1
|
Allison C, Jiménez A, Ramajayam K, Haemmerich D, Zderic V. Therapeutic Ultrasound for Enhanced Corneal Permeability to Macromolecules. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:127-136. [PMID: 37842972 DOI: 10.1002/jum.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Topically applied macromolecules have the potential to provide vision-saving treatments for many of the leading causes of blindness in the United States. The aim of this study was to determine if ultrasound can be applied to increase transcorneal drug delivery of macromolecules without dangerously overheating surrounding ocular tissues. METHODS Dissected corneas of adult rabbits were placed in a diffusion cell between a donor compartment filled with a solution of macromolecules (40, 70 kDa, or 150 kDa) and a receiver compartment. Each cornea was exposed to the drug solution for 60 minutes, with the experimental group receiving 5 minutes of continuous ultrasound or 10 minutes of pulsed ultrasound at a 50% duty cycle (pulse repetition frequency of 500 ms on, 500 ms off) at the beginning of treatment. Unfocused circular ultrasound transducers were operated at 0.5 to 1 W/cm2 intensity and at 600 kHz frequency. RESULTS The greatest increase in transcorneal drug delivery seen was 1.2 times (P < .05) with the application of pulsed ultrasound at 0.5 W/cm2 and 600 kHz for 10 minutes with 40 kDa macromolecules. Histological analysis revealed structural damage mostly in the corneal epithelium, with most damage occurring at the epithelial surface. CONCLUSIONS This study suggests that ultrasound may be used for enhancing transcorneal delivery of macromolecules of lower molecular weights. Further research is needed on the long-term effects of ultrasound parameters used in this study on human ocular tissues.
Collapse
Affiliation(s)
- Claire Allison
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Annette Jiménez
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Krishna Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Duncan B, Al-Kassas R, Zhang G, Hughes D, Qiu Y. Ultrasound-Mediated Ocular Drug Delivery: From Physics and Instrumentation to Future Directions. MICROMACHINES 2023; 14:1575. [PMID: 37630111 PMCID: PMC10456754 DOI: 10.3390/mi14081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Drug delivery to the anterior and posterior segments of the eye is impeded by anatomical and physiological barriers. Increasingly, the bioeffects produced by ultrasound are being proven effective for mitigating the impact of these barriers on ocular drug delivery, though there does not appear to be a consensus on the most appropriate system configuration and operating parameters for this application. In this review, the fundamental aspects of ultrasound physics most pertinent to drug delivery are presented; the primary phenomena responsible for increased drug delivery efficacy under ultrasound sonication are discussed; an overview of common ocular drug administration routes and the associated ocular barriers is also given before reviewing the current state of the art of ultrasound-mediated ocular drug delivery and its potential future directions.
Collapse
Affiliation(s)
- Blair Duncan
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Raida Al-Kassas
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Guangming Zhang
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Dave Hughes
- Novosound Ltd., Biocity, BoNess Road, Newhouse, Glasgow ML1 5UH, UK
| | - Yongqiang Qiu
- School of Engineering, Faculty of Engineering & Technology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, Fiore LA, Scioscia G, Mirijello A, Saponara A, Sperandeo M. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel) 2023; 13:855. [PMID: 36899998 PMCID: PMC10001275 DOI: 10.3390/diagnostics13050855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ultrasound (US) is acoustic energy that interacts with human tissues, thus, producing bioeffects that may be hazardous, especially in sensitive organs (i.e., brain, eye, heart, lung, and digestive tract) and embryos/fetuses. Two basic mechanisms of US interaction with biological systems have been identified: thermal and non-thermal. As a result, thermal and mechanical indexes have been developed to provide a means of assessing the potential for biological effects from exposure to diagnostic US. The main aims of this paper were to describe the models and assumptions used to estimate the "safety" of acoustic outputs and indices and to summarize the current state of knowledge about US-induced effects on living systems deriving from in vitro models and in vivo experiments on animals. This review work has made it possible to highlight the limits associated with the use of the estimated safety values of thermal and mechanical indices relating above all to the use of new US technologies, such as contrast-enhanced ultrasound (CEUS) and acoustic radiation force impulse (ARFI) shear wave elastography (SWE). US for diagnostic and research purposes has been officially declared safe, and no harmful biological effects in humans have yet been demonstrated with new imaging modalities; however, physicians should be adequately informed on the potential risks of biological effects. US exposure, according to the ALARA (As Low As Reasonably Achievable) principle, should be as low as reasonably possible.
Collapse
Affiliation(s)
- Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Michela Salvemini
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Tuccari
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Grazia Mastrodonato
- Department of Basic Medical Science, Neuroscience and Sensory Organs, Institute of Sports Medicine, University “Aldo Moro” of Bari, 70122 Bari, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, Institute of Internal Medicine, Liver Unit, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Lucia Angela Fiore
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Antonio Mirijello
- Department of Internal of Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Marco Sperandeo
- Unit of Interventional and Diagnostic Ultrasound of Internal Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
4
|
Almogbil HH, Montecinos-Franjola F, Daszynski C, Conlon WJ, Hachey JS, Corazza G, Rodriguez EA, Zderic V. Therapeutic Ultrasound for Topical Corneal Delivery of Macromolecules. Transl Vis Sci Technol 2022; 11:23. [PMID: 35998058 PMCID: PMC9424970 DOI: 10.1167/tvst.11.8.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The objective of this study was to utilize therapeutic ultrasound in enhancing delivery of topical macromolecules into the cornea. Methods Rabbit corneas were dissected and placed in a diffusion cell with a small ultra-red fluorescent protein (smURFP; molecular weight of 32,000 Da) as a macromolecule solution. The corneas were treated with continuous ultrasound application at frequencies of 400 or 600 kHz and intensities of 0.8 to 1.0 W/cm2 for 5 minutes, or sham-treated. Fluorescence imaging of the cornea sections was used to observe the delivery of macromolecules into individual epithelial cells. Spectrophotometric analysis at smURFP maximal absorbance of 640 nm was done to determine the presence of macromolecules in the receiver compartment. Safety of ultrasound application was studied through histology analysis. Results Ultrasound-treated corneas showed smURFP delivery into epithelial cells by fluorescence in the cytoplasm, whereas sham-treated corneas lacked any appreciable fluorescence in the individual cells. The sham group showed 0% of subcellular penetration, whereas the 400 kHz ultrasound-treated group and 600 kHz ultrasound-treated group showed 31% and 57% of subcellular penetration, respectively. Spectrophotometry measurements indicated negligible presence of smURFP macromolecules in the receiver compartment solution in both the sham and ultrasound treatment groups, and these macromolecules did not cross the entire depth of the cornea. Histological studies showed no significant corneal damage due to ultrasound application. Conclusions Therapeutic ultrasound application was shown to increase the delivery of smURFP macromolecules into the cornea. Translational Relevance Our study offers a clinical potential for a minimally invasive macromolecular treatment of corneal diseases.
Collapse
Affiliation(s)
- Hanaa H. Almogbil
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | | | - Camille Daszynski
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - William J. Conlon
- Department of Chemistry, The George Washington University, Washington, DC, USA
| | - Justin S. Hachey
- Department of Chemistry, The George Washington University, Washington, DC, USA
| | - Giavanna Corazza
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Erik A. Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Allison C, Cellum B, Karpinecz B, Nasrallah F, Zderic V. Ultrasound-Enhanced Transcorneal Drug Delivery for Treatment of Fungal Keratitis. Cornea 2022; 41:894-900. [PMID: 34759205 DOI: 10.1097/ico.0000000000002916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Transcorneal drug delivery is hindered by ocular physical and biochemical properties, such as tear production, the epithelial layer of the cornea, and blinking. The aim of this study was to determine whether ultrasound can be applied to increase the transcorneal drug delivery of natamycin used in the treatment of fungal keratitis without dangerously overheating the surrounding ocular tissues. METHODS To verify the safety of various sets of ultrasound parameters, modeling studies were conducted using OnScale, an ultrasonic wave modeling software. Ultrasound parameters determined optimal for ocular tissue safety were used in a laboratory setting in a jacketed Franz diffusion cell setup. Histological images of the cross-section of the corneas used in experiments were examined for cell damage under a microscope. RESULTS Increases in transcorneal drug delivery were seen in every treatment parameter combination when compared with the sham treatment. The highest increase was 4.0 times for 5 minutes of pulsed ultrasound at a 25% duty cycle and a frequency of 400 kHz and an intensity of 0.5 W/cm 2 with statistical significance ( P < 0.001). Histological analysis revealed structural damage only in the corneal epithelium, with most damage being at the epithelial surface. CONCLUSIONS This study suggests that ultrasound is a safe, effective, and minimally invasive treatment method for enhancing the transcorneal drug delivery of natamycin. Further research is needed into the long-term effects of ultrasound parameters used in this study on human ocular tissues.
Collapse
Affiliation(s)
- Claire Allison
- Department of Biomedical Engineering, The George Washington University, Washington, DC; and
| | - Blake Cellum
- Department of Biomedical Engineering, The George Washington University, Washington, DC; and
| | - Bianca Karpinecz
- Department of Biomedical Engineering, The George Washington University, Washington, DC; and
| | | | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC; and
| |
Collapse
|
6
|
Almogbil HH, Nasrallah FP, Zderic V. Feasibility of Therapeutic Ultrasound Application in Topical Scleral Delivery of Avastin. Transl Vis Sci Technol 2021; 10:2. [PMID: 34851358 PMCID: PMC8648056 DOI: 10.1167/tvst.10.14.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Macromolecules have been shown to be effective in vision-saving treatments for various ocular diseases, such as age-related macular degeneration and diabetic retinopathy. The current delivery of macromolecules requires frequent intraocular injections and carries a risk of serious adverse effects. Methods We tested the application of therapeutic ultrasound as a minimally invasive approach for the delivery of Avastin into the diseased regions of the eye. Avastin (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) antibody with a molecular weight of 149 kDa. We tested the effectiveness and safety of Avastin delivery through rabbit sclera in vitro using a standard diffusion cell model. Ultrasound at frequencies of 400 kHz or 3 MHz with an intensity of 1 W/cm2 was applied for the first 5 minutes of 1-hour drug exposure. Sham treatments mimicked the ultrasound treatments, but ultrasound was not turned on. Absorbance measurements of the receiver compartment solution were performed at 280 nm using a spectrophotometer. Results Absorbance measurements indicated no statistical difference between the sham (n = 13) and 400 kHz ultrasound group (n = 15) in the delivery of Avastin through the sclera. However, the absorbance values were statistically different (P < 0.01) between the 3 MHz ultrasound group (0.004, n = 8) and the matched sham group (0.002, n = 7). There was 2.3 times increase in drug delivery in the 3 MHz ultrasound when compared to the corresponding sham group. Histological studies indicated no significant damage in the ultrasound-treated sclera due to ultrasound application. Conclusions Our preliminary results provided support that therapeutic ultrasound may be effective in the delivery of Avastin through the sclera. Translational Relevance Our study offers clinical potential for a minimally invasive retinopathy treatment.
Collapse
Affiliation(s)
- Hanaa H Almogbil
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | | | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Karpinecz B, Edwards N, Zderic V. Therapeutic Ultrasound-Enhanced Transcorneal PHMB Delivery In Vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2561-2570. [PMID: 33491798 DOI: 10.1002/jum.15641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Delivery of therapeutic agents to the cornea is a difficult task in the treatment of parasitic keratitis. In this study, we looked at using different combinations of ultrasound parameters to enhance corneal permeability to polyhexamethylene biguanide (PHMB), a clinically available ophthalmic antiparasitic formulation. METHODS Permeability of PHMB was investigated in vitro using a standard diffusion cell setup. Continuous or 25% duty-cycle ultrasound was used at frequencies of 400 or 600 kHz, intensities of 0.5 or 0.8 W/cm2 , and exposure times ranging from 1 to 5 minutes. Structural changes in the cornea were examined using light microscopy. RESULTS Ultrasound exposure produced increases in transcorneal delivery in every treatment parameter combination when compared to the sham treatment. The highest increase was 2.36 times for 5 minutes of continuous ultrasound at a frequency of 600 kHz and an intensity of 0.5 W/cm2 with statistical significance (p <.001). Histological analysis showed that ultrasound application only caused structural changes in the corneal epithelium, with most damage being at the surface layers. CONCLUSIONS This study suggests the possibility of therapeutic ultrasound as a novel drug delivery technique for the treatment of parasitic keratitis. Further studies are needed to examine the thermal effects of these proposed ultrasound applications and the long-term viability of this treatment.
Collapse
Affiliation(s)
- Bianca Karpinecz
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Natalie Edwards
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Uddin SMZ, Komatsu DE, Motyka T, Petterson S. Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med 2021; 10:2698. [PMID: 34207333 PMCID: PMC8235587 DOI: 10.3390/jcm10122698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Therapeutic ultrasound has been studied for over seven decades for different medical applications. The versatility of ultrasound applications are highly dependent on the frequency, intensity, duration, duty cycle, power, wavelength, and form. In this review article, we will focus on low-intensity continuous ultrasound (LICUS). LICUS has been well-studied for numerous clinical disorders, including tissue regeneration, pain management, neuromodulation, thrombosis, and cancer treatment. PubMed and Google Scholar databases were used to conduct a comprehensive review of all research studying the application of LICUS in pre-clinical and clinical studies. The review includes articles that specify intensity and duty cycle (continuous). Any studies that did not identify these parameters or used high-intensity and pulsed ultrasound were not included in the review. The literature review shows the vast implication of LICUS in many medical fields at the pre-clinical and clinical levels. Its applications depend on variables such as frequency, intensity, duration, and type of medical disorder. Overall, these studies show that LICUS has significant promise, but conflicting data remain regarding the parameters used, and further studies are required to fully realize the potential benefits of LICUS.
Collapse
Affiliation(s)
- Sardar M. Z. Uddin
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Thomas Motyka
- Department of Osteopathic Manipulative Medicine, Campbell University, Buies Creek, NC 27506, USA;
| | | |
Collapse
|
9
|
Karpinecz B, Edwards N, Zderic V. Ultrasound-Enhanced Drug Delivery for Treatment of Acanthamoeba Keratitis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2504-2507. [PMID: 31946406 DOI: 10.1109/embc.2019.8856686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reaching sufficient amounts of therapeutic agents in ocular tissues is a major challenge in ophthalmology. In this study, we examined the effects of ultrasound application for delivery of polyhexamethylene biguanide for treatment of Acanthamoeba keratitis. Ultrasound intensities of 0.5 - 0.8 W/cm2 and frequencies of 400 - 600 kHz were tested with exposure durations of 1 - 5 minutes. Light microscopy was used to determine the ultrasound-induced structural changes in the cornea. All groups showed increases in drug concentration, up to 2.36 times, passing through the cornea, with the 600 kHz treatment groups reaching statistical significance. Structural changes were observed in the epithelial layer of the cornea, but the stroma and endothelium remained mostly unaffected.
Collapse
|
10
|
Jegal U, Lee JH, Lee J, Jeong H, Kim MJ, Kim KH. Ultrasound-assisted gatifloxacin delivery in mouse cornea, in vivo. Sci Rep 2019; 9:15532. [PMID: 31664145 PMCID: PMC6820539 DOI: 10.1038/s41598-019-52069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.
Collapse
Affiliation(s)
- Uk Jegal
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jun Ho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Hyerin Jeong
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea. .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea.
| |
Collapse
|
11
|
Almekkawy M, Chen J, Ellis MD, Haemmerich D, Holmes DR, Linte CA, Panescu D, Pearce J, Prakash P, Zderic V. Therapeutic Systems and Technologies: State-of-the-Art Applications, Opportunities, and Challenges. IEEE Rev Biomed Eng 2019; 13:325-339. [PMID: 30951478 PMCID: PMC7341980 DOI: 10.1109/rbme.2019.2908940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we present current state-of-the-art developments and challenges in the areas of thermal therapy, ultrasound tomography, image-guided therapies, ocular drug delivery, and robotic devices in neurorehabilitation. Additionally, intellectual property and regulatory aspects pertaining to therapeutic systems and technologies are addressed.
Collapse
|
12
|
Abstract
Medical ultrasound technology is available, affordable, and non-invasive. It is used to detect, quantify, and heat tissue structures. This review article gives a concise overview of the types of behaviour that biological cells experience under the influence of ultrasound only, i.e., without the presence of microbubbles. The phenomena are discussed from a physics and engineering perspective. They include proliferation, translation, apoptosis, lysis, transient membrane permeation, and oscillation. The ultimate goal of cellular acoustics is the detection, quantification, manipulation and eradication of individual cells.
Collapse
|
13
|
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126:96-112. [PMID: 28916492 DOI: 10.1016/j.addr.2017.09.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Overcoming the physiological barriers in the eye remains a key obstacle in the field of ocular drug delivery. While ocular barriers naturally have a protective function, they also limit drug entry into the eye. Various pharmaceutical strategies, such as novel formulations and physical force-based techniques, have been investigated to weaken these barriers and transport therapeutic agents effectively to both the anterior and the posterior segments of the eye. This review summarizes and discusses the recent research progress in the field of ocular drug delivery with a focus on the application of physical methods, including electrical fields, sonophoresis, and microneedles, which can enhance penetration efficiency by transiently disrupting the ocular barriers in a minimally or non-invasive manner.
Collapse
|
14
|
Huang D, Chen YS, Thakur SS, Rupenthal ID. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm 2017; 119:125-136. [DOI: 10.1016/j.ejpb.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
|
15
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Hariharan P, Nabili M, Guan A, Zderic V, Myers M. Model for Porosity Changes Occurring during Ultrasound-Enhanced Transcorneal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1223-1236. [PMID: 28335999 PMCID: PMC5768443 DOI: 10.1016/j.ultrasmedbio.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/09/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound-enhanced drug delivery through the cornea has considerable therapeutic potential. However, our understanding of how ultrasound enhances drug transport is poor, as is our ability to predict the increased level of transport for given ultrasound parameters. Described here is a computational model for quantifying changes in corneal porosity during ultrasound exposure. The model is calibrated through experiments involving sodium fluorescein transport through rabbit cornea. Validation was performed using nylon filters, for which the properties are known. It was found that exposure to 800-kHz ultrasound at an intensity 2 W/cm2 for 5 min increased the porosity of the epithelium by a factor of 5. The model can be useful for determining the extent to which ultrasound enhances the amount of drug transported through biological barriers, and the time at which a therapeutic dose is achieved at a given location, for different drugs and exposure strategies.
Collapse
Affiliation(s)
- Prasanna Hariharan
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marjan Nabili
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Allan Guan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Matthew Myers
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
17
|
Suarez Castellanos I, Jeremic A, Cohen J, Zderic V. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Potential Novel Treatment for Type 2 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1210-1222. [PMID: 28347531 PMCID: PMC5429983 DOI: 10.1016/j.ultrasmedbio.2017.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/09/2016] [Accepted: 01/07/2017] [Indexed: 05/08/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. This disease is characterized by loss of insulin secretion and, eventually, destruction of insulin-producing pancreatic beta cells. Controlling type 2 diabetes is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this study was to explore the effectiveness of a novel, non-pharmacological approach that uses the application of ultrasound energy to augment insulin release from rat INS 832/13 beta cells. The cells were exposed to unfocused ultrasound for 5 min at a peak intensity of 1 W/cm2 and frequencies of 400 kHz, 600 kHz, 800 kHz and 1 MHz. Insulin release was measured with enzyme-linked immunosorbent assay and cell viability was assessed via the trypan blue dye exclusion test. A marked release (approximately 150 ng/106 cells, p < 0.05) of insulin was observed when beta cells were exposed to ultrasound at 400 and 600 kHz as compared with their initial control values; however, this release was accompanied by a substantial loss in cell viability. Ultrasound application at frequencies of 800 kHz resulted in 24 ng/106 cells released insulin (p < 0.05) as compared with its unstimulated base level, while retaining cell viability. Insulin release from beta cells caused by application of 800-kHz ultrasound was comparable to that reported by the secretagogue glucose, thus operating within physiological secretory capacity of these cells. Ultrasound has potential as a novel and alternative method to current approaches aimed at correcting secretory deficiencies in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ivan Suarez Castellanos
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| | - Aleksandar Jeremic
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Joshua Cohen
- Department of Endocrinology, Medical Faculty Associates, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
18
|
Nabili M, Geist C, Zderic V. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study. Med Phys 2016; 42:5604-15. [PMID: 26429235 DOI: 10.1118/1.4929553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors' previous in vitro and in vivo studies. METHODS The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz-1 MHz, intensities of 0.3-1 W/cm(2), and exposure duration of 5 min, which were the parameters used in the authors' previous drug delivery experiments. The baseline eye temperature was 37 °C. RESULTS The authors' results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. CONCLUSIONS The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm(2) (parameters shown in the authors' previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this method in the whole orbit especially regarding potential adverse optic nerve heating at the location of the bone.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street NW, Room 5000, Washington, DC 20052
| | - Craig Geist
- Department of Ophthalmology, The George Washington University, 2150 Pennsylvania Avenue NW, Floor 2A, Washington, DC 20037
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Room 6670, Washington, DC 20052
| |
Collapse
|
19
|
Lafond M, Aptel F, Mestas JL, Lafon C. Ultrasound-mediated ocular delivery of therapeutic agents: a review. Expert Opin Drug Deliv 2016; 14:539-550. [DOI: 10.1080/17425247.2016.1198766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maxime Lafond
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| | - Florent Aptel
- Department of Ophthalmology, University Hospital of Grenoble, Université Grenoble Alpes, Grenoble, France
| | - Jean-Louis Mestas
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| | - Cyril Lafon
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
20
|
Suarez Castellanos IM, Balteanu B, Singh T, Zderic V. Therapeutic Modulation of Calcium Dynamics Using Ultrasound and Other Energy-Based Techniques. IEEE Rev Biomed Eng 2016; 9:177-191. [DOI: 10.1109/rbme.2016.2555760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Kim NK, Kim CY, Choi MJ, Park SR, Choi BH. Effects of low-intensity ultrasound on oxidative damage in retinal pigment epithelial cells in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1363-1371. [PMID: 25722027 DOI: 10.1016/j.ultrasmedbio.2014.12.665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Oxidative stress in retinal pigment epithelium (RPE) is one of the key causative factors of RPE injury in age-related macular degeneration (AMD). Low-intensity ultrasound (LIUS) less than 1 W/cm(2) in intensity has been found to have cytoprotective and anti-inflammatory effects in many cell types and diseases. In this study, we investigated for the first time the feasibility of using LIUS to protect RPE cells from oxidative damage. ARPE-19 cells were treated with H2O2 (an exogenous source of reactive oxygen species) or L-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthase inhibitor, and exposed immediately to LIUS at intensities of 50, 100 and 200 mW/cm(2) and a frequency of 1 MHz for 20 min. Both H2O2 and BSO increased the percentage of cells positive for mitochondrial reactive oxygen species at 1 h, but not at 24 h. Co-treatment with LIUS clearly repressed these cells similarly at all intensities by approximately 34%-43% for H2O2 and 24%-25% for BSO (p < 0.05). The percentage of cells with mitochondrial membrane depolarization also increased with H2O2 and BSO treatment, particularly at 1 h, and decreased by approximately 60% with LIUS at 100 mW/cm(2) (p < 0.05). The amount of intracellular calcium ion ([Ca(2+)]i) was elevated only by BSO at 24 h and was also significantly diminished, by approximately 45%, by LIUS at 100 mW/cm(2) (p < 0.05). Both H2O2 and BSO significantly hampered cell viability at 24 h, but LIUS at 100 mW/cm(2) restored only BSO-induced cell viability by approximately 2.7-fold (p < 0.05). This study illustrated that LIUS has a protective effect on RPE cells against oxidative damage caused by BSO, an endogenous mitochondrial reactive oxygen species generator. We speculate that LIUS has the potential to treat oxidative damage and related pathologic changes in RPE.
Collapse
Affiliation(s)
- Na Kyeong Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Joo Choi
- Department of Medicine, College of Medicine, Cheju National University, Cheju, Republic of Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Republic of Korea.
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
22
|
A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur J Pharm Biopharm 2014; 88:104-15. [DOI: 10.1016/j.ejpb.2014.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022]
|
23
|
Fetal membrane transport enhancement using ultrasound for drug delivery and noninvasive detection. Pharm Res 2014; 32:403-13. [PMID: 25079390 DOI: 10.1007/s11095-014-1470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this research was to evaluate the effect of ultrasound on mass transport across fetal membrane for direct fetal drug delivery and sensing of the amniotic fluid in a noninvasive manner. METHODS Post-delivery human fetal membranes (chorioamnion) were used for in vitro experiments, in which the effect of ultrasound on transport across fetal membrane of fluorescent model molecule (250 kDa) was evaluated. Ex vivo experiments were carried out on a whole rat amniotic sac. The model molecule or alpha-fetoprotein was injected into the amniotic sac through the placenta. Transport of these molecules across pre- and post-insonation of the amniotic sac was evaluated. The ultrasound enhancement's mechanism was also assessed. RESULTS The greatest enhancement in mass transport (43-fold) in vitro was achieved for 5 min of insonation (20 kHz, 4.6 W/cm(2), 5 mm distance). Ex vivo results showed a rapid increase (23-fold) in mass transport of the model molecule and also for alphafetoprotein following 30 s of insonation (20 kHz, 4.6 W/cm(2), 5 mm distance). CONCLUSIONS Mass transport across fetal membranes was enhanced post-insonation both in vitro and ex vivo in a reversible and transient manner. We suggest that exterior (to the amniotic sac) ultrasound-induced cavitation is the main mechanism of action.
Collapse
|
24
|
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014; 72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Citation(s) in RCA: 479] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.
Collapse
Affiliation(s)
- I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - I De Cock
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - R Deckers
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | - C T W Moonen
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
25
|
Nabili M, Shenoy A, Chawla S, Mahesh S, Liu J, Geist C, Zderic V. Ultrasound-enhanced ocular delivery of dexamethasone sodium phosphate: an in vivo study. J Ther Ultrasound 2014; 2:6. [PMID: 24921047 PMCID: PMC4036608 DOI: 10.1186/2050-5736-2-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/04/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The eye's unique anatomy and its physiological and anatomical barriers can limit effective drug delivery into the eye. METHODS An in vivo study was designed to determine the effectiveness and safety of ultrasound application in enhancing drug delivery in a rabbit model. Permeability of a steroid ophthalmic drug, dexamethasone sodium phosphate, was investigated in ultrasound- and sham-treated cases. For this study, an eye cup filled with dexamethasone sodium phosphate was placed on the cornea. Ultrasound was applied at intensity of 0.8 W/cm(2) and frequency of 400 or 600 kHz for 5 min. The drug concentration in aqueous humor samples, collected 90 min after the treatment, was determined using chromatography methods. Light microscopy observations were done to determine the structural changes in the cornea as a result of ultrasound application. RESULTS An increase in drug concentration in aqueous humor samples of 2.8 times (p < 0.05) with ultrasound application at 400 kHz and 2.4 times (p < 0.01) with ultrasound application at 600 kHz was observed as compared to sham-treated samples. Histological analysis showed that the structural changes in the corneas exposed to ultrasound predominantly consisted of minor epithelial disorganization. CONCLUSIONS Ultrasound application enhanced the delivery of an anti-inflammatory ocular drug, dexamethasone sodium phosphate, through the cornea in vivo. Ultrasound-enhanced ocular drug delivery appears to be a promising area of research with a potential future application in a clinical setting.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | - Aditi Shenoy
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | - Shawn Chawla
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | | | - Ji Liu
- Department of Ophthalmology, George Washington University, Washington, DC 20052, USA
| | - Craig Geist
- Department of Ophthalmology, George Washington University, Washington, DC 20052, USA
| | - Vesna Zderic
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
26
|
Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 5:75-93. [PMID: 20305803 DOI: 10.1586/eop.09.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Treatment of diseases of the posterior segment of the eye, such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis and retinitis pigmentosa, requires novel drug delivery systems that can overcome the many barriers for efficacious delivery of therapeutic drug concentrations. This challenge has prompted the development of biodegradable and nonbiodegradable sustained-release systems for injection or transplantation into the vitreous as well as drug-loaded nanoparticles, microspheres and liposomes. These drug delivery systems utilize topical, systemic, subconjunctival, intravitreal, transscleral and iontophoretic routes of administration. The focus of research has been the development of methods that will increase the efficacy of spatiotemporal drug application, resulting in more successful therapy for patients with posterior segment diseases. This article summarizes recent advances in the research and development of drug delivery methods of the posterior chamber of the eye, with an emphasis on the use of implantable devices as well as micro- and nanoparticles.
Collapse
Affiliation(s)
- Shalin S Shah
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), 2020 Gravier St. Suite B, Room 3E6, New Orleans, LA 70112-2234, USA, Tel.: +1 678 296 2334, ,
| | | | | | | | | | | | | |
Collapse
|
27
|
Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. ACTA ACUST UNITED AC 2013; 66:507-30. [PMID: 24635555 DOI: 10.1111/jphp.12132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The basic concepts, major mechanisms, technological developments and advantages of the topical application of lipid-based systems (microemulsions, nanoemulsions, liposomes and solid lipid nanoparticles), polymeric systems (hydrogels, contact lenses, polymeric nanoparticles and dendrimers) and physical methods (iontophoresis and sonophoresis) will be reviewed. KEY FINDINGS Although very convenient for patients, topical administration of conventional drug formulations for the treatment of eye diseases requires high drug doses, frequent administration and rarely provides high drug bioavailability. Thus, strategies to improve the efficacy of topical treatments have been extensively investigated. In general, the majority of the successful delivery systems are present on the ocular surface over an extended period of time, and these systems typically improve drug bioavailability in the anterior chamber whereas the physical methods facilitate drug penetration over a very short period of time through ocular barriers, such as the cornea and sclera. SUMMARY Although in the early stages, the combination of these delivery systems with physical methods would appear to be a promising tool to decrease the dose and frequency of administration; thereby, patient compliance and treatment efficacy will be improved.
Collapse
Affiliation(s)
- Joel G Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
28
|
Lamy R, Chan E, Zhang H, Salgaonkar VA, Good SD, Porco TC, Diederich CJ, Stewart JM. Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci 2013; 54:5908-12. [PMID: 23920369 DOI: 10.1167/iovs.13-12133] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether ultrasound treatment can promote the permeation of topical riboflavin into the corneal stroma. METHODS Fresh cadaveric rabbit eyes with intact epithelium were left for 45 minutes in riboflavin 0.1% solution and divided in the following groups: A--untreated, epithelium-on; B--ultrasound-treated (1 W/cm(2) at 880 kHz for 6 minutes) with epithelium-on; and C--epithelium-off (no ultrasound). Eyes were removed from the riboflavin solution, corneas were excised, and group B was divided into B1 (with epithelium maintained) and B2 (epithelium removed for the fluorescence analysis). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea according to the distance from the surface (with epithelium in groups A and B1; without epithelium in groups B2 and C). RESULTS The average fluorescence intensity of riboflavin at a depth of 100, 150, 200, and 250 μm was 69.97, 58.83, 49.23, and 41.72 arbitrary units (A.U.) in group A, respectively; 255.26, 206.01, 159.81, 124.20 A.U. in group B1; 218.90, 177.90, 141.43, 110.45 A.U. in group B2; and 677.64, 420.10, 250.72 and 145.07 A.U. in group C. The difference in fluorescence was statistically significant between groups A and B1 (P = 0.001) and groups B2 and C (P < 0.0001). CONCLUSIONS Ultrasound treatment increased the entry of topical riboflavin into the corneal stroma despite the presence of a previously intact epithelial barrier. This approach may offer a means of achieving clinically useful concentrations of riboflavin within the cornea with minimum epithelial damage, thereby improving the risk profile of corneal cross-linking procedures.
Collapse
Affiliation(s)
- Ricardo Lamy
- Department of Ophthalmology, University of California, San Francisco, California 94143-0730, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nabili M, Patel H, Mahesh SP, Liu J, Geist C, Zderic V. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:638-646. [PMID: 23415283 PMCID: PMC3770302 DOI: 10.1016/j.ultrasmedbio.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Delivery of sufficient amounts of therapeutic drugs into the eye is often a challenging task. In this study, ultrasound application (frequencies of 400 KHz to 1 MHz, intensities of 0.3-1.0 W/cm(2) and exposure duration of 5 min) was investigated to overcome the barrier properties of cornea, which is a typical route for topical administration of ophthalmic drugs. Permeability of ophthalmic drugs, tobramycin and dexamethasone and sodium fluorescein, a drug-mimicking compound, was studied in ultrasound- and sham-treated rabbit corneas in vitro using a standard diffusion cell setup. Light microscopy observations were used to determine ultrasound-induced structural changes in the cornea. For tobramycin, an increase in permeability for ultrasound- and sham-treated corneas was not statistically significant. Increase of 46%-126% and 32%-109% in corneal permeability was observed for sodium fluorescein and dexamethasone, respectively, with statistical significance (p < 0.05) achieved at all treatment parameter combinations (compared with sham treatments) except for 1-MHz ultrasound applications for dexamethasone experiments. This permeability increase was highest at 400 kHz and appeared to be higher at higher intensities applied. Histologic analysis showed structural changes that were limited to epithelial layers of cornea. In summary, ultrasound application provided enhancement of drug delivery, increasing the permeability of the cornea for the anti-inflammatory ocular drug dexamethasone. Future investigations are needed to determine the effectiveness and safety of this application in in vivo long-term survival studies.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Therapeutic ultrasound, although less well known than ultrasound for diagnostic imaging, has become a topic of growing interest in ophthalmology. High intensity focused ultrasound (HIFU) for the treatment of glaucoma and ultrasonic drug delivery are the two main areas of research and potential clinical applications. For the treatment of glaucoma, the specific advantage of HIFU, particularly when compared to the laser, is that the energy can be focused through optically opaque media, especially through the sclera which is a strongly light-scattering medium. HIFU is therefore a possible method for partial coagulation of the ciliary body (an anatomical structure responsible for the production of the liquid filling the eye) and, hence, reducing intraocular pressure and the risk of glaucoma. Ocular drug bioavailability also remains a challenge, being limited by multiple barriers to drug entry and lacrimal drainage, and making it difficult to achieve a sufficient drug concentration for numerous diseases of the front and back of the eye. As the front wall of the eye (cornea and anterior sclera) is a pathway for topically applied drugs, locally applied ultrasound has been proposed as a way of enhancing the delivery and activity of drugs and genes. Despite the fact that experimental studies seem to confirm the potential benefit of ultrasound ocular drug delivery, there is still a lack of clinical evidence. The aim of this contribution is to provide an update on recent advances in the field of therapeutic ultrasound in ophthalmology.
Collapse
|
31
|
Abadi D, Zderic V. Ultrasound-mediated nail drug delivery system. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:1723-1730. [PMID: 22124008 DOI: 10.7863/jum.2011.30.12.1723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative.
Collapse
Affiliation(s)
- Danielle Abadi
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
32
|
Kowalczuk L, Boudinet M, El Sanharawi M, Touchard E, Naud MC, Saïed A, Jeanny JC, Behar-Cohen F, Laugier P. In vivo gene transfer into the ocular ciliary muscle mediated by ultrasound and microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1814-1827. [PMID: 21963032 DOI: 10.1016/j.ultrasmedbio.2011.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/17/2011] [Accepted: 07/23/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Collapse
Affiliation(s)
- Laura Kowalczuk
- Inserm U872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cancelos S, Moraga FJ, Lahey RT, Shain W, Parsons RH. The effect of acoustically-induced cavitation on the permeance of a bullfrog urinary bladder. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2726-2738. [PMID: 21110568 DOI: 10.1121/1.3493442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is well known that ultrasound enhances drug delivery to tissues, although there is not a general consensus about the responsible mechanisms. However, it is known that the most important factor associated with ultrasonically-enhanced drug permeance through tissues is cavitation. Here we report results from research conducted using a experimental approach adapted from single bubble sonoluminescence experiments which generates very well defined acoustic fields and allows controlled activation and location of cavitation. The experimental design requires that a biological tissue be immersed inside a highly degassed liquid media to avoid random bubble nucleation. Therefore, live frog bladders were used as the living tissue due to their high resistance to hypoxia. Tissue membrane permeance was measured using radiolabeled urea. The results show that an increase in tissue permeance only occurs when cavitation is present near the tissue membrane. Moreover, confocal microscopy shows a direct correlation between permeance increases and physical damage to the tissue.
Collapse
Affiliation(s)
- Silvina Cancelos
- Center for Multiphase Research, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | | | | | | | | |
Collapse
|
34
|
Ultrasound-enhanced intrascleral delivery of protein. Int J Pharm 2010; 401:16-24. [DOI: 10.1016/j.ijpharm.2010.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/30/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022]
|
35
|
Yamashita T, Ohtsuka H, Arimura N, Sonoda S, Kato C, Ushimaru K, Hara N, Tachibana K, Sakamoto T. Sonothrombolysis for intraocular fibrin formation in an animal model. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1845-1853. [PMID: 19699025 DOI: 10.1016/j.ultrasmedbio.2009.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/22/2009] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
Abstract
Vascular diseases such as diabetic retinopathy or retinal arterial occlusion are always associated with retinal and/or choroidal vasculopathy and intravascular thrombosis is commonly found. The ultrasound (US) therapy is a recently developed technique to accelerate fibrinolysis and it is being applied to some clinical fields. The present study was to observe the effects of extraocular US exposure on intraocular fibrin, which is a deteriorating factor in various ocular diseases. Tubes containing human blood (2 mL) in the following groups were irradiated with US; US alone, US with tissue plasminogen activator (tPA), tPA alone, and saline (control). Fibrinolysis was quantified by measuring D-dimer after 2h. In rat eyes, intracameral fibrin (fibrin formation in the anterior chamber of the eye) was induced by YAG-laser-induced iris bleeding. Then, eyes in the following groups were irradiated with US; US alone, subconjunctival tPA alone, US and subconjunctival tPA, control. Intracameral fibrin was scored on day 3 (3+ maximum to 0). The temperatures of rat eyes were measured by infrared thermography. Histologic evaluation was also performed. D-dimer was increased by US with statistical significance (p <0.05) or tPA (p <0.01). D-dimer in US with tPA group was significantly higher than either US alone or tPA alone group (p <0.01). In rat eyes, the average intracameral fibrin score on day 3 was 1.4 in control group and 1.2 in subconjunctival tPA alone group; however, it decreased significantly in the US alone group (0.75; p <0.05, vs. control), US and subconjunctival tPA group (0.71; p <0.01, vs. control). The temperature was less than 34 degrees C after US exposure. No histologic damage was observed. US irradiation from outside accelerated intracameral fibrinolysis without causing apparent tissue damage. This noninvasive method might have therapeutic value for intraocular fibrin.
Collapse
Affiliation(s)
- Toshifumi Yamashita
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). LAB ON A CHIP 2009; 9:2890-5. [PMID: 19789740 DOI: 10.1039/b910595f] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.
Collapse
Affiliation(s)
- Jinjie Shi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVES Use of ultrasound in therapeutics and drug delivery has gained importance in recent years, evident by the increase in patents filed and new commercial devices launched. The present review discusses new advancements in sonophoretic drug delivery in the last two decades, and highlights important challenges still to be met to make this technology of more use in the alleviation of diseases. KEY FINDINGS Phonophoretic research often suffers from poor calibration in terms of the amount of ultrasound energy emitted, and therefore current research must focus on safety of exposure to ultrasound and miniaturization of devices in order to make this technology a commercial reality. More research is needed to identify the role of various parameters influencing sonophoresis so that the process can be optimized. Establishment of long-term safety issues, broadening the range of drugs that can be delivered through this system, and reduction in the cost of delivery are issues still to be addressed. SUMMARY Sonophoresis (phonophoresis) has been shown to increase skin permeability to various low and high molecular weight drugs, including insulin and heparin. However, its therapeutic value is still being evaluated. Some obstacles in transdermal sonophoresis can be overcome by combination with other physical and chemical enhancement techniques. This review describes recent advancements in equipment and devices for phonophoresis, new formulations tried in sonophoresis, synergistic effects with techniques such as chemical enhancers, iontophoresis and electroporation, as well as the growing use of ultrasound in areas such as cancer therapy, cardiovascular disorders, temporary modification of the blood-brain barrier for delivery of imaging and therapeutic agents, hormone replacement therapy, sports medicine, gene therapy and nanotechnology. This review also lists patents pertaining to the formulations and techniques used in sonophoretic drug delivery.
Collapse
Affiliation(s)
- Rekha Rao
- M. M. College of Pharmacy, M. M. University, Mullana, 133001, India
| | | |
Collapse
|
38
|
Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther 2009; 16:1146-53. [PMID: 19571889 DOI: 10.1038/gt.2009.84] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study was conducted to investigate the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-mediated rAAV2-CMV-EGFP transfection to cultured human retinal pigment epithelium (RPE) cells in vitro and to the rat retina in vivo. In the in vitro study, cultured human RPE cells were exposed to US under different conditions with or without MBs. Furthermore, the effect of UTMD on rAAV2-CMV-EGFP itself and on cells was evaluated. In the in vivo study, gene transfer was examined by injecting rAAV2-CMV-EGFP into the subretinal space of rats with or without MBs and then exposed to US. We investigated enhanced green fluorescent protein (EGFP) expression in vivo by stereomicroscopy and performed quantitative analysis using Axiovision 3.1 software. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage and location of the EGFP gene expression. In the in vitro study, the transfection efficiency of rAAV2-CMV-EGFP under optimal UTMD was significantly higher than that of the control group (P=0.000). Furthermore, there was almost no cytotoxicity to the cells and to rAAV2-CMV-EGFP itself. In the in vivo study, UTMD could be used safely to enhance and accelerate the transgene expression of the retina. Fluorescence expression was mainly located in the retinal layer. UTMD is a promising method for gene delivery to the retina.
Collapse
|
39
|
Affiliation(s)
- Eric C Pua
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27705, USA
| | | |
Collapse
|
40
|
O'Neill BE, Li KCP. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. Int J Hyperthermia 2009; 24:506-20. [PMID: 18608574 DOI: 10.1080/02656730802093661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This paper reviews the enhanced delivery of genes, drugs and therapeutics using ultrasound. It begins with a general overview of the field and the various techniques associated with it, including sonophoresis, hyperthermia (with ultrasound), sonoporation, and microbubble assisted transvascular and targeted delivery. Particular attention is then paid to pulsed high intensity focused ultrasound drug delivery without the use of ultrasound contrast agents. Feasibility and mechanistic studies of this technique are described in some detail. Conclusions are then drawn regarding possible mechanisms of this treatment, and to contrast with the better known treatments relying on injection of ultrasound contrast agents.
Collapse
Affiliation(s)
- Brian E O'Neill
- Department of Radiology, The Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Peeters L, Lentacker I, Vandenbroucke RE, Lucas B, Demeester J, Sanders NN, De Smedt SC. Can ultrasound solve the transport barrier of the neural retina? Pharm Res 2008; 25:2657-65. [PMID: 18649123 DOI: 10.1007/s11095-008-9684-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 07/03/2008] [Indexed: 01/30/2023]
Abstract
PURPOSE Intravitreal injection of nonviral gene complexes may be promising in the treatment of retinal diseases. This study investigates the permeation of lipoplexes and polystyrene nanospheres through the neural retina and their uptake by the retinal pigment epithelium (RPE) either with or without ultrasound application. MATERIALS AND METHODS Anterior parts and vitreous of bovine eyes were removed. The neural retina was left intact or peeled away from the RPE. (Non)pegylated lipoplexes and pegylated nanospheres were applied. After 2 h incubation, the RPE cells were detached and analyzed for particle uptake by flow cytometry and confocal microscopy. RESULTS The neural retina is a significant transport barrier for pegylated nanospheres and (non)pegylated lipoplexes. Applying ultrasound improved the permeation of the nanoparticles up to 130 nm. CONCLUSIONS Delivery of liposomal DNA complexes to the RPE cells is strongly limited by the neural retina. Ultrasound energy may be a useful tool to improve the neural retina permeability, given the nucleic acid carriers are small enough. Our results underline the importance to design and develop very small carriers for the delivery of nucleic acids to the neural retina and the RPE after intravitreal injection.
Collapse
Affiliation(s)
- Liesbeth Peeters
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Booth BA, Vidal Denham L, Bouhanik S, Jacob JT, Hill JM. Sustained-release ophthalmic drug delivery systems for treatment of macular disorders: present and future applications. Drugs Aging 2007; 24:581-602. [PMID: 17658909 DOI: 10.2165/00002512-200724070-00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Macular disease currently poses the greatest threat to vision in aging populations. Historically, most of this pathology could only be dealt with surgically, and then only after much damage to the macula had already occurred. Current pathophysiological insights into macular diseases have allowed the development of effective new pharmacotherapies. The field of drug delivery systems has advanced over the last several years with emphasis placed on controlled release of drug to specific areas of the eye. Its unique location and tendency toward chronic disease make the macula an important and attractive target for drug delivery systems, especially sustained-release systems. This review evaluates the current literature on the research and development of sustained-release posterior segment drug delivery systems that are primarily intended for macular disease with an emphasis on age-related macular degeneration.Current effective therapies include corticosteroids and anti-vascular endothelial growth factor compounds. Recent successes have been reported using anti-angiogenic drugs for therapy of age-related macular degeneration. This review also includes information on implantable devices (biodegradable and non-biodegradable), the use of injected particles (microspheres and liposomes) and future enhanced drug delivery systems, such as ultrasound drug delivery. The devices reviewed show significant drug release over a period of days or weeks. However, macular disorders are chronic diseases requiring years of treatment. Currently, there is no 'gold standard' for therapy and/or drug delivery. Future studies will focus on improving the efficiency and effectiveness of drug delivery to the posterior chamber. If successful, therapeutic modalities will significantly delay loss of vision and improve the quality of life for patients with chronic macular disorders.
Collapse
Affiliation(s)
- Blake A Booth
- Department of Ophthalmology, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
43
|
Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3:713-26. [PMID: 17076594 DOI: 10.1517/17425247.3.6.713] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ultrasound, which has been conventionally used for diagnostics until recently, is now being extensively used for drug and gene delivery. This transformation has come about primarily due to ultrasound-mediated acoustic cavitation - particularly transient cavitation. Acoustic cavitation has been used to facilitate the delivery of small molecules, as well as macromolecules, including proteins and DNA. Controlled generation of cavitation has also been used for targeting drugs to diseased tissues, including skin, brain, eyes and endothelium. Ultrasound has also been employed for the treatment of several diseases, including thromboembolism, arteriosclerosis and cancer. This review provides a detailed account of mechanisms, current status and future prospects of ultrasonic cavitation in drug and gene delivery applications.
Collapse
Affiliation(s)
- Sumit Paliwal
- University of California, Department of Chemical Engineering, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
44
|
Fong SW, Klaseboer E, Turangan CK, Khoo BC, Hung KC. Numerical analysis of a gas bubble near bio-materials in an ultrasound field. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:925-42. [PMID: 16785014 DOI: 10.1016/j.ultrasmedbio.2006.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/27/2006] [Accepted: 03/07/2006] [Indexed: 05/10/2023]
Abstract
Ultrasonic cavitation bubble phenomena play a key role in numerous medical procedures such as ultrasound-assisted lipoplasty, phacoemulsification, lithotripsy, brain tumor surgery, muscle and bone therapies and intraocular or transdermal drug delivery. This study investigates numerically the interaction of a bubble with a bio-material (fat, skin, cornea, brain, muscle, cartilage or bone) involved in the treatments mentioned when subjected to an ultrasound field. A range of frequencies is used to study the bubble behavior in terms of its growth and collapse shapes, and the maximum jet velocity attained. Simulation results show complex dynamic behaviors of the bubble. In several cases a jet is formed directed away from the bio-material while in others, toward it. In certain cases, the bubble eventually breaks into two, with or without the formation of opposite penetrating jets. Very high maximum velocities of jets directing away or toward the bio-materials can be observed in some cases (700 to 900 ms(-1)).
Collapse
|
45
|
Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 2005; 4:255-60. [PMID: 15738980 DOI: 10.1038/nrd1662] [Citation(s) in RCA: 585] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ultrasound, which is routinely used for diagnostic imaging applications, is now being adopted in various drug delivery and other therapeutic applications. Ultrasound has been shown to facilitate the delivery of drugs across the skin, promote gene therapy to targeted tissues, deliver chemotherapeutic drugs into tumours and deliver thrombolytic drugs into blood clots. In addition, ultrasound has also been shown to facilitate the healing of wounds and bone fractures. This article reviews the principles and current status of ultrasound-based treatments.
Collapse
Affiliation(s)
- Samir Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|