1
|
Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci U S A 2001; 98:5560-5. [PMID: 11320206 PMCID: PMC33252 DOI: 10.1073/pnas.091016398] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Indexed: 12/18/2022] [Imported: 02/12/2025] Open
Abstract
Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.
Collapse
|
research-article |
24 |
343 |
2
|
Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 2002; 16:15-26. [PMID: 11772932 DOI: 10.1096/fj.01-0401rev] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 02/12/2025]
Abstract
Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine. Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver. It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury. The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model. With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action.
Collapse
|
Review |
23 |
311 |
3
|
Colell A, García-Ruiz C, Miranda M, Ardite E, Marí M, Morales A, Corrales F, Kaplowitz N, Fernández-Checa JC. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 1998; 115:1541-51. [PMID: 9834283 DOI: 10.1016/s0016-5085(98)70034-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 02/12/2025]
Abstract
BACKGROUND & AIMS Tumor necrosis factor (TNF)-alpha induces cell injury by generating oxidative stress from mitochondria. The purpose of this study was to determine the effect of ethanol on the sensitization of hepatocytes to TNF-alpha. METHODS Cultured hepatocytes from ethanol-fed (ethanol hepatocytes) or pair-fed (control hepatocytes) rats were exposed to TNF-alpha, and the extent of oxidative stress, gene expression, and viability were evaluated. RESULTS Ethanol hepatocytes, which develop a selective deficiency of mitochondrial glutathione (mGSH), showed marked susceptibility to TNF-alpha. The susceptibility to TNF-alpha, manifested as necrosis rather than apoptosis, was accompanied by a progressive increase in hydrogen peroxide that correlated inversely with cell survival. Nuclear factor kappaB activation by TNF-alpha was significantly greater in ethanol hepatocytes than in control hepatocytes, an effect paralleled by the expression of cytokine-induced neutrophil chemoattractant. Similar sensitization of normal hepatocytes to TNF-alpha was obtained by depleting the mitochondrial pool of GSH with 3-hydroxyl-4-pentenoate. Restoration of mGSH by S-adenosyl-L-methionine or by GSH-ethyl ester prevented the increased susceptibility of ethanol hepatocytes to TNF-alpha. CONCLUSIONS These results indicate that mGSH controls the fate of hepatocytes in response to TNF-alpha. Its depletion caused by alcohol consumption amplifies the power of TNF-alpha to generate reactive oxygen species, compromising mitochondrial and cellular functions that culminate in cell death.
Collapse
|
|
27 |
291 |
4
|
Avila MA, Berasain C, Torres L, Martín-Duce A, Corrales FJ, Yang H, Prieto J, Lu SC, Caballería J, Rodés J, Mato JM. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 2000; 33:907-14. [PMID: 11131452 DOI: 10.1016/s0168-8278(00)80122-1] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 02/12/2025]
Abstract
BACKGROUND/AIMS It has been known for at least 50 years that alterations in methionine metabolism occur in human liver cirrhosis. However, the molecular basis of this alteration is not completely understood. In order to gain more insight into the mechanisms behind this condition, mRNA levels of methionine adenosyltransferase (MAT1A), glycine methyltransferase (GNMT), methionine synthase (MS), betaine homocysteine methyltransferase (BHMT) and cystathionine beta-synthase (CBS) were examined in 26 cirrhotic livers, five hepatocellular carcinoma (HCC) tissues and ten control livers. METHODS The expression of the above-mentioned genes was determined by quantitative RT-PCR analysis. Methylation of MAT1A promoter was assessed by methylation-sensitive restriction enzyme digestion of genomic DNA. RESULTS When compared to normal livers MAT1A, GNMT, BHMT, CBS and MS mRNA contents were significantly reduced in liver cirrhosis. Interestingly, MAT1A promoter was hypermethylated in the cirrhotic liver. HCC tissues also showed decreased mRNA levels of these enzymes. CONCLUSIONS These findings establish that the abundance of the mRNA of the main genes involved in methionine metabolism is markedly reduced in human cirrhosis and HCC. Hypermethylation of MAT1A promoter could participate in its reduced expression in cirrhosis. These observations help to explain the hypermethioninemia, hyperhomocysteinemia and reduced hepatic glutathione content observed in cirrhosis.
Collapse
|
|
25 |
264 |
5
|
Martínez-Chantar ML, Corrales FJ, Martínez-Cruz LA, García-Trevijano ER, Huang ZZ, Chen L, Kanel G, Avila MA, Mato JM, Lu SC. Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J 2002; 16:1292-4. [PMID: 12060674 DOI: 10.1096/fj.02-0078fje] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] [Imported: 02/12/2025]
Abstract
In mammals, methionine metabolism occurs mainly in the liver via methionine adenosyltransferase-catalyzed conversion to S-adenosylmethionine. Of the two genes that encode methionine adenosyltransferase(MAT1Aand MAT2A), MAT1A is mainly expressed in adult liver whereas MAT2A is expressed in all extrahepatic tissues. Mice lacking MAT1A have reduced hepatic S-adenosylmethionine content and hyperplasia and spontaneously develop nonalcoholic steatohepatitis. In this study, we examined whether chronic hepatic S-adenosylmethionine deficiency generates oxidative stress and predisposes to injury and malignant transformation. Differential gene expression in MAT1A knockout mice was analyzed following the criteria of the Gene Ontology Consortium. Susceptibility of MAT1A knockout mice to CCl4-induced hepatotoxicity and malignant transformation was determined in 3- and 18-month-old mice, respectively. Analysis of gene expression profiles revealed an abnormal expression of genes involved in the metabolism of lipids and carbohydrates in MAT1A knockout mice, a situation that is reminiscent of that found in diabetes, obesity, and other conditions associated with nonalcoholic steatohepatitis. This aberrant expression of metabolic genes in the knockout mice was associated with hyperglycemia, increased hepatic CYP2E1 and UCP2 expression and triglyceride levels, and reduced hepatic glutathione content. The knockout animals have increased lipid peroxidation and enhanced sensitivity to CCl4-induced liver damage, which was largely due to increased CYP2E1 expression because diallyl sulfide, an inhibitor of CYP2E1, prevented CCl4-induced liver injury. Hepatocellular carcinoma developed in more than half of the knockout mice by 18 months of age. Taken together, our findings define a critical role for S-adenosylmethionine in maintaining normal hepatic function and tumorigenesis of the liver.
Collapse
|
|
23 |
215 |
6
|
Avila MA, García-Trevijano ER, Lu SC, Corrales FJ, Mato JM. Methylthioadenosine. Int J Biochem Cell Biol 2005; 36:2125-30. [PMID: 15313459 DOI: 10.1016/j.biocel.2003.11.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 11/17/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022] [Imported: 02/12/2025]
Abstract
5'-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. MTA is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. This compound is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. Abundant evidence has accumulated over time suggesting that MTA can affect cellular processes in many ways. MTA has been shown to influence numerous critical responses of the cell including regulation of gene expression, proliferation, differentiation and apoptosis. Although most of these responses have been observed at the pharmacological level, their specificity makes it tempting to speculate that endogenous MTA could play a regulatory role in the cell. Finally, observations carried out in models of liver damage and cancer demonstrate a therapeutic potential for MTA that deserves further consideration.
Collapse
|
Review |
20 |
158 |
7
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] [Imported: 02/12/2025] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
134 |
8
|
Santamaria E, Avila MA, Latasa MU, Rubio A, Martin-Duce A, Lu SC, Mato JM, Corrales FJ. Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. Proc Natl Acad Sci U S A 2003; 100:3065-70. [PMID: 12631701 PMCID: PMC152247 DOI: 10.1073/pnas.0536625100] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Indexed: 12/15/2022] [Imported: 02/12/2025] Open
Abstract
Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A(-/-)) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A(-/-) expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at approximately 8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase beta-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in obob mice and obese patients who are at risk for nonalcoholic steatohepatitis.
Collapse
|
research-article |
22 |
131 |
9
|
Corrales F, Giménez A, Alvarez L, Caballería J, Pajares MA, Andreu H, Parés A, Mato JM, Rodés J. S-adenosylmethionine treatment prevents carbon tetrachloride-induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology 1992; 16:1022-7. [PMID: 1398482 DOI: 10.1002/hep.1840160427] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] [Imported: 02/12/2025]
Abstract
Administration of carbon tetrachloride to rats resulted in induction of hepatic fibrosis and a 60% reduction of hepatic S-adenosylmethionine synthetase activity without producing any significant modification of hepatic levels of S-adenosylmethionine synthetase messenger RNA. The reduction of S-adenosylmethionine synthetase activity was corrected by treatment with S-adenosylmethionine (3 mg/kg/day, intramuscularly). Administration of carbon tetrachloride also produced a 45% depletion of liver glutathione (reduced form) that was corrected by S-adenosylmethionine treatment. After the rats received carbon tetrachloride, a 2.3-fold increase in liver collagen was observed; prolyl hydroxylase activity was 2.5 times greater than that seen in controls. These increases were attenuated in animals treated with carbon tetrachloride and S-adenosylmethionine. The attenuation by S-adenosylmethionine treatment of the fibrogenic effect of carbon tetrachloride was associated with a decrease in the number of rats in which cirrhosis developed.
Collapse
|
|
33 |
122 |
10
|
Zahn R, Buckle AM, Perrett S, Johnson CM, Corrales FJ, Golbik R, Fersht AR. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci U S A 1996; 93:15024-9. [PMID: 8986757 PMCID: PMC26349 DOI: 10.1073/pnas.93.26.15024] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] [Imported: 02/12/2025] Open
Abstract
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.
Collapse
|
research-article |
29 |
118 |
11
|
Pérez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM. Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 1999; 274:17075-9. [PMID: 10358060 DOI: 10.1074/jbc.274.24.17075] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] [Imported: 02/12/2025] Open
Abstract
S-Adenosylmethionine serves as the methyl donor for many biological methylation reactions and provides the propylamine group for the synthesis of polyamines. S-Adenosylmethionine is synthesized from methionine and ATP by the enzyme methionine adenosyltransferase. The cellular factors regulating S-adenosylmethionine synthesis have not been well defined. Here we show that in rat hepatocytes S-nitrosoglutathione monoethyl ester, a cell-permeable nitric oxide donor, markedly reduces cellular S-adenosylmethionine content via inactivation of methionine adenosyltransferase by S-nitrosylation. Removal of the nitric oxide donor from the incubation medium leads to the denitrosylation and reactivation of methionine adenosyltransferase and to the rapid recovery of cellular S-adenosylmethionine levels. Nitric oxide inactivates methionine adenosyltransferase via S-nitrosylation of cysteine 121. Replacement of the acidic (aspartate 355) or basic (arginine 357 and arginine 363) amino acids located in the vicinity of cysteine 121 by serine leads to a marked reduction in the ability of nitric oxide to S-nitrosylate and inactivate hepatic methionine adenosyltransferase. These results indicate that protein S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target cysteine.
Collapse
|
|
26 |
117 |
12
|
Alvarez-Sola G, Uriarte I, Latasa MU, Fernandez-Barrena MG, Urtasun R, Elizalde M, Barcena-Varela M, Jiménez M, Chang HC, Barbero R, Catalán V, Rodríguez A, Frühbeck G, Gallego-Escuredo JM, Gavaldà-Navarro A, Villarroya F, Rodriguez-Ortigosa CM, Corrales FJ, Prieto J, Berraondo P, Berasain C, Avila MA. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 2017; 66:1818-1828. [PMID: 28119353 DOI: 10.1136/gutjnl-2016-312975] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023] [Imported: 02/12/2025]
Abstract
OBJECTIVE Fibroblast growth factor 15/19 (FGF15/19), an enterokine that regulates synthesis of hepatic bile acids (BA), has been proposed to influence fat metabolism. Without FGF15/19, mouse liver regeneration after partial hepatectomy (PH) is severely impaired. We studied the role of FGF15/19 in response to a high fat diet (HFD) and its regulation by saturated fatty acids. We developed a fusion molecule encompassing FGF19 and apolipoprotein A-I, termed Fibapo, and evaluated its pharmacological properties in fatty liver regeneration. DESIGN Fgf15-/- mice were fed a HFD. Liver fat and the expression of fat metabolism and endoplasmic reticulum (ER) stress-related genes were measured. Influence of palmitic acid (PA) on FGF15/19 expression was determined in mice and in human liver cell lines. In vivo half-life and biological activity of Fibapo and FGF19 were compared. Hepatoprotective and proregenerative activities of Fibapo were evaluated in obese db/db mice undergoing PH. RESULTS Hepatosteatosis and ER stress were exacerbated in HFD-fed Fgf15-/- mice. Hepatic expression of Pparγ2 was elevated in Fgf15-/- mice, being reversed by FGF19 treatment. PA induced FGF15/19 expression in mouse ileum and human liver cells, and FGF19 protected from PA-mediated ER stress and cytotoxicity. Fibapo reduced liver BA and lipid accumulation, inhibited ER stress and showed enhanced half-life. Fibapo provided increased db/db mice survival and improved regeneration upon PH. CONCLUSIONS FGF15/19 is essential for hepatic metabolic adaptation to dietary fat being a physiological regulator of Pparγ2 expression. Perioperative administration of Fibapo improves fatty liver regeneration.
Collapse
|
|
8 |
114 |
13
|
Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, Martínez-Cruz LA, Corrales FJ, Rubio A. Correlation between gene expression and GO semantic similarity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2005; 2:330-8. [PMID: 17044170 DOI: 10.1109/tcbb.2005.50] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] [Imported: 02/12/2025]
Abstract
This research analyzes some aspects of the relationship between gene expression, gene function, and gene annotation. Many recent studies are implicitly based on the assumption that gene products that are biologically and functionally related would maintain this similarity both in their expression profiles as well as in their Gene Ontology (GO) annotation. We analyze how accurate this assumption proves to be using real publicly available data. We also aim to validate a measure of semantic similarity for GO annotation. We use the Pearson correlation coefficient and its absolute value as a measure of similarity between expression profiles of gene products. We explore a number of semantic similarity measures (Resnik, Jiang, and Lin) and compute the similarity between gene products annotated using the GO. Finally, we compute correlation coefficients to compare gene expression similarity against GO semantic similarity. Our results suggest that the Resnik similarity measure outperforms the others and seems better suited for use in Gene Ontology. We also deduce that there seems to be correlation between semantic similarity in the GO annotation and gene expression for the three GO ontologies. We show that this correlation is negligible up to a certain semantic similarity value; then, for higher similarity values, the relationship trend becomes almost linear. These results can be used to augment the knowledge provided by clustering algorithms and in the development of bioinformatic tools for finding and characterizing gene products.
Collapse
|
Comparative Study |
20 |
111 |
14
|
Ruiz F, Corrales FJ, Miqueo C, Mato JM. Nitric oxide inactivates rat hepatic methionine adenosyltransferase In vivo by S-nitrosylation. Hepatology 1998; 28:1051-7. [PMID: 9755242 DOI: 10.1002/hep.510280420] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 02/12/2025]
Abstract
We investigated the mechanism of nitric oxide (NO) action on hepatic methionine adenosyltransferase (MAT) activity using S-nitrosoglutathione (GSNO) as NO donor. Hepatic MAT plays an essential role in the metabolism of methionine, converting this amino acid into S-adenosylmethionine. Hepatic MAT exists in two oligomeric states: as a tetramer (MAT I) and as a dimer (MAT III) of the same subunit. This subunit contains 10 cysteine residues. In MAT I, S-nitrosylation of 1 thiol residue per subunit was associated with a marked inactivation of the enzyme (about 70%) that was reversed by glutathione (GSH). In MAT III, S-nitrosylation of 3 thiol residues per subunit led to a similar inactivation of the enzyme, which was also reversed by GSH. Incubation of isolated rat hepatocytes with S-nitrosoglutathione monoethyl ester (EGSNO), a NO donor permeable through the cellular membrane, induced a dose-dependent inactivation of MAT that was reversed by removing the NO donor from the cell suspension. MAT, purified from isolated rat hepatocytes, contained S-nitrosothiol groups and the addition of increasing concentrations of EGSNO to the hepatocyte suspension led to a progressive S-nitrosylation of the enzyme. Removal of the NO donor from the incubation media resulted in loss of most NO groups associated to the enzyme. Finally, induction in rats of the production of NO, by the administration of bacterial lipopolysaccharide (LPS), induced a fivefold increase in the S-nitrosylation of hepatic MAT, which led to a marked inactivation of the enzyme. Thus, the activity of liver MAT appears to be regulated in vivo by S-nitrosylation.
Collapse
|
|
27 |
96 |
15
|
García-Tevijano ER, Berasain C, Rodríguez JA, Corrales FJ, Arias R, Martín-Duce A, Caballería J, Mato JM, Avila MA. Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension 2001; 38:1217-21. [PMID: 11711526 DOI: 10.1161/hy1101.099499] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] [Imported: 02/12/2025]
Abstract
Numerous clinical and epidemiological studies have identified elevated homocysteine levels in plasma as a risk factor for atherosclerotic vascular disease and thromboembolism. Hyperhomocysteinemia may develop as a consequence of defects in homocysteine-metabolizing genes; nutritional conditions leading to vitamin B(6), B(12), or folate deficiencies; or chronic alcohol consumption. Homocysteine is an intermediate in methionine metabolism, which takes place mainly in the liver. Impaired liver function leads to altered methionine and homocysteine metabolism; however, the molecular basis for such alterations is not completely understood. In addition, the mechanisms behind homocysteine-induced cellular toxicity are not fully defined. In the present work, we have examined the expression of the main enzymes involved in methionine and homocysteine metabolism, along with the plasma levels of methionine and homocysteine, in the liver of 26 cirrhotic patients and 10 control subjects. To gain more insight into the cellular effects of elevated homocysteine levels, we have searched for changes in gene expression induced by this amino acid in cultured human vascular smooth muscle cells. We have observed a marked reduction in the expression of the main genes involved in homocysteine metabolism in liver cirrhosis. In addition, we have identified the tissue inhibitor of metalloproteinases-1 and alpha1(I)procollagen to be upregulated in vascular smooth muscle cells and liver stellate cells exposed to pathological concentrations of homocysteine. Taken together, our observations suggest (1) impaired liver function could be a novel determinant in the development of hyperhomocysteinemia and (2) a role for elevated homocysteine levels in the development of liver fibrosis.
Collapse
|
|
24 |
88 |
16
|
Murillo O, Luqui DM, Gazquez C, Martinez-Espartosa D, Navarro-Blasco I, Monreal JI, Guembe L, Moreno-Cermeño A, Corrales FJ, Prieto J, Hernandez-Alcoceba R, Gonzalez-Aseguinolaza G. Long-term metabolic correction of Wilson's disease in a murine model by gene therapy. J Hepatol 2016; 64:419-426. [PMID: 26409215 DOI: 10.1016/j.jhep.2015.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] [Imported: 02/12/2025]
Abstract
BACKGROUND & AIMS Wilson's disease (WD) is an autosomal recessively inherited copper storage disorder due to mutations in the ATP7B gene that causes hepatic and neurologic symptoms. Current treatments are based on lifelong copper chelating drugs and zinc salts, which may cause side effects and do not restore normal copper metabolism. In this work we assessed the efficacy of gene therapy to treat this condition. METHODS We transduced the liver of the Atp7b(-/-) WD mouse model with an adeno-associated vector serotype 8 (AAV8) encoding the human ATP7B cDNA placed under the control of the liver-specific α1-antitrypsin promoter (AAV8-AAT-ATP7B). After vector administration we carried out periodic evaluation of parameters associated with copper metabolism and disease progression. The animals were sacrificed 6months after treatment to analyze copper storage and hepatic histology. RESULTS We observed a dose-dependent therapeutic effect of AAV8-AAT-ATP7B manifested by the reduction of serum transaminases and urinary copper excretion, normalization of serum holoceruloplasmin, and restoration of physiological biliary copper excretion in response to copper overload. The liver of treated animals showed normalization of copper content and absence of histological alterations. CONCLUSIONS Our data demonstrate that AAV8-AAT-ATP7B-mediated gene therapy provides long-term correction of copper metabolism in a clinically relevant animal model of WD providing support for future translational studies.
Collapse
|
|
9 |
85 |
17
|
Hevia H, Varela-Rey M, Corrales FJ, Berasain C, Martínez-Chantar ML, Latasa MU, Lu SC, Mato JM, García-Trevijano ER, Avila MA. 5'-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology 2004; 39:1088-98. [PMID: 15057913 DOI: 10.1002/hep.20154] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 02/12/2025]
Abstract
5'-methylthioadenosine (MTA) is a nucleoside generated from S-adenosylmethionine (AdoMet) during polyamine synthesis. Recent evidence indicates that AdoMet modulates in vivo the production of inflammatory mediators. We have evaluated the anti-inflammatory properties of MTA in bacterial lipopolysaccharide (LPS) challenged mice, murine macrophage RAW 264.7 cells, and isolated rat hepatocytes treated with pro-inflammatory cytokines. MTA administration completely prevented LPS-induced lethality. The life-sparing effect of MTA was accompanied by the suppression of circulating tumor necrosis factor-alpha (TNF-alpha), inducible NO synthase (iNOS) expression, and by the stimulation of IL-10 synthesis. These responses to MTA were also observed in LPS-treated RAW 264.7 cells. MTA prevented the transcriptional activation of iNOS by pro-inflammatory cytokines in isolated hepatocytes, and the induction of cyclooxygenase 2 (COX2) in RAW 264.7 cells. MTA inhibited the activation of p38 mitogen-activated protein kinase (MAPK), c-jun phosphorylation, inhibitor kappa B alpha (IkappaBalpha) degradation, and nuclear factor kappaB (NFkappaB) activation, all of which are signaling pathways related to the generation of inflammatory mediators. These effects were independent of the metabolic conversion of MTA into AdoMet and the potential interaction of MTA with the cAMP signaling pathway, central to the anti-inflammatory actions of its structural analog adenosine. In conclusion, these observations demonstrate novel immunomodulatory properties for MTA that may be of value in the management of inflammatory diseases.
Collapse
|
|
21 |
80 |
18
|
Corrales FJ, Fersht AR. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage. Proc Natl Acad Sci U S A 1996; 93:4509-12. [PMID: 8633099 PMCID: PMC39569 DOI: 10.1073/pnas.93.9.4509] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 02/12/2025] Open
Abstract
Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.
Collapse
|
research-article |
29 |
73 |
19
|
Alvarez L, Corrales F, Martín-Duce A, Mato JM. Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J 1993; 293 ( Pt 2):481-6. [PMID: 8393662 PMCID: PMC1134386 DOI: 10.1042/bj2930481] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] [Imported: 02/12/2025]
Abstract
The sequence of a full-length cDNA coding for human liver S-adenosylmethionine synthetase has been determined. It spans 3217 nucleotides and encodes a protein of 395 amino acid residues, with a calculated molecular mass of 43,647 Da. The structural features deduced from the amino acid sequence show a close similarity to those of the rat liver enzyme. The liver-specific S-adenosylmethionine synthetase gene appears to be present as a single copy in the genome, as revealed by Southern analysis. The occurrence of a single mRNA species for this enzyme has been determined by primer extension and Northern analysis. Among several human tissues examined, this gene is expressed only in the liver. Similar S-adenosylmethionine synthetase mRNA levels have been detected in biopsies from normal human liver and from patients with alcoholic cirrhosis and hepatocellular carcinoma. Based on these results, a possible mechanism of regulation of human liver S-adenosylmethionine synthetase is discussed.
Collapse
|
research-article |
32 |
71 |
20
|
Uriarte I, Latasa MU, Carotti S, Fernandez-Barrena MG, Garcia-Irigoyen O, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, de Mingo A, Mari M, Corrales FJ, Prieto J, Berasain C, Avila MA. Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development. Int J Cancer 2014; 136:2469-75. [PMID: 25346390 DOI: 10.1002/ijc.29287] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] [Imported: 02/12/2025]
Abstract
Fibroblast growth factor 15 (FGF15), FGF19 in humans, is a gut-derived hormone and a key regulator of bile acids and carbohydrate metabolism. FGF15 also participates in liver regeneration after partial hepatectomy inducing hepatocellular proliferation. FGF19 is overexpressed in a significant proportion of human hepatocellular carcinomas (HCC), and activation of its receptor FGFR4 promotes HCC cell growth. Here we addressed for the first time the role of endogenous Fgf15 in hepatocarcinogenesis. Fgf15(+/+) and Fgf15(-/-) mice were subjected to a clinically relevant model of liver inflammation and fibrosis-associated carcinogenesis. Fgf15(-/-) mice showed less and smaller tumors, and histological neoplastic lesions were also smaller than in Fgf15(+/+) animals. Importantly, ileal Fgf15 mRNA expression was enhanced in mice undergoing carcinogenesis, but at variance with human HCC it was not detected in liver or HCC tissues, while circulating FGF15 protein was clearly upregulated. Hepatocellular proliferation was also reduced in Fgf15(-/-) mice, which also expressed lower levels of the HCC marker alpha-fetoprotein (AFP). Interestingly, lack of FGF15 resulted in attenuated fibrogenesis. However, in vitro experiments showed that liver fibrogenic stellate cells were not direct targets for FGF15/FGF19. Conversely we demonstrate that FGF15/FGF19 induces the expression of the pro-fibrogenic and pro-tumorigenic connective tissue growth factor (CTGF) in hepatocytes. These findings suggest the existence of an FGF15-triggered CTGF-mediated paracrine action on stellate cells, and an amplification mechanism for the hepatocarcinogenic effects of FGF15 via CTGF production. In summary, our observations indicate that ileal FGF15 may contribute to HCC development in a context of chronic liver injury and fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
70 |
21
|
Deutsch EW, Lane L, Overall CM, Bandeira N, Baker MS, Pineau C, Moritz RL, Corrales F, Orchard S, Van Eyk JE, Paik YK, Weintraub ST, Vandenbrouck Y, Omenn GS. Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. J Proteome Res 2019; 18:4108-4116. [PMID: 31599596 DOI: 10.1021/acs.jproteome.9b00542] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 02/12/2025]
Abstract
The Human Proteome Organization's (HUPO) Human Proteome Project (HPP) developed Mass Spectrometry (MS) Data Interpretation Guidelines that have been applied since 2016. These guidelines have helped ensure that the emerging draft of the complete human proteome is highly accurate and with low numbers of false-positive protein identifications. Here, we describe an update to these guidelines based on consensus-reaching discussions with the wider HPP community over the past year. The revised 3.0 guidelines address several major and minor identified gaps. We have added guidelines for emerging data independent acquisition (DIA) MS workflows and for use of the new Universal Spectrum Identifier (USI) system being developed by the HUPO Proteomics Standards Initiative (PSI). In addition, we discuss updates to the standard HPP pipeline for collecting MS evidence for all proteins in the HPP, including refinements to minimum evidence. We present a new plan for incorporating MassIVE-KB into the HPP pipeline for the next (HPP 2020) cycle in order to obtain more comprehensive coverage of public MS data sets. The main checklist has been reorganized under headings and subitems, and related guidelines have been grouped. In sum, Version 2.1 of the HPP MS Data Interpretation Guidelines has served well, and this timely update to version 3.0 will aid the HPP as it approaches its goal of collecting and curating MS evidence of translation and expression for all predicted ∼20 000 human proteins encoded by the human genome.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
69 |
22
|
Sánchez-Góngora E, Ruiz F, Mingorance J, An W, Corrales FJ, Mato JM. Interaction of liver methionine adenosyltransferase with hydroxyl radical. FASEB J 1997; 11:1013-9. [PMID: 9337154 DOI: 10.1096/fasebj.11.12.9337154] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 02/12/2025]
Abstract
Liver methionine adenosyltransferase (MAT) plays a critical role in the metabolism of methionine converting this amino acid, in the presence of ATP, into S-adenosylmethionine. Here we report that hydrogen peroxide (H2O2), via generation of hydroxyl radical, inactivates liver MAT by reversibly and covalently oxidizing an enzyme site. In vitro studies using pure liver recombinant enzyme and mutants of MAT, where each of the 10 cysteine residues of the enzyme subunit were individually changed to serine by site-directed mutagenesis, identified cysteine 121 as the site of molecular interaction between H2O2 and liver MAT. Cysteine 121 is specific to the hepatic enzyme and is localized at a "flexible loop" over the active site cleft of MAT. In vivo studies, using wild-type Chinese hamster ovary (CHO) cells and CHO cells stably expressing liver MAT, demonstrate that the inactivation of MAT by H2O2 is specific to the hepatic enzyme, resulting from the modification of the cysteine residue 121, and that this effect is mediated by the generation of the hydroxyl radical. Our results suggest that H2O2-induced MAT inactivation might be the cause of reduced MAT activity and abnormal methionine metabolism observed in patients with alcoholic liver disease.
Collapse
|
|
28 |
69 |
23
|
Martínez-Fernández L, González-Muniesa P, Laiglesia LM, Sáinz N, Prieto-Hontoria PL, Escoté X, Odriozola L, Corrales FJ, Arbones-Mainar JM, Martínez JA, Moreno-Aliaga MJ. Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet-induced obese mice. FASEB J 2017; 31:2135-2145. [PMID: 28188173 DOI: 10.1096/fj.201600859r] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] [Imported: 02/12/2025]
Abstract
The beneficial actions of n-3 fatty acids on obesity-induced insulin resistance and inflammation have been related to the synthesis of specialized proresolving lipid mediators (SPMs) like resolvins. The aim of this study was to evaluate the ability of one of these SPMs, maresin 1 (MaR1), to reverse adipose tissue inflammation and/or insulin resistance in two models of obesity: diet-induced obese (DIO) mice and genetic (ob/ob) obese mice. In DIO mice, MaR1 (2 μg/kg; 10 d) reduced F4/80-positive cells and expression of the proinflammatory M1 macrophage phenotype marker Cd11c in white adipose tissue (WAT). Moreover, MaR1 decreased Mcp-1, Tnf-α, and Il-1β expression, upregulated adiponectin and Glut-4, and increased Akt phosphorylation in WAT. MaR1 administration (2 μg/kg; 20 d) to ob/ob mice did not modify macrophage recruitment but increased the M2 macrophage markers Cd163 and Il-10. MaR1 reduced Mcp-1, Tnf-α, Il-1β, and Dpp-4 and increased adiponectin gene expression in WAT. MaR1 treatment also improved the insulin tolerance test of ob/ob mice and increased Akt and AMPK phosphorylation in WAT. These data suggest that treatment with MaR1 can counteract the dysfunctional inflamed WAT and could be useful to improve insulin sensitivity in murine models of obesity.-Martínez-Fernández, L., González-Muniesa, P., Laiglesia, L. M., Sáinz, N., Prieto-Hontoria, P. L., Escoté, X., Odriozola, L., Corrales, F. J., Arbones-Mainar, J. M., Martínez, J. A., Moreno-Aliaga, M. J. Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet-induced obese mice.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
67 |
24
|
Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I, Howard JC, Gorvel JP. Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol 2006; 8:401-13. [PMID: 16469053 DOI: 10.1111/j.1462-5822.2005.00629.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 02/12/2025]
Abstract
The innate immune system recognizes microbes by characteristic molecules like the Gram-negative lipopolysaccharide (LPS). Lipid A (the LPS bioactive moiety) signals through toll-like receptors (TLRs) to induce pro-inflammatory molecules and small GTPases of the p47 family involved in intracellular pathogen control. We tested TNF-alpha and p47-GTPase induction in macrophages using classical LPSs [lipid As with glucosamine backbones, ester- and amide-linked C14:0(3-OH) and C12 to C16 in acyloxyacyl groups] of wild type and mutant Escherichia coli and Yersinia species and non-classical LPSs [lipid As with diaminoglucose, ester-linked 3-OH-fatty acids and C28:0(27-OH) and C23:0(29-OH) in acyloxyacyl groups] of plant endosymbionts (Rhizobium), intracellular pathogens (Brucella and Legionella) and phylogenetically related opportunistic bacteria (Ochrobactrum). Classical but not non-classical LPSs efficiently induced TNF-alpha, IIGP and IGTP p47-GTPase expression. Remarkably, the acyloxyacyl groups in classical LPSs necessary to efficiently induce TNF-alpha were not necessary to induce p47-GTPases, suggesting that different aspects of lipid A are involved in this differential induction. This was confirmed by using PPDM2, a non-endotoxic lipid A-structurally related synthetic glycolipid. Despite their different bioactivity, all types of LPSs signalled through TLR-4 and not through TLR-2. However, whereas TNF-alpha induction was myeloid differentiation factor 88 (MyD88)-dependent, that of p47-GTPases occurred via a MyD88-independent pathway. These observations show that different aspects of the LPS pathogen-associated molecular pattern may be triggering different signalling pathways linked to the same TLR. They also reinforce the hypothesis that non-classical lipid As act as virulence factors by favouring the escape from the innate immune system.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
66 |
25
|
Chen L, Zeng Y, Yang H, Lee TD, French SW, Corrales FJ, García-Trevijano ER, Avila MA, Mato JM, Lu SC. Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. FASEB J 2004; 18:914-6. [PMID: 15033934 DOI: 10.1096/fj.03-1204fje] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 02/12/2025]
Abstract
Methionine adenosyltransferase (MAT) is an essential enzyme because it catalyzes the formation of S-adenosylmethionine (SAMe), the principal biological methyl donor. Of the two genes that encode MAT, MAT1A is mainly expressed in adult liver and MAT2A is expressed in all extrahepatic tissues. Mice lacking MAT1A have reduced hepatic SAMe content and spontaneously develop hepatocellular carcinoma. The current study examined the influence of chronic hepatic SAMe deficiency on liver regeneration. Despite having higher baseline hepatic staining for proliferating cell nuclear antigen, MAT1A knockout mice had impaired liver regeneration after partial hepatectomy (PH) as determined by bromodeoxyuridine incorporation. This can be explained by an inability to up-regulate cyclin D1 after PH in the knockout mice. Upstream signaling pathways involved in cyclin D1 activation include nuclear factor kappaB (NFkappaB), the c-Jun-N-terminal kinase (JNK), extracellular signal-regulated kinases (ERKs), and signal transducer and activator of transcription-3 (STAT-3). At baseline, JNK and ERK are more activated in the knockouts whereas NFkappaB and STAT-3 are similar to wild-type mice. Following PH, early activation of these pathways occurred, but although they remained increased in wild-type mice, c-jun and ERK phosphorylation fell progressively in the knockouts. Hepatic SAMe levels fell progressively following PH in wild-type mice but remained unchanged in the knockouts. In culture, MAT1A knockout hepatocytes have higher baseline DNA synthesis but failed to respond to the mitogenic effect of hepatocyte growth factor. Taken together, our findings define a critical role for SAMe in ERK signaling and cyclin D1 regulation during regeneration and suggest chronic hepatic SAMe depletion results in loss of responsiveness to mitogenic signals.
Collapse
|
|
21 |
64 |