1
|
Lopez-Giacoman S, Madero M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J Nephrol 2015; 4:57-73. [PMID: 25664247 PMCID: PMC4317628 DOI: 10.5527/wjn.v4.i1.57] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) typically evolves over many years, with a long latent period when the disease is clinically silent and therefore diagnosis, evaluation and treatment is based mainly on biomarkers that assess kidney function. Glomerular filtration rate (GFR) remains the ideal marker of kidney function. Unfortunately measuring GFR is time consuming and therefore GFR is usually estimated from equations that take into account endogenous filtration markers like serum creatinine (SCr) and cystatin C (CysC). Other biomarkers such as albuminuria may precede kidney function decline and have demonstrated to have strong associations with disease progression and outcomes. New potential biomarkers have arisen with the promise of detecting kidney damage prior to the currently used markers. The aim of this review is to discuss the utility of the GFR estimating equations and biomarkers in CKD and the different clinical settings where these should be applied. The CKD-Epidemiology Collaboration equation performs better than the modification of diet in renal disease equation, especially at GFR above 60 mL/min per 1.73 m2. Equations combining CysC and SCr perform better than the equations using either CysC or SCr alone and are recommended in situations where CKD needs to be confirmed. Combining creatinine, CysC and urine albumin to creatinine ratio improves risk stratification for kidney disease progression and mortality. Kidney injury molecule and neutrophil gelatinase-associated lipocalin are considered reasonable biomarkers in urine and plasma to determine severity and prognosis of CKD.
Collapse
|
Review |
10 |
212 |
2
|
Mizuiri S, Ohashi Y. ACE and ACE2 in kidney disease. World J Nephrol 2015; 4:74-82. [PMID: 25664248 PMCID: PMC4317630 DOI: 10.5527/wjn.v4.i1.74] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Renin angiotensin system (RAS) activation has a significant influence on renal disease progression. The classical angiotensin-converting enzyme (ACE)-angiotensin II (Ang II)-Ang II type 1 (AT1) axis is considered to control the effects of RAS activation on renal disease. However, since its discovery in 2000 ACE2 has also been demonstrated to have a significant impact on the RAS. The synthesis and catabolism of Ang II are regulated via a complex series of interactions, which involve ACE and ACE2. In the kidneys, ACE2 is expressed in the proximal tubules and less strongly in the glomeruli. The synthesis of inactive Ang 1-9 from Ang I and the catabolism of Ang II to produce Ang 1-7 are the main functions of ACE2. Ang 1-7 reduces vasoconstriction, water retention, salt intake, cell proliferation, and reactive oxygen stress, and also has a renoprotective effect. Thus, in the non-classical RAS the ACE2-Ang 1-7-Mas axis counteracts the ACE-Ang II-AT1 axis. This review examines recent human and animal studies about renal ACE and ACE2.
Collapse
|
Review |
10 |
134 |
3
|
Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, Zhang Y, Harris DCH, Zheng G. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol 2013; 2:84-89. [PMID: 24255890 PMCID: PMC3832915 DOI: 10.5527/wjn.v2.i3.84] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are members of the neutral proteinase family. They were previously thought to be anti-fibrotic because of their ability to degrade and remodel of extracellular matrix. However, recent studies have shown that MMPs are implicated in initiation and progression of kidney fibrosis through tubular cell epithelial–mesenchymal transition (EMT) as well as activation of resident fibroblasts, endothelial-mesenchymal transition (EndoMT) and pericyte-myofibroblast transdifferentiation. Interstitial macrophage infiltration has also been shown to correlate with the severity of kidney fibrosis in various chronic kidney diseases. MMPs secreted by macrophages, especially MMP-9, has been shown by us to be profibrotic by induction of tubular cells EMT. EMT is mainly induced by transforming growth factor-β (TGF-β). However, MMP-9 was found by us and others to be up-regulated by TGF-β1 in kidney tubular epithelial cells and secreted by activated macrophages, resulting in EMT and ultimately kidney fibrosis. Therefore, MMP-9 may serve as a potential therapeutic target to prevent kidney fibrosis in chronic kidney disease. This review, by a particular focus on EMT, seeks to provide a comprehensive understanding of MMPs, especially MMP-9, in kidney fibrosis.
Collapse
|
Minireviews |
12 |
106 |
4
|
Bhasin B, Ürekli HM, Atta MG. Primary and secondary hyperoxaluria: Understanding the enigma. World J Nephrol 2015; 4:235-244. [PMID: 25949937 PMCID: PMC4419133 DOI: 10.5527/wjn.v4.i2.235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/29/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Hyperoxaluria is characterized by an increased urinary excretion of oxalate. Primary and secondary hyperoxaluria are two distinct clinical expressions of hyperoxaluria. Primary hyperoxaluria is an inherited error of metabolism due to defective enzyme activity. In contrast, secondary hyperoxaluria is caused by increased dietary ingestion of oxalate, precursors of oxalate or alteration in intestinal microflora. The disease spectrum extends from recurrent kidney stones, nephrocalcinosis and urinary tract infections to chronic kidney disease and end stage renal disease. When calcium oxalate burden exceeds the renal excretory ability, calcium oxalate starts to deposit in various organ systems in a process called systemic oxalosis. Increased urinary oxalate levels help to make the diagnosis while plasma oxalate levels are likely to be more accurate when patients develop chronic kidney disease. Definitive diagnosis of primary hyperoxaluria is achieved by genetic studies and if genetic studies prove inconclusive, liver biopsy is undertaken to establish diagnosis. Diagnostic clues pointing towards secondary hyperoxaluria are a supportive dietary history and tests to detect increased intestinal absorption of oxalate. Conservative treatment for both types of hyperoxaluria includes vigorous hydration and crystallization inhibitors to decrease calcium oxalate precipitation. Pyridoxine is also found to be helpful in approximately 30% patients with primary hyperoxaluria type 1. Liver-kidney and isolated kidney transplantation are the treatment of choice in primary hyperoxaluria type 1 and type 2 respectively. Data is scarce on role of transplantation in primary hyperoxaluria type 3 where there are no reports of end stage renal disease so far. There are ongoing investigations into newer modalities of diagnosis and treatment of hyperoxaluria. Clinical differentiation between primary and secondary hyperoxaluria and further between the types of primary hyperoxaluria is very important because of implications in treatment and diagnosis. Hyperoxaluria continues to be a challenging disease and a high index of clinical suspicion is often the first step on the path to accurate diagnosis and management.
Collapse
|
Minireviews |
10 |
104 |
5
|
Prasad GVR. Metabolic syndrome and chronic kidney disease: Current status and future directions. World J Nephrol 2014; 3:210-219. [PMID: 25374814 PMCID: PMC4220353 DOI: 10.5527/wjn.v3.i4.210] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a term used to denote a combination of selected, widely prevalent cardiovascular disease (CVD)-related risk factors. Despite the ambiguous definition of MetS, it has been clearly associated with chronic kidney disease markers including reduced glomerular filtration rate, proteinuria and/or microalbuminuria, and histopathological markers such as tubular atrophy and interstitial fibrosis. However, the etiological role of MetS in chronic kidney disease (CKD) is less clear. The relationship between MetS and CKD is complex and bidirectional, and so is best understood when CKD is viewed as a common progressive illness along the course of which MetS, another common disease, may intervene and contribute. Possible mechanisms of renal injury include insulin resistance and oxidative stress, increased proinflammatory cytokine production, increased connective tissue growth and profibrotic factor production, increased microvascular injury, and renal ischemia. MetS also portends a higher CVD risk at all stages of CKD from early renal insufficiency to end-stage renal disease. Clinical interventions for MetS in the presence of CKD should include a combination of weight reduction, appropriate dietary modification and increase physical activity, plus targeting of individual CVD-related risk factors such as dysglycemia, hypertension, and dyslipidemia while conforming to relevant national societal guidelines.
Collapse
|
Review |
11 |
99 |
6
|
Ozkok S, Ozkok A. Contrast-induced acute kidney injury: A review of practical points. World J Nephrol 2017; 6:86-99. [PMID: 28540198 PMCID: PMC5424439 DOI: 10.5527/wjn.v6.i3.86] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is one of the most common causes of AKI in clinical practice. CI-AKI has been found to be strongly associated with morbidity and mortality of the patients. Furthermore, CI-AKI may not be always reversible and it may be associated with the development of chronic kidney disease. Pathophysiology of CI-AKI is not exactly understood and there is no consensus on the preventive strategies. CI-AKI is an active research area thus clinicians should be updated periodically about this topic. In this review, we aimed to discuss the indications of contrast-enhanced imaging, types of contrast media and their impact on nephrotoxicity, major pathophysiological mechanisms, risk factors and preventive strategies of CI-AKI and alternative non-contrast-enhanced imaging methods.
Collapse
|
Review |
8 |
92 |
7
|
Maung SC, El Sara A, Chapman C, Cohen D, Cukor D. Sleep disorders and chronic kidney disease. World J Nephrol 2016; 5:224-232. [PMID: 27152260 PMCID: PMC4848147 DOI: 10.5527/wjn.v5.i3.224] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Sleep disorders have a profound and well-documented impact on overall health and quality of life in the general population. In patients with chronic disease, sleep disorders are more prevalent, with an additional morbidity and mortality burden. The complex and dynamic relationship between sleep disorders and chronic kidney disease (CKD) remain relatively little investigated. This article presents an overview of sleep disorders in patients with CKD, with emphasis on relevant pathophysiologic underpinnings and clinical presentations. Evidence-based interventions will be discussed, in the context of individual sleep disorders, namely sleep apnea, insomnia, restless leg syndrome and excessive daytime sleepiness. Limitations of the current knowledge as well as future research directions will be highlighted, with a final discussion of different conceptual frameworks of the relationship between sleep disorders and CKD.
Collapse
|
Review |
9 |
88 |
8
|
Gulleroglu K, Gulleroglu B, Baskin E. Nutcracker syndrome. World J Nephrol 2014; 3:277-281. [PMID: 25374822 PMCID: PMC4220361 DOI: 10.5527/wjn.v3.i4.277] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/16/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
The nutcracker phenomenon [left renal vein (LRV) entrapment syndrome] refers to compression of the LRV most commonly between abdominal aorta and superior mesenteric artery. Term of nutcracker syndrome (NCS) is used for patients with clinical symptoms associated with nutcracker anatomy. LRV entrapment divided into 2 types: anterior and posterior. Posterior and right-sided NCSs are rare conditions. The symptoms vary from asymptomatic hematuria to severe pelvic congestion. Symptoms include hematuria, orthostatic proteinuria, flank pain, abdominal pain, varicocele, dyspareunia, dysmenorrhea, fatigue and orthostatic intolerance. Existence of the clinical features constitutes a basis for the diagnosis. Several imaging methods such as Doppler ultrasonography, computed tomography angiography, magnetic resonance angiography and retrograde venography are used to diagnose NCS. The management of NCS depends upon the clinical presentation and the severity of the LRV hypertension. The treatment options are ranged from surveillance to nephrectomy. Treatment decision should be based on the severity of symptoms and their expected reversibility with regard to patient’s age and the stage of the syndrome.
Collapse
|
Minireviews |
11 |
85 |
9
|
Akoh JA. Peritoneal dialysis associated infections: An update on diagnosis and management. World J Nephrol 2012; 1:106-22. [PMID: 24175248 PMCID: PMC3782204 DOI: 10.5527/wjn.v1.i4.106] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 06/09/2012] [Accepted: 06/20/2012] [Indexed: 02/06/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with a high risk of infection of the peritoneum, subcutaneous tunnel and catheter exit site. Although quality standards demand an infection rate < 0.67 episodes/patient/year on dialysis, the reported overall rate of PD associated infection is 0.24-1.66 episodes/patient/year. It is estimated that for every 0.5-per-year increase in peritonitis rate, the risk of death increases by 4% and 18% of the episodes resulted in removal of the PD catheter and 3.5% resulted in death. Improved diagnosis, increased awareness of causative agents in addition to other measures will facilitate prompt management of PD associated infection and salvage of PD modality. The aims of this review are to determine the magnitude of the infection problem, identify possible risk factors and provide an update on the diagnosis and management of PD associated infection. Gram-positive cocci such as Staphylococcus epidermidis, other coagulase negative staphylococcoci, and Staphylococcus aureus (S. aureus) are the most frequent aetiological agents of PD-associated peritonitis worldwide. Empiric antibiotic therapy must cover both gram-positive and gram-negative organisms. However, use of systemic vancomycin and ciprofloxacin administration for example, is a simple and efficient first-line protocol antibiotic therapy for PD peritonitis - success rate of 77%. However, for fungal PD peritonitis, it is now standard practice to remove PD catheters in addition to antifungal treatment for a minimum of 3 wk and subsequent transfer to hemodialysis. To prevent PD associated infections, prophylactic antibiotic administration before catheter placement, adequate patient training, exit-site care, and treatment for S. aureus nasal carriage should be employed. Mupirocin treatment can reduce the risk of exit site infection by 46% but it cannot decrease the risk of peritonitis due to all organisms.
Collapse
|
Review |
13 |
70 |
10
|
Alani H, Tamimi A, Tamimi N. Cardiovascular co-morbidity in chronic kidney disease: Current knowledge and future research needs. World J Nephrol 2014; 3:156-168. [PMID: 25374809 PMCID: PMC4220348 DOI: 10.5527/wjn.v3.i4.156] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/30/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) is recognised as a health concern globally and leads to high rates of morbidity, mortality and healthcare expenditure. CKD is itself an independent risk factor for unfavorable health outcomes that include cardiovascular disease (CVD). Coronary artery disease is the primary type of CVD in CKD patients and a significant cause of death among renal transplant patients. Traditional and non-traditional risk factors for CVD exist in patients with CKD. Traditional factors include smoking, hypertension, dyslipidemia and diabetes which are highly prevalent in CKD patients. Non-traditional risk factors of CKD are mainly uraemia-specific and increase in prevalence as kidney function declines. Some examples of uraemia-specific risk factors that have been well documented include low levels of haemoglobin, albuminuria, and abnormal bone and mineral metabolism. Therapeutic interventions targeted at more traditional risk factors which contribute to CVD, have not had the desired effect on lowering CVD events and mortality in those suffering with CKD. Future research is warranted to delineate clear evidence to the benefit of modifying non-traditional risk factors.
Collapse
|
Review |
11 |
70 |
11
|
Salvadori M, Bertoni E. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations. World J Nephrol 2013; 2:56-76. [PMID: 24255888 PMCID: PMC3832913 DOI: 10.5527/wjn.v2.i3.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy.
Collapse
|
Review |
12 |
70 |
12
|
William JH, Danziger J. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms. World J Nephrol 2016; 5:152-157. [PMID: 26981439 PMCID: PMC4777786 DOI: 10.5527/wjn.v5.i2.152] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect.
Collapse
|
Minireviews |
9 |
65 |
13
|
Tbahriti HF, Meknassi D, Moussaoui R, Messaoudi A, Zemour L, Kaddous A, Bouchenak M, Mekki K. Inflammatory status in chronic renal failure: The role of homocysteinemia and pro-inflammatory cytokines. World J Nephrol 2013; 2:31-37. [PMID: 24175263 PMCID: PMC3782222 DOI: 10.5527/wjn.v2.i2.31] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/21/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate determinants of inflammatory markers in chronic renal failure patients according to the level of glomerular filtration rate.
METHODS: One hundred fifty four patients (Age: 44 ± 06 years; male/female: 66/88) with chronic renal failure (CRF) were divided into 6 groups according to the National Kidney Foundation (NKF) classification. They included 28 primary stage renal failure patients (CRF 1), 28 moderate stage renal failure patients (CRF 2), 28 severe stage renal failure patients (CRF 3), 18 end-stage renal failure patients (CRF 4), 40 hemodialysis (HD) patients, and 12 peritoneal dialysis (PD) patients. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and C-reactive protein (CRP) were analyzed by immunosorbent assay kit (ELISA) (Cayman Chemical’s ACETM EIA kit). Immunoassay methods were used for total homocysteine (tHcy) (fluorescence polarization immunoanalysis HPLC, PerkinEmer 200 series), transferrin (MININEPHTM human transferin kit: ZK070.R), ferritin (ADVIA Centaur) and fibrinogen analysis (ACL 200). Differences between groups were performed using SPSS 20.0 and data are expressed as the mean ± SD.
RESULTS: Results showed that in comparison with CRF 1 group and other groups, TNF-α and IL-6 levels were respectively more elevated in HD (16.38 ± 5.52 pg/mL vs 0.39 ± 0.03 pg/mL, 11.05 ± 3.59 pg/mL vs 8.20 ± 0.22 pg/mL, P < 0.001) and PD (14.04 ± 3.40 pg/mL vs 0.39 ± 0.03 pg/mL, 10.15 ± 1.66 pg/mL vs 8.20 ± 0.22 pg/mL, P < 0.001). IL-1β levels were increased in HD (9.63 ± 3.50 pg/mL vs 3.24 ± 0.10 pg/mL, P < 0.001) and CRF 4 (7.76 ± 0.66 pg/mL vs 3.24 ± 0.10 pg/mL, P < 0.001) patients than in CRF 1 and in the other groups. Plasma tHcy levels were higher in HD (32.27 ± 12.08 μmol/L) and PD (28.37 ± 4.98 μmol/L) patients compared to the other groups of CRF (P < 0.001). The serum CRP level was significantly increased in HD (18.17 ± 6.38 mg/L) and PD (17.97 ± 4.85 mg/L) patients compared to the other groups of CRF patients (P < 0.001). The plasma fibrinogen level was more elevated in HD (6.86 ± 1.06 g/L) and CRF 4 (6.05 ± 0.57 g/L) than in the other groups (P < 0.001). Furthermore; the ferritin level was higher in HD (169.90 ± 62.16 ng/mL) and PD (90.08 ± 22.09 ng/mL) patients compared to the other groups of CRF (P < 0.001). The serum transferrin value was significantly decreased especially in PD (1.78 ± 0.21 g/L) compared to the other groups (P < 0.001). We found a negative correlation between glomerular filtration rate (GFR), TNF-α levels (r = -0.75, P < 0.001), and tHcy levels (r = -0.68, P < 0.001). We observed a positive correlation between GFR and transferrin levels (r = 0.60, P < 0.001).
CONCLUSION: CRF was associated with elevated inflammatory markers. The inflammation was observed at the severe stage of CRF and increases with progression of renal failure.
Collapse
|
Brief Article |
12 |
62 |
14
|
Wiedermann CJ, Wiedermann W, Joannidis M. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol 2017; 6:176-187. [PMID: 28729966 PMCID: PMC5500455 DOI: 10.5527/wjn.v6.i4.176] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our meta-analysis published in 2010 provided evidence that low levels of serum albumin (hypoalbuminemia) are a significant independent predictor of acute kidney injury (AKI) and death following AKI. Since then, a large volume of additional data from observational clinical studies has been published further evaluating the relationship between serum albumin and AKI occurrence. This is an updated review of the literature to re-evaluate the hypothesis that hypoalbuminemia is independently associated with increased AKI risk. Eligible studies published from September 2009 to December 2016 were sought in PubMed (MEDLINE) and forty-three were retained, the great majority being retrospective observational cohort studies. These included a total of about 68000 subjects across a diverse range of settings, predominantly cardiac surgery and acute coronary interventions, infectious diseases, transplant surgery, and cancer. Appraisal of this latest data set served to conclusively corroborate and confirm our earlier hypothesis that lower serum albumin is an independent predictor both of AKI and death after AKI, across a range of clinical scenarios. The body of evidence indicates that hypoalbuminemia may causally contribute to development of AKI. Furthermore, administration of human albumin solution has the potential to prevent AKI; a randomized, controlled study provides evidence that correcting hypoalbuminemia may be renal-protective. Therefore, measurement of serum albumin to diagnose hypoalbuminemia may help identify high-risk patients who may benefit from treatment with exogenous human albumin. Multi-center, prospective, randomized, interventional studies are warranted, along with basic research to define the mechanisms through which albumin affords nephroprotection.
Collapse
|
Minireviews |
8 |
62 |
15
|
Pham PT, Everly M, Faravardeh A, Pham PC. Management of patients with a failed kidney transplant: Dialysis reinitiation, immunosuppression weaning, and transplantectomy. World J Nephrol 2015; 4:148-159. [PMID: 25949929 PMCID: PMC4419125 DOI: 10.5527/wjn.v4.i2.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/22/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
The number of patients reinitiating dialysis after a failed transplant increases over time and has more than doubled between the year 1988 and 2010 (an increase from 2463 to 5588). More importantly, patients returning to dialysis have been shown to have a greater than three-fold increase in the annual adjusted mortality rates compared with those with a functioning graft. Continuation of immunosuppression to preserve residual graft function has been implicated to be a contributing factor, seemingly due to immunosuppression-associated cardiovascular and infectious complications and malignancy risk, among others. Nonetheless, maintenance low-dose immunosuppression has been suggested to confer survival benefit in patients returning to peritoneal dialysis. Whether early vs late reinitiation of dialysis or whether transplantectomy has an impact on patient survival remains poorly defined. Consensus guidelines for the management of a failed allograft are lacking. In this article, we present a literature overview on the ideal timing of dialysis reinitiation after graft loss, the management of immunosuppression after graft failure, and the risks and benefits of transplantectomy. The authors’ perspectives on the management of this special patient population are also discussed.
Collapse
|
Review |
10 |
53 |
16
|
Disthabanchong S. Vascular calcification in chronic kidney disease: Pathogenesis and clinical implication. World J Nephrol 2012; 1:43-53. [PMID: 24175241 PMCID: PMC3782198 DOI: 10.5527/wjn.v1.i2.43] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/21/2011] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death among patients with chronic kidney disease (CKD). Vascular calcification (VC) is one of the independent risk factors associated with cardiovascular disease and cardiovascular mortality in both the general population and CKD patients. Earlier evidence revealed substantially higher prevalence of VC in young adults on chronic hemodialysis compared to the general population in the same age range, indicating the influence of CKD-related risk factors on the development of VC. Pathogenesis of VC involves an active, highly organized cellular transformation of vascular smooth muscle cells to bone forming cells evidenced by the presence of bone matrix proteins in the calcified arterial wall. VC occurs in both the intima and the media of arterial wall with medial calcification being more prevalent in CKD. In addition to traditional cardiovascular risks, risk factors specific to CKD such as phosphate retention, excess of calcium, history of dialysis, active vitamin D therapy in high doses and deficiency of calcification inhibitors play important roles in promoting the development of VC. Non-contrast multi-slice computed tomography has often been used to detect coronary artery calcification. Simple plain radiographs of the lateral lumbar spine and pelvis can also detect VC in the abdominal aorta and femoral and iliac arteries. Currently, there is no specific therapy to reverse VC. Reduction of calcium load, lowering phosphate retention using non-calcium containing phosphate binders, and moderate doses of active vitamin D may attenuate progression. Parenteral sodium thiosulfate has also been shown to delay VC progression.
Collapse
|
Guidelines For Clinical Practice |
13 |
52 |
17
|
Brachemi S, Bollée G. Renal biopsy practice: What is the gold standard? World J Nephrol 2014; 3:287-294. [PMID: 25374824 PMCID: PMC4220363 DOI: 10.5527/wjn.v3.i4.287] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/22/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Renal biopsy (RB) is useful for diagnosis and therapy guidance of renal diseases but incurs a risk of bleeding complications of variable severity, from transitory haematuria or asymptomatic hematoma to life-threatening hemorrhage. Several risk factors for complications after RB have been identified, including high blood pressure, age, decreased renal function, obesity, anemia, low platelet count and hemostasis disorders. These should be carefully assessed and, whenever possible, corrected before the procedure. The incidence of serious complications has become low with the use of automated biopsy devices and ultrasound guidance, which is currently the “gold standard” procedure for percutaneous RB. An outpatient biopsy may be considered in a carefully selected population with no risk factor for bleeding. However, controversies persist on the duration of observation after biopsy, especially for native kidney biopsy. Transjugular RB and laparoscopic RB represent reliable alternatives to conventional percutaneous biopsy in patients at high risk of bleeding, although some factors limit their use. This aim of this review is to summarize the issues of complications after RB, assessment of hemorrhagic risk factors, optimal biopsy procedure and strategies aimed to minimize the risk of bleeding.
Collapse
|
Minireviews |
11 |
50 |
18
|
Roumelioti ME, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH. Fluid balance concepts in medicine: Principles and practice. World J Nephrol 2018; 7:1-28. [PMID: 29359117 PMCID: PMC5760509 DOI: 10.5527/wjn.v7.i1.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance.
Collapse
|
Review |
7 |
49 |
19
|
Gücük A, Üyetürk U. Usefulness of hounsfield unit and density in the assessment and treatment of urinary stones. World J Nephrol 2014; 3:282-286. [PMID: 25374823 PMCID: PMC4220362 DOI: 10.5527/wjn.v3.i4.282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Computed tomography (CT) is widely used to examine stones in the urinary system. In addition to the size and location of the stone and the overall health of the kidney, CT can also assess the density of the stone in Hounsfield units (HU). The HU, or Hounsfield density, measured by CT, is related to the density of the tissue or stone. A number of studies have assessed the use of HU in urology. HUs have been used to predict the type and opacity of stones during diagnosis, and the efficacy has been assessed using methods including extracorporeal shock wave lithotripsy (ESWL), percutaneous nephrolithotomy (PCNL), ureterorenoscopic ureterolithotripsy (URSL), and medical expulsive treatment (MET). Previous studies have focused on the success rate of HU for predicting the type of stone and of ESWL treatment. Understanding the composition of the stone plays a key role in determining the most appropriate treatment modality. The most recent reports have suggested that the HU value and its variants facilitate prediction of stone composition. However, the inclusion of data regarding urine, such as pH and presence of crystals, increases the predictive accuracy. HUs, which now form part of the clinical guidelines, allow us to predict the success of ESWL; therefore, they should be taken into account when ESWL is considered as a treatment option. However, there are currently insufficient data available regarding the value of HU for assessing the efficacy of PCNL, URSL, and MET. Studies performed to date suggest that these values would make a significant contribution to the diagnosis and treatment of urinary system stones. However, more data are required to assess this further.
Collapse
|
Minireviews |
11 |
49 |
20
|
Esposito P, Dal Canton A. Clinical audit, a valuable tool to improve quality of care: General methodology and applications in nephrology. World J Nephrol 2014; 3:249-255. [PMID: 25374819 PMCID: PMC4220358 DOI: 10.5527/wjn.v3.i4.249] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Evaluation and improvement of quality of care provided to the patients are of crucial importance in the daily clinical practice and in the health policy planning and financing. Different tools have been developed, including incident analysis, health technology assessment and clinical audit. The clinical audit consist of measuring a clinical outcome or a process, against well-defined standards set on the principles of evidence-based medicine in order to identify the changes needed to improve the quality of care. In particular, patients suffering from chronic renal diseases, present many problems that have been set as topics for clinical audit projects, such as hypertension, anaemia and mineral metabolism management. Although the results of these studies have been encouraging, demonstrating the effectiveness of audit, overall the present evidence is not clearly in favour of clinical audit. These findings call attention to the need to further studies to validate this methodology in different operating scenarios. This review examines the principle of clinical audit, focusing on experiences performed in nephrology settings.
Collapse
|
Minireviews |
11 |
47 |
21
|
Fearn A, Sheerin NS. Complement activation in progressive renal disease. World J Nephrol 2015; 4:31-40. [PMID: 25664245 PMCID: PMC4317626 DOI: 10.5527/wjn.v4.i1.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is common and the cause of significant morbidity and mortality. The replacement of functioning nephrons by fibrosis is characteristic of progressive disease. The pathways that lead to fibrosis are not fully understood, although chronic non-resolving inflammation in the kidney is likely to drive the fibrotic response that occurs. In patients with progressive CKD there is histological evidence of inflammation in the interstitium and strategies that reduce inflammation reduce renal injury in pre-clinical models of CKD. The complement system is an integral part of the innate immune system but also augments adaptive immune responses. Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease.
Collapse
|
Review |
10 |
46 |
22
|
Kumar S, Bogle R, Banerjee D. Why do young people with chronic kidney disease die early? World J Nephrol 2014; 3:143-155. [PMID: 25374808 PMCID: PMC4220347 DOI: 10.5527/wjn.v3.i4.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/19/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease poses the greatest risk of premature death seen among patients with chronic kidney disease (CKD). Up to 50% of mortality risk in the dialysis population is attributable to cardiovascular disease and the largest relative excess mortality is observed in younger patients. In early CKD, occlusive thrombotic coronary disease is common, but those who survive to reach end-stage renal failure requiring dialysis are more prone to sudden death attributable mostly to sudden arrhythmic events and heart failure related to left ventricular hypertrophy, coronary vascular calcification and electrolyte disturbances. In this review, we discuss the basis of the interaction of traditional risk factors for cardiovascular disease with various pathological processes such as endothelial dysfunction, oxidative stress, low grade chronic inflammation, neurohormonal changes and vascular calcification and stiffness which account for the structural and functional cardiac changes that predispose to excess morbidity and mortality in young people with CKD.
Collapse
|
Review |
11 |
46 |
23
|
Glew RH, Sun Y, Horowitz BL, Konstantinov KN, Barry M, Fair JR, Massie L, Tzamaloukas AH. Nephropathy in dietary hyperoxaluria: A potentially preventable acute or chronic kidney disease. World J Nephrol 2014; 3:122-142. [PMID: 25374807 PMCID: PMC4220346 DOI: 10.5527/wjn.v3.i4.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/12/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023] Open
Abstract
Hyperoxaluria can cause not only nephrolithiasis and nephrocalcinosis, but also renal parenchymal disease histologically characterized by deposition of calcium oxalate crystals throughout the renal parenchyma, profound tubular damage and interstitial inflammation and fibrosis. Hyperoxaluric nephropathy presents clinically as acute or chronic renal failure that may progress to end-stage renal disease (ESRD). This sequence of events, well recognized in the past in primary and enteric hyperoxalurias, has also been documented in a few cases of dietary hyperoxaluria. Estimates of oxalate intake in patients with chronic dietary hyperoxaluria who developed chronic kidney disease or ESRD were comparable to the reported average oxalate content of the diets of certain populations worldwide, thus raising the question whether dietary hyperoxaluria is a primary cause of ESRD in these regions. Studies addressing this question have the potential of improving population health and should be undertaken, alongside ongoing studies which are yielding fresh insights into the mechanisms of intestinal absorption and renal excretion of oxalate, and into the mechanisms of development of oxalate-induced renal parenchymal disease. Novel preventive and therapeutic strategies for treating all types of hyperoxaluria are expected to develop from these studies.
Collapse
|
Review |
11 |
45 |
24
|
Loutradis C, Skodra A, Georgianos P, Tolika P, Alexandrou D, Avdelidou A, Sarafidis PA. Diabetes mellitus increases the prevalence of anemia in patients with chronic kidney disease: A nested case-control study. World J Nephrol 2016; 5:358-366. [PMID: 27458564 PMCID: PMC4936342 DOI: 10.5527/wjn.v5.i4.358] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare anemia prevalence between matched chronic kidney disease (CKD) patients with and without diabetes mellitus (DM) and to assess factors associated with anemia development.
METHODS: This is a nested case-control study of 184 type-2 diabetic and 184 non-diabetic CKD patients from a prospectively assembled database of a Nephrology outpatient clinic, matched for gender, age and estimated glomerular filtration rate (eGFR). Prevalence of anemia (hemoglobin: Men: < 13 g/dL, women: < 12 g/dL and/or use of recombinant erythropoietin) was examined in comparison, in the total population and by CKD Stage. Univariate and multivariate logistic regression analyses were conducted to identify factors associated with anemia.
RESULTS: The total prevalence of anemia was higher in diabetics (47.8% vs 33.2%, P = 0.004). Accordingly, prevalence was higher in diabetics in CKD Stage 3 (53.5% vs 33.1%, P < 0.001) and particularly in Stage 3a (60.4% vs 26.4%, P < 0.001), whereas it was non-significantly higher in Stage 4 (61.3% vs 48.4%; P = 0.307). Serum ferritin was higher in diabetics in total and in CKD stages, while serum iron was similar between groups. In multivariate analyses, DM (OR = 2.206, 95%CI: 1.196-4.069), CKD Stages 3a, 3b, 4 (Stage 4: OR = 12.169, 95%CI: 3.783-39.147) and serum iron (OR = 0.976, 95%CI: 0.968-0.985 per mg/dL increase) were independently associated with anemia.
CONCLUSION: Prevalence of anemia progressively increases with advancing stages of CKD and is higher in diabetic than matched non-diabetic CKD patients and diabetes is independently associated with anemia occurrence. Detection and treatment of anemia in diabetic CKD patients should be performed earlier than non-diabetic counterparts.
Collapse
|
Case Control Study |
9 |
44 |
25
|
Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol 2014; 3:64-76. [PMID: 25332897 PMCID: PMC4202493 DOI: 10.5527/wjn.v3.i3.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases.
Collapse
|
Review |
11 |
44 |