarkers were identified from the plasma of SSP-treated mice. The protective effects of SSP on hepatotoxicity caused by the combination of INH and RFP (INH/RFP) were further elucidated by investigating the related metabolic pathways. INH/RFP was found to disrupt fatty acid metabolism, the tricarboxylic acid cycle, amino acid metabolism, taurine metabolism, and the ornithine cycle. The results of the metabolomics study showed that SSP provided protective effects against INH/RFP-induced liver injury by partially regulating perturbed metabolic pathways.
Collapse
|
39
|
THE DETECTION OF EPIDEMIC SUBTYPES OF BEIJING GENOTYPE OF MYCOBACTERIUM TUBERCULOSIS CIRCULATED IN THE PRIMORSKY KRAI. ACTA ACUST UNITED AC 2018. [DOI: 10.29413/abs.2018-3.5.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background. The Far East is the territory with high rate of incidence and prevalence of tuberculosis. Cases of tuberculosis caused by epidemic strains have high frequency of MDR and XDR. It is important to study the prevalence of TB in areas with a high burden of infection, to which the Far East belongs. The aim of the research is to carry out genotyping of strains and assess the prevalence of CC1 and CC2 subtypes in the territory of Primorsky Krai. Materials and methods. The DNAs of 99 clinical isolates of MBT from Primorsky Krai have been genotyped by the 24-locus MIRU-VNTR and RD105/RD207. Results. The dominant number of strains pertained to Beijing genotype (59.6 %). The express method revealed 22 isolates of the CC2/W148 subtype, which had 6 different MIRU-VNTR-24 profile. According to MLVA classification MtbC 15-9, the most common among the isolates of CC2/W148 profile is 100-32 (59.1 %). Among these profiles the highest frequency of MDR/XDR was recorded – 69,2 %. According to the results of the express analysis, 39 isolates with 26 different MIRU-VNTR-24 profiles belonged to the CC1 subtype, of which the dominant number belonged to 99-32 and 94-32. Conclusions. The methods of express genotyping of epidemic subtypes of the Beijing genotype are very important for epidemiological surveillance and clinical practice. The developed methods allow to define a wider range of strains than previously used methods.
Collapse
|
40
|
Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81:414-424. [PMID: 30212765 DOI: 10.1016/j.bioorg.2018.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.
Collapse
|
41
|
Comparison of In Vitro Activity and MIC Distributions between the Novel Oxazolidinone Delpazolid and Linezolid against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis in China. Antimicrob Agents Chemother 2018; 62:AAC.00165-18. [PMID: 29844043 DOI: 10.1128/aac.00165-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.
Collapse
|
42
|
Enhancement of Ag85B DNA vaccine immunogenicity against tuberculosis by dissolving microneedles in mice. Vaccine 2018; 36:4471-4476. [DOI: 10.1016/j.vaccine.2018.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/03/2018] [Accepted: 06/10/2018] [Indexed: 01/22/2023]
|
43
|
Raychaudhury C, Rizvi MIH, Pal D. Combinatorial Design of Molecule using Activity-Linked Substructural Topological Information as Applied to Antitubercular Compounds. Curr Comput Aided Drug Des 2018; 15:67-81. [PMID: 29741142 DOI: 10.2174/1573409914666180509152711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Generating a large number of compounds using combinatorial methods increases the possibility of finding novel bioactive compounds. Although some combinatorial structure generation algorithms are available, any method for generating structures from activity-linked substructural topological information is not yet reported. OBJECTIVE To develop a method using graph-theoretical techniques for generating structures of antitubercular compounds combinatorially from activity-linked substructural topological information, predict activity and prioritize and screen potential drug candidates. METHODS Activity related vertices are identified from datasets composed of both active and inactive or, differently active compounds and structures are generated combinatorially using the topological distance distribution associated with those vertices. Biological activities are predicted using topological distance based vertex indices and a rule based method. Generated structures are prioritized using a newly defined Molecular Priority Score (MPS). RESULTS Studies considering a series of Acid Alkyl Ester (AAE) compounds and three known antitubercular drugs show that active compounds can be generated from substructural information of other active compounds for all these classes of compounds. Activity predictions show high level of success rate and a number of highly active AAE compounds produced high MPS score indicating that MPS score may help prioritize and screen potential drug molecules. A possible relation of this work with scaffold hopping and inverse Quantitative Structure-Activity Relationship (iQSAR) problem has also been discussed. CONCLUSION The proposed method seems to hold promise for discovering novel therapeutic candidates for combating Tuberculosis and may be useful for discovering novel drug molecules for the treatment of other diseases as well.
Collapse
Affiliation(s)
- Chandan Raychaudhury
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Md Imbesat Hassan Rizvi
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Erkose Genc G, Satana D, Yildirim E, Erturan Z, Yegenoglu Y, Uzun M. Evaluation of FluoroType MTB for direct detection of Mycobacterium tuberculosis complex and GenoType MTBDRplus for determining rifampicin and isoniazid resistance. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1466662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Gonca Erkose Genc
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Dilek Satana
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esra Yildirim
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Zayre Erturan
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yildiz Yegenoglu
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Meltem Uzun
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Luo T, Yuan J, Peng X, Yang G, Mi Y, Sun C, Wang C, Zhang C, Bao L. Double mutation in DNA gyrase confers moxifloxacin resistance and decreased fitness of Mycobacterium smegmatis. J Antimicrob Chemother 2018; 72:1893-1900. [PMID: 28387828 DOI: 10.1093/jac/dkx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Ofloxacin and moxifloxacin are the most commonly used fluoroquinolones (FQs) for the treatment of tuberculosis. As a new generation FQ, moxifloxacin has been recommended for the treatment of ofloxacin-resistant TB. However, the mechanism by which ofloxacin-resistant Mycobacterium tuberculosis further gains resistance to moxifloxacin remains unclear. Methods We used Mycobacterium smegmatis as a model for studying FQ resistance in M. tuberculosis . Moxifloxacin-resistant M. smegmatis was selected in vitro based on strains with primary ofloxacin resistance. The gyrA and gyrB genes of the resistant strains were sequenced to identify resistance-associated mutations. An in vitro competition assay was applied to explore the influence of gyrA / gyrB mutations on bacterial fitness. Finally, we evaluated the clinical relevance of our findings by analysing the WGS data of 1984 globally collected M. tuberculosis strains. Results A total of 57 moxifloxacin-resistant M. smegmatis strains based on five ofloxacin-resistant strains were obtained. Sequencing results revealed that all moxifloxacin-resistant strains harboured second-step mutations in gyrA or gyrB . The relative fitnesses of the double-mutation strains varied from 0.65 to 0.93 and were mostly lower than those of their mono-mutation parents. From the genomic data, we identified 37 clinical M. tuberculosis strains harbouring double mutations in gyrA and/or gyrB and 36 of them carried at least one low-level FQ-resistance mutation. Conclusions Double mutation in DNA gyrase leads to moxifloxacin resistance and decreased fitness in M. smegmatis . Under current dosing of moxifloxacin, double mutations mainly happened in M. tuberculosis strains with primary low-level resistance mutations.
Collapse
Affiliation(s)
- Tao Luo
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Jinning Yuan
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guoping Yang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Youjun Mi
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Changfeng Sun
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
A 10-Year Comparative Analysis Shows that Increasing Prevalence of Rifampin-Resistant Mycobacterium tuberculosis in China Is Associated with the Transmission of Strains Harboring Compensatory Mutations. Antimicrob Agents Chemother 2018; 62:AAC.02303-17. [PMID: 29378712 DOI: 10.1128/aac.02303-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
Abstract
In this work, we conducted bacterial population profile studies to assess trends of rifampin (RIF) resistance of Mycobacterium tuberculosis isolates collected across China from 2005 to 2015. Totals of 273 and 269 randomly selected M. tuberculosis isolates from 2005 and 2015, respectively, were analyzed. The rates of RIF resistance (36.4%), isoniazid resistance (39.0%), and levofloxacin resistance (25.7%) in 2015 were significantly higher than those in 2005 (28.2%, 30.0%, and 15.4%, respectively; P < 0.05). Genotypic data revealed 256 (95.2%) Beijing-type isolates in 2015, a rate significantly higher than that in 2005 (86.4%) (P < 0.01). A higher proportion of mutations was identified within the rifampin resistance-determining region (RRDR) of rpoB in isolates from 2015 (99.0%) than in 2005 isolates (85.7%, P < 0.01). In addition, a significantly higher proportion of RIF-resistant isolates carrying compensatory mutations was observed in 2015 (31.6%) than in 2005 (7.8%). Notably, the great majority of these compensatory mutations (91.9%) were observed in isolates that harbored a mutation of codon 531 of the rpoB gene. In conclusion, our data demonstrate that resistance to RIF, isoniazid, and levofloxacin has become significantly more prevalent during the past decade. In addition, the prevalence of the Beijing genotype significantly increased from 2005 to 2015. Notably, a significantly increased frequency of strains with mutations in rpoC or rpoA is observed among those that have codon 531 mutations, which suggests that they may be compensatory and may play a role in facilitating transmission.
Collapse
|
47
|
Kuo CY, Wang WH, Huang CH, Chen YH, Lu PL. Resistance to first- and second-line antituberculosis drugs in Southern Taiwan: Implications for empirical treatment. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:88-93. [DOI: 10.1016/j.jmii.2017.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
48
|
Lv XT, Lu XW, Shi XY, Zhou L. Prevalence and risk factors of multi-drug resistant tuberculosis in Dalian, China. J Int Med Res 2017; 45:1779-1786. [PMID: 28345426 PMCID: PMC5805195 DOI: 10.1177/0300060516687429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
Objectives To investigate the prevalence and risk factors associated with multi-drug resistant tuberculosis (MDR-TB) in Dalian, China. Methods This was a retrospective review of data from patients attending a TB clinic in Dalian, China between 2012 and 2015. Demographic and drug susceptibility data were retrieved from TB treatment cards. Univariate logistic analysis was used to assess the association between risk factors and MDR-TB. Results Among the 3552 patients who were smear positive for Mycobacterium tuberculosis (MTB), 2918 (82.2%) had positive MTB cultures and 1106 (31.1%) had isolates that showed resistance to at least one drug. The overall prevalence of MDR-TB was 10.1% (359/3552; 131/2261 [5.8%] newly diagnosed and 228/1291 [17.7%] previously treated patients). Importantly, 75 extensively drug-resistant TB isolates were detected from 25 newly treated and 50 previously treated patients. In total, 215 (6.1%) patients were infected with a poly-resistant strain of MTB. Previously treated patients and older patients were more likely to develop MDR-TB. Conclusions The study showed a high prevalence of MDR-TB among the study population. History of previous TB treatment and older age were associated with MDR-TB.
Collapse
Affiliation(s)
- Xin-Tong Lv
- School of Public Health, Dalian Medical
University, Dalian, Liaoning Province, China
| | - Xi-Wei Lu
- Dalian Tuberculosis Hospital, Dalian,
Liaoning Province, China
| | - Xiao-Yan Shi
- Dalian Tuberculosis Hospital, Dalian,
Liaoning Province, China
| | - Ling Zhou
- School of Public Health, Dalian Medical
University, Dalian, Liaoning Province, China
| |
Collapse
|
49
|
Yan Q, Liu H, Cheng Z, Xue Y, Cheng Z, Dai X, Shan W, Chen F. Immunotherapeutic effect of BCG-polysaccharide nucleic acid powder on Mycobacterium tuberculosis-infected mice using microneedle patches. Drug Deliv 2017; 24:1648-1653. [PMID: 29069980 PMCID: PMC8241181 DOI: 10.1080/10717544.2017.1391892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Polysaccharide nucleic acid fractions of bacillus Calmette-Guérin, termed BCG-PSN, have traditionally been used as immunomodulators in the treatment of dermatitis and allergic diseases. While the sales of injectable BCG-PSN have shown steady growth in recent years, no reports of using BCG-PSN powder or its immunotherapeutic effects exist. Here, BCG-PSN powder was applied directly to the skin to evaluate the immunotherapeutic effects on mice infected with Mycobacterium tuberculosis (MTB). In total, 34 μg of BCG-PSN powder could be loaded into a microneedle patch (MNP). Mice receiving BCG-PSN powder delivered via MNP exhibited significantly increased IFN-γ and TNF-α production in peripheral blood CD4 + T cells and improved pathological changes in their lungs and spleens compared to control group mice. The immunotherapeutic effect of BCG-PSN powder delivered via MNP was better than that delivered via intramuscular injection to some extent. Furthermore, MNPs eliminate the side effects of syringes, and this study demonstrated that BCG-PSN can be clinically administrated in powder form.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Houming Liu
- Laboratory of Shenzhen Third People’s Hospital, Shenzhen, PR China
| | - Zhigang Cheng
- Wuhan Biocause Pharmaceutical Development Co. Ltd, Wuhan, PR China
| | - Yun Xue
- Lab of Medical Engineering, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, PR China
| | - Zhide Cheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Life Sciences School of Hubei University, Wuhan, PR China
| | - Xuyong Dai
- Wuhan Biocause Pharmaceutical Development Co. Ltd, Wuhan, PR China
| | - Wanshui Shan
- Laboratory of Shenzhen Third People’s Hospital, Shenzhen, PR China
| | - Fan Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Life Sciences School of Hubei University, Wuhan, PR China
| |
Collapse
|
50
|
Al-Saeedi M, Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist 2017; 10:333-342. [PMID: 29075131 PMCID: PMC5648319 DOI: 10.2147/idr.s144446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Mashael Al-Saeedi
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|