1
|
Shanley LJ, O'Malley D, Irving AJ, Ashford ML, Harvey J. Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J Physiol 2002; 545:933-944. [PMID: 12482897 PMCID: PMC2290718 DOI: 10.1113/jphysiol.2002.029488] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/01/2002] [Accepted: 10/02/2002] [Indexed: 12/16/2022] [Imported: 03/03/2025] Open
Abstract
The obese gene product, leptin is an important circulating satiety factor that regulates energy balance via its actions in the hypothalamus. However, leptin receptors are also expressed in brain regions not directly associated with energy homeostasis, such as the hippocampus. Here, leptin inhibits hippocampal neurones via activation of large conductance Ca(2+)-activated K(+) (BK) channels, a process that may be important in regulating neuronal excitability. We now show that leptin receptor labelling is expressed on somata, dendrites and axons, and is also concentrated at synapses in hippocampal cultures. In functional studies, leptin potently and reversibly reduces epileptiform-like activity evoked in lean, but not leptin-resistant Zucker fa/fa rats. Furthermore, leptin also depresses enhanced Ca(2+) levels evoked following Mg(2+) removal in hippocampal cultures. The ability of leptin to modulate this activity requires activation of BK, but not K(ATP), channels as the effects of leptin were mimicked by the BK channel activator NS-1619, and inhibited by the BK channel inhibitors, iberiotoxin and charybdotoxin. The signalling mechanisms underlying this process involve stimulation of phosphoinositide 3-kinase (PI 3-kinase), but not mitogen-activated protein kinase (MAPK), as two structurally unrelated inhibitors of PI 3-kinase, LY294002 and wortmannin, blocked the actions of leptin. These data indicate that leptin, via PI 3-kinase-driven activation of BK channels, elicits a novel mechanism for controlling neuronal excitability. As uncontrolled excitability in the hippocampus is one underlying cause of temporal lobe epilepsy, this novel action of leptin could provide an alternative therapeutic target in the management of epilepsy.
Collapse
|
research-article |
23 |
153 |
2
|
O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J. Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol Cell Neurosci 2007; 35:559-572. [PMID: 17618127 PMCID: PMC1995039 DOI: 10.1016/j.mcn.2007.05.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 04/24/2007] [Accepted: 05/01/2007] [Indexed: 01/23/2023] [Imported: 03/03/2025] Open
Abstract
Recent studies have implicated the hormone leptin in synaptic plasticity associated with neuronal development and learning and memory. Indeed, leptin facilitates hippocampal long-term potentiation and leptin-insensitive rodents display impaired hippocampal synaptic plasticity suggesting a role for endogenous leptin. Structural changes are also thought to underlie activity-dependent synaptic plasticity and this may be regulated by specific growth factors. As leptin is reported to have neurotrophic actions, we have examined the effects of leptin on the morphology and filopodial outgrowth in hippocampal neurons. Here, we demonstrate that leptin rapidly enhances the motility and density of dendritic filopodia and subsequently increases the density of hippocampal synapses. This process is dependent on the synaptic activation of NR2A-containing NMDA receptors and is mediated by the MAPK (ERK) signaling pathway. As dendritic morphogenesis is associated with activity-dependent changes in synaptic strength, the rapid structural remodeling of dendrites by leptin has important implications for its role in regulating hippocampal synaptic plasticity and neuronal development.
Collapse
|
research-article |
18 |
135 |
3
|
Gosselin RD, Gibney S, O'Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience 2009; 159:915-925. [PMID: 19000745 DOI: 10.1016/j.neuroscience.2008.10.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/03/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022] [Imported: 03/03/2025]
Abstract
A growing body of evidence from human postmortem and animal studies suggests that deficits in glial cell (particularly astrocytes) density and function, in limbic regions of the brain contribute to the etiology of depressive disorders. Despite the widespread use of Wistar-Kyoto (WKY) rat strain as a model of depression and stress susceptibility, there is a paucity of data examining whether alterations in brain astrocytic population are present in the model. In the present study, we investigated the expression of the astrocytic markers glial fibrillary acidic protein (GFAP) in various brain regions in WKY rats in comparison to Sprague-Dawley rats. A significant deficit in GFAP-immunoreactive cells was found in the prefrontal cortex region (infralimbic, prelimbic and anterior cingulate cortex), in the basolateral amygdala as well as in the hippocampus (CA3 and dentate gyrus) in WKY rat brain. No statistical difference was found in the other brain regions analyzed (insular cortex, somatosensory cortex, CA1 and callosal white matter). No difference was found in the total density of astrocytes (assessed by s-100beta immunoreactivity), neurons (determined by NeuN expression) or in the total number of cells in the regions of interest. A slight increase in the intensity of s-100beta immunoreactivity was observed. The lower expression of GFAP in WKY rats was further confirmed by Western-blot analysis. These results suggest that specific astrocytic deficits in GFAP expression in corticolimbic circuits may be a general correlate of depressive-like behavior in animal models in addition to human major depression. Moreover, they suggest that glial physiology may become a therapeutic target in depression and other stress-related conditions.
Collapse
|
|
16 |
120 |
4
|
O'Malley D, Reimann F, Simpson AK, Gribble FM. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes 2006; 55:3381-3386. [PMID: 17130483 PMCID: PMC1948974 DOI: 10.2337/db06-0531] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 03/03/2025]
Abstract
Specialized neurons within the hypothalamus have the ability to sense and respond to changes in ambient glucose concentrations. We investigated the mechanisms underlying glucose-triggered activity in glucose-excited neurons, using primary cultures of rat hypothalamic neurons monitored by fluorescence calcium imaging. We found that 35% (738 of 2,139) of the neurons were excited by increasing glucose from 3 to 15 mmol/l, but only 9% (6 of 64) of these glucose-excited neurons were activated by tolbutamide, suggesting the involvement of a ATP-sensitive K(+) channel-independent mechanism. alpha-Methylglucopyranoside (alphaMDG; 12 mmol/l), a nonmetabolizable substrate of sodium glucose cotransporters (SGLTs), mimicked the effect of high glucose in 67% of glucose-excited neurons, and both glucose- and alphaMDG-triggered excitation were blocked by Na(+) removal or by the SGLT inhibitor phloridzin (100 nmol/l). In the presence of 0.5 mmol/l glucose and tolbutamide, responses could also be triggered by 3.5 mmol/l alphaMDG, supporting a role for an SGLT-associated mechanism at low as well as high substrate concentrations. Using RT-PCR, we detected SGLT1, SGLT3a, and SGLT3b in both cultured neurons and adult rat hypothalamus. Our findings suggest a novel role for SGLTs in glucose sensing by hypothalamic glucose-excited neurons.
Collapse
|
research-article |
19 |
103 |
5
|
O'Malley D, Quigley EMM, Dinan TG, Cryan JF. Do interactions between stress and immune responses lead to symptom exacerbations in irritable bowel syndrome? Brain Behav Immun 2011; 25:1333-1341. [PMID: 21536124 DOI: 10.1016/j.bbi.2011.04.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 12/18/2022] [Imported: 08/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common, debilitating gastrointestinal (GI) disorder, with a worldwide prevalence of between 10% and 20%. This functional gut disorder is characterized by episodic exacerbations of a cluster of symptoms including abdominal pain, bloating and altered bowel habit, including diarrhea and/or constipation. Risk factors for the development of IBS include a family history of the disorder, childhood trauma and prior gastrointestinal infection. It is generally accepted that brain-gut axis dysfunction is fundamental to the development of IBS; however the underlying pathophysiological mechanisms remain elusive. Additional considerations in comprehending the chronic relapsing pattern that typifies IBS symptoms are the effects of both psychosocial and infection-related stresses. Indeed, co-morbidity with mood disorders such as depression and anxiety is common in IBS. Accumulating evidence points to a role for a maladaptive stress response in the initiation, persistence and severity of IBS-associated symptom flare-ups. Moreover, mechanistically, the stress-induced secretion of corticotropin-releasing factor (CRF) is known to mediate changes in GI function. Activation of the immune system also appears to be important in the generation of IBS symptoms and increasing evidence now implicates low-grade inflammation or immune activation in IBS pathophysiology. There is a growing body of research focused on understanding at a molecular, cellular and in vivo level, the relationship between the dysregulated stress response and immune system alterations (either individually or in combination) in the etiology of IBS and to the occurrence of symptoms.
Collapse
|
Review |
14 |
101 |
6
|
Harvey J, Shanley LJ, O'Malley D, Irving AJ. Leptin: a potential cognitive enhancer? Biochem Soc Trans 2005; 33:1029-1032. [PMID: 16246038 DOI: 10.1042/bst20051029] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] [Imported: 03/03/2025]
Abstract
It is well documented that the hormone leptin signals information regarding the status of fat stores to hypothalamic nuclei, which in turn control feeding behaviour and body weight. However, leptin and its receptor are widely expressed in many extra-hypothalamic brain regions, including hippocampus, brain stem and cerebellum. Moreover, evidence is accumulating that leptin has other neuronal functions that are unrelated to its effects on energy homeostasis. Indeed a role for leptin in neuronal development has been suggested as leptin-deficient rodents display abnormal brain development and leptin actively participates in the development of the hypothalamus. In the hippocampus, leptin is a potential cognitive enhancer as genetically obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Moreover, direct administration of leptin into the hippocampus can facilitate hippocampal LTP (long-term potentiation) in vivo and improve memory processing in mice. At the cellular level, we have also shown that leptin has the capacity to convert short-term potentiation into LTP. Here, we review the data that leptin influences hippocampal synaptic plasticity via enhancing NMDA (N-methyl-D-aspartate) receptor function. We also provide evidence that rapid trafficking of NMDA receptors to the plasma membrane may underlie the effects of leptin on excitatory synaptic strength.
Collapse
|
Review |
20 |
95 |
7
|
O'Malley D, Julio-Pieper M, Gibney SM, Dinan TG, Cryan JF. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress 2010; 13:114-122. [PMID: 20214436 DOI: 10.3109/10253890903067418] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 03/03/2025] Open
Abstract
Stress and anxiety are important causal and exacerbating factors in functional gastro-intestinal (GI) disorders such as irritable bowel syndrome. Stress affects GI motility, faecal transit and visceral pain sensitivity. Additionally, permeability and function of the gut epithelium, which acts as a barrier between the external environment and the body's internal milieu is altered by stress. However, the effects of an enhanced stress response on colonic morphology require further investigation. We have used two animal models of stress and anxiety, the maternally separated (MS) and Wistar Kyoto (WKY) rats to examine colonic morphology. These rats exhibit increased anxiety behaviours, visceral hypersensitivity and increased stress-induced defecation in the open field arena. At a morphological level, increased mucus secretion and an associated elevation in the number of mucosal goblet cells was observed in the high anxiety rats. Additionally, the mucosal layer was flattened in MS and WKY rats, a finding indicative of mild mucosal damage. Furthermore, the muscular layer of the distal colon in these animals was thickened, an observation that may have implications for faecal transit and visceral pain perception. This study provides evidence of altered colonic function and morphology in two animal models with a heightened response to stress.
Collapse
|
|
15 |
95 |
8
|
Gameiro A, Reimann F, Habib AM, O'Malley D, Williams L, Simpson AK, Gribble FM. The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol 2005; 569:761-772. [PMID: 16223757 PMCID: PMC1464262 DOI: 10.1113/jphysiol.2005.098962] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/19/2005] [Accepted: 10/12/2005] [Indexed: 12/19/2022] [Imported: 03/03/2025] Open
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1) is released from intestinal L-cells following food ingestion. Its secretion is triggered by a range of nutrients, including fats, carbohydrates and proteins. We reported previously that Na(+)-dependent glutamine uptake triggered electrical activity and GLP-1 release from the L-cell model line GLUTag. However, whereas alanine also triggered membrane depolarization and GLP-1 secretion, the response was Na+ independent. A range of alanine analogues, including d-alanine, beta-alanine, glycine and l-serine, but not d-serine, triggered similar depolarizing currents and elevation of intracellular [Ca2+], a sensitivity profile suggesting the involvement of glycine receptors. In support of this idea, glycine-induced currents and GLP-1 release were blocked by strychnine, and currents showed a 58.5 mV shift in reversal potential per 10-fold change in [Cl-], consistent with the activation of a Cl(-)-selective current. GABA, an agonist of related Cl- channels, also triggered Cl- currents and secretion, which were sensitive to picrotoxin. GABA-triggered [Ca2+]i increments were abolished by bicuculline and partially impaired by (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA), suggesting the involvement of both GABA(A) and GABA(C) receptors. Expression of GABA(A), GABA(C) and glycine receptor subunits was confirmed by RT-PCR. Glycine-triggered GLP-1 secretion was impaired by bumetanide but not bendrofluazide, suggesting that a high intracellular [Cl-] maintained by Na(+)-K(+)-2Cl- cotransporters is necessary for the depolarizing response to glycine receptor ligands. Our results suggest that GABA and glycine stimulate electrical activity and GLP-1 release from GLUTag cells by ligand-gated ion channel activation, a mechanism that might be important in responses to endogenous ligands from the enteric nervous system or dietary sources.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Calcium/metabolism
- Cell Line, Tumor
- Chlorides/metabolism
- Dose-Response Relationship, Drug
- GABA Antagonists/pharmacology
- Glucagon-Like Peptide 1/metabolism
- Glycine/pharmacology
- Ion Channel Gating/drug effects
- Mice
- Neurotransmitter Agents/pharmacology
- RNA, Messenger/metabolism
- Receptors, GABA/drug effects
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Sodium-Potassium-Chloride Symporters/drug effects
- Sodium-Potassium-Chloride Symporters/metabolism
- Strychnine/pharmacology
- gamma-Aminobutyric Acid/pharmacology
Collapse
|
research-article |
20 |
81 |
9
|
O'Malley D, Dinan TG, Cryan JF. Neonatal maternal separation in the rat impacts on the stress responsivity of central corticotropin-releasing factor receptors in adulthood. Psychopharmacology (Berl) 2011; 214:221-229. [PMID: 20499051 DOI: 10.1007/s00213-010-1885-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/07/2010] [Indexed: 12/30/2022] [Imported: 03/03/2025]
Abstract
RATIONALE Adverse events during early developmental stages can induce persistent changes in central stress circuits, leading to increased stress sensitivity in adulthood, as is apparent in the maternally separated (MS) rat model. It is widely accepted that the stress peptide corticotropin-releasing factor (CRF) by binding to CRF1 and 2 receptors (CRFR1 and CRFR2) is key to these phenotypic changes. OBJECTIVES These studies aim to investigate the effects of maternal separation on central expression of CRFR1 and CRFR2 under basal conditions and following an acute psychological stressor in adulthood. METHODS Western blotting techniques were employed to examine changes in receptor expression in the hypothalamus, pre-frontal and frontal cortices, amygdala and hippocampus of MS rats as compared to controls. Additionally, the effects of an acute psychological stressor (open field exposure) on these changes were assessed. RESULTS Under basal conditions, CRFR1 was elevated in the hypothalamus of MS rats. Exposure to an acute stress had limited effects in non-separated animals but induced significant changes in CRFR1 in the hypothalamus, pre-frontal cortex and hippocampus of MS rats. Additionally, stress-induced increases in CRFR2 were observed in the amygdala of MS rats. CONCLUSIONS These data demonstrate the discrete and significant alterations in how the brain CRF system responds to acute stress following maternal separation. These studies illustrate that early life perturbations induce persistent changes in central CRF receptor expression and increased sensitivity to stress, which may contribute to the stress-related behavioural changes observed in these animals.
Collapse
|
|
14 |
63 |
10
|
Buckley MM, O'Halloran KD, Rae MG, Dinan TG, O'Malley D. Modulation of enteric neurons by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome. J Physiol 2014; 592:5235-5250. [PMID: 25260633 PMCID: PMC4262336 DOI: 10.1113/jphysiol.2014.279968] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
The search for effective therapeutic strategies for irritable bowel syndrome (IBS) is hampered by an incomplete understanding of its underlying pathophysiology. Stress and altered plasma cytokine profiles indicative of immune activation are characteristic of the disorder. The neuromodulatory effects of interleukin-6 (IL-6) and corticotropin-releasing factor receptor (CRFR) 1 in visceral pain and stress-induced defecation in the Wistar Kyoto (WKY) rat model of IBS were investigated. Sprague Dawley and WKY rats were administered anti-IL-6 receptor antibodies (xIL-6R, 0.5 mg kg(-1) i.p) with or without the CRFR1 antagonist antalarmin (10 mg kg(-1) i.p). Post-intervention, the pain threshold to colorectal distension and stress-induced faecal output were compared and changes in colonic mucosal protein expression were investigated. The neuro-stimulatory effects of IBS plasma on the myenteric plexus is mediated by IL-6, IL-8 and CRF. The stimulatory effects of these soluble factors on myenteric neuron excitability and colonic contractility were additive. Moreover, inhibition of IL-6 and CRF1 receptors in vivo in the WKY IBS rat model normalized stress-induced defecation (P < 0.01) and visceral pain sensitivity (P < 0.001) with associated changes in protein expression of the tight junction proteins occludin and claudin 2, the visceral pain-associated T-type calcium channel CaV3.2 and intracellular signalling molecules STAT3, SOCS3 and ERK1/2. These studies demonstrate the additive effects of immune and stress factors on myenteric neuronal excitability. Moreover, combined targeting of peripheral IL-6 and CRF1 receptors is effective in alleviating IBS-like symptoms in the WKY rat. Thus, crosstalk between stress and immune factors during IBS flares may underlie symptom exacerbation.
Collapse
|
research-article |
11 |
58 |
11
|
O'Malley D, Liston M, Hyland NP, Dinan TG, Cryan JF. Colonic soluble mediators from the maternal separation model of irritable bowel syndrome activate submucosal neurons via an interleukin-6-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2011; 300:G241-G252. [PMID: 21109592 DOI: 10.1152/ajpgi.00385.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 03/03/2025]
Abstract
Irritable bowel syndrome (IBS) is characterized by episodic bouts of abdominal pain, bloating, and altered bowel habit. Accumulating evidence has linked immune activation with IBS, including reports of increases in circulating levels of the proinflammatory cytokine interleukin (IL)-6. However, it is unknown whether IL-6 contributes directly to disease manifestation. As enteric nervous activity mediates motility and secretory function, the aims of this study were to determine the effects of IL-6 on submucosal neurons and related gastrointestinal (GI) function. In these studies, we examined the colons of maternally separated (MS) rats, which exhibit elevated circulating levels of IL-6 in addition to GI dysfunction. To our knowledge, these studies are the first to provide evidence of the sensitivity of submucosal neurons to colonic secretions from MS rats (n = 50, P < 0.05), thus recapitulating clinical biopsy data. Moreover, we demonstrated that the excitatory action is IL-6 dependent. Thereafter, the impact of IL-6 on neuronal and glial activation and absorpto/secretory function was pharmacologically characterized. Other proinflammatory cytokines including IL-8 (n = 30, P > 0.05), IL-1β (n = 56, P > 0.05), and TNF-α (n = 56, P > 0.05) excited fewer neurons. Both muscarinic and nicotinic cholinergic receptors participate in the effect and cause downstream activation of ERK, JAK-STAT, and NF-κB signaling cascades. Functionally, IL-6 increases transepithelial resistance and enhances neurally and cholinergically mediated ion transport. These data provide a role for IL-6 in colonic secretory functions and relate these effects to GI dysfunction in an animal model of IBS, thereby elucidating a potential relationship between circulating levels of IL-6 and aberrant GI function.
Collapse
|
|
14 |
57 |
12
|
O'Malley D, Irving AJ, Harvey J. Leptin-induced dynamic alterations in the actin cytoskeleton mediate the activation and synaptic clustering of BK channels. FASEB J 2005; 19:1917-1919. [PMID: 16166199 DOI: 10.1096/fj.05-4166fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] [Imported: 03/03/2025]
Abstract
Phosphoinositide 3-kinase (PI3-kinase) has been shown to link leptin receptor activation to stimulation of large conductance Ca2+-activated K+ (BK) channels and subsequent inhibition of hippocampal epileptiform-like activity. However, the downstream targets of PI3-kinase in this action of leptin are unknown. Here we show that BK channel activation by leptin is dependent on the actin cytoskeleton, as it is prevented by actin filament stabilization and mimicked by actin disruption. Fluorescent labeling of polymerized actin filaments revealed that leptin promotes the rapid rearrangement of actin filaments via activation of PI 3-kinase; an action paralleled by discrete increases in PtdIns(3,4,5)P3 immunoreactivity in close proximity to BK channels. After leptin exposure, there was also an actin-dependent increase in the association of BK channel immunoreactivity with synaptic markers. These data are consistent with the notion that leptin activates BK channels via PI 3-kinase-dependent reorganization of actin filaments and subsequent clustering of BK channels at synapses.
Collapse
|
|
20 |
56 |
13
|
Manning J, O'Malley D. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil 2015; 36:155-167. [PMID: 25669899 DOI: 10.1007/s10974-015-9406-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022] [Imported: 03/03/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-chromosome linked recessive disorder caused by the truncation or deletion of the dystrophin gene. The most widely used animal model of this disease is the dystrophin-deficient mdx mouse which was first discovered 30 years ago. Despite its extensive use in DMD research, no effective treatment has yet been developed for this devastating disease. This review explores what we have learned from this mouse model regarding the pathophysiology of DMD and asks if it has a future in providing a better more thorough understanding of this disease or if it will bring us any closer to improving the outlook for DMD patients.
Collapse
|
Review |
10 |
53 |
14
|
O'Malley D, Shanley LJ, Harvey J. Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 2003; 44:855-863. [PMID: 12726817 DOI: 10.1016/s0028-3908(03)00081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 03/03/2025]
Abstract
In this study, we have used a combination of immunocytochemical and Ca(2+) imaging techniques to determine the functional localisation of insulin receptors as well as the potential role for insulin in modulating hippocampal synaptic activity. Comparison of insulin receptor and MAP2 labelling demonstrated extensive insulin receptor immunoreactivity on the soma and dendrites of cultured hippocampal neurones. Dual labelling with synapsin 1 also showed punctate insulin receptor labelling associated with synapses. In functional studies, insulin inhibited spontaneous Ca(2+) oscillations evoked in cultured hippocampal neurones following Mg(2+) removal. This action of insulin was mimicked by the ATP-sensitive K(+) (K(ATP)) channel opener diazoxide or the large conductance Ca(2+)-activated K(+) (BK) channel activator NS-1619. Furthermore, application of the K(ATP) channel blocker glybenclamide or the BK channel inhibitors iberiotoxin or charybdotoxin attenuated the actions of insulin, whereas prior incubation with a combination of glybenclamide and iberiotoxin completely blocked insulin action. The ability of insulin to modulate the Ca(2+) oscillations was reduced by the inhibitors of MAPK activation PD 98059 and U0126, but not by the PI 3-kinase inhibitors LY 294002 or wortmannin, indicating that a MAPK-driven process underlies insulin action. In conclusion, insulin inhibits spontaneous Ca(2+) oscillations via a process involving MAPK-driven activation of BK and K(ATP) channels. This process may be a useful therapeutic target for the treatment of epilepsy and certain neurodegenerative diseases.
Collapse
|
|
22 |
51 |
15
|
Buckley MM, O’Brien R, Brosnan E, Ross RP, Stanton C, Buckley JM, O’Malley D. Glucagon-Like Peptide-1 Secreting L-Cells Coupled to Sensory Nerves Translate Microbial Signals to the Host Rat Nervous System. Front Cell Neurosci 2020; 14:95. [PMID: 32425756 PMCID: PMC7203556 DOI: 10.3389/fncel.2020.00095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
An intact gut epithelium preserves the immunological exclusion of "non-self" entities in the external environment of the gut lumen. Nonetheless, information flows continuously across this interface, with the host immune, endocrine, and neural systems all involved in monitoring the luminal environment of the gut. Both pathogenic and commensal gastrointestinal (GI) bacteria can modulate centrally-regulated behaviors and brain neurochemistry and, although the vagus nerve has been implicated in the microbiota-gut-brain signaling axis, the cellular and molecular machinery that facilitates this communication is unclear. Studies were carried out in healthy Sprague-Dawley rats to understand cross-barrier communication in the absence of disease. A novel colonic-nerve electrophysiological technique was used to examine gut-to-brain vagal signaling by bacterial products. Calcium imaging and immunofluorescent labeling were used to explore the activation of colonic submucosal neurons by bacterial products. The findings demonstrate that the neuromodulatory molecule, glucagon-like peptide-1 (GLP-1), secreted by colonic enteroendocrine L-cells in response to the bacterial metabolite, indole, stimulated colonic vagal afferent activity. At a local level indole modified the sensitivity of submucosal neurons to GLP-1. These findings elucidate a cellular mechanism by which sensory L-cells act as cross-barrier signal transducers between microbial products in the gut lumen and the host peripheral nervous system.
Collapse
|
research-article |
5 |
37 |
16
|
O'Malley D, Dinan TG, Cryan JF. Alterations in colonic corticotropin-releasing factor receptors in the maternally separated rat model of irritable bowel syndrome: differential effects of acute psychological and physical stressors. Peptides 2010; 31:662-670. [PMID: 20096320 DOI: 10.1016/j.peptides.2010.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 12/21/2022] [Imported: 08/29/2023]
Abstract
Early-life stress is a key predisposing factor to the development of functional gastrointestinal (GI) disorders. Thus, changes in stress-related molecular substrates which influence colonic function may be important in understanding the pathophysiology of such disorders. Activation of peripheral corticotropin-releasing factor (CRF) receptors is thought to be important in the maintenance of GI function homeostasis. Therefore, immunofluorescent and Western blotting techniques were utilized to investigate colonic expression of CRF receptors in the maternal separation (MS) model as compared to non-separated (NS) rats. Receptor expression was also assessed following exposure to two different acute stressors, the open field (OF) and colorectal distension (CRD). Immunofluorescent dual-labeling demonstrated increased activation of both CRFR1 (MS: 79.6+/-4.4% vs. NS: 43.8+/-6.8%, p<0.001) and CRFR2 (MS: 65.9+/-3.2% vs. NS: 51.6+/-5.8%, p<0.05) positive cells in MS rats. Protein expression of CRFR1 and CRFR2 in the proximal colon was similar under baseline conditions and not affected by exposure to an OF stressor in either cohort. In contrast, distal CRFR1 and CRFR2 levels were higher in MS rats but were significantly reduced post OF stress. Moreover, decreases in expression of CRFR1 in the proximal and distal colon of NS rats following exposure to CRD were blunted in MS rats. CRD also caused an increase in the functional isoform of CRFR2 in the distal colon of MS rats with no effect in NS colons. This study demonstrates that acute stressors alter colonic CRF receptor expression in a manner that is determined by the underlying stress sensitivity of the subject.
Collapse
|
|
15 |
37 |
17
|
o'malley D, Julio-Pieper M, Gibney SM, Gosselin RD, Dinan TG, Cryan JF. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat. Neurogastroenterol Motil 2010; 22:301-311. [PMID: 19807869 DOI: 10.1111/j.1365-2982.2009.01412.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] [Imported: 03/03/2025]
Abstract
BACKGROUND A growing body of data implicates increased life stresses with the initiation, persistence and severity of symptoms associated with functional gut disorders such as irritable bowel syndrome (IBS). Activation of central and peripheral corticotropin-releasing factor (CRF) receptors is key to stress-induced changes in gastrointestinal (GI) function. METHODS This study utilised immunofluorescent and Western blotting techniques to investigate colonic expression of CRF receptors in stress-sensitive Wistar Kyoto (WKY) and control Sprague Dawley (SD) rats. KEY RESULTS No intra-strain differences were observed in the numbers of colonic CRFR1 and CRFR2 positive cells. Protein expression of functional CRFR1 was found to be comparable in control proximal and distal colon samples. Sham levels of CRFR1 were also similar in the proximal colon but significantly higher in WKY distal colons (SD: 0.38 +/- 0.14, WKY: 2.06 +/- 0.52, P < 0.01). Control levels of functional CRFR2 were similar between strains but sham WKYs samples had increased CRFR2 in both the proximal (SD: 0.88 +/- 0.21, WKY: 1.8 +/- 0.18, P < 0.001) and distal (SD: 0.18 +/- 0.08, WKY: 0.94 +/- 0.32, P < 0.05) regions. Exposure to open field (OF) and colorectal distension (CRD) stressors induced decreased protein expression of CRFR1 in SD proximal colons, an effect that was blunted in WKYs. CRD stimulated decreased expression of CRFR2 in WKY rats alone. Distally, CRFR1 is decreased in WKY rats following CRD but not OF stress without any apparent changes in SD rats. CONCLUSIONS & INFERENCES This study demonstrates that psychological and physical stressors alter colonic CRF receptor expression and further support a role for local colonic CRF signalling in stress-induced changes in GI function.
Collapse
|
|
15 |
36 |
18
|
Hyland NP, O'Mahony SM, O'Malley D, O'Mahony CM, Dinan TG, Cryan JF. Early-life stress selectively affects gastrointestinal but not behavioral responses in a genetic model of brain-gut axis dysfunction. Neurogastroenterol Motil 2015; 27:105-113. [PMID: 25443141 DOI: 10.1111/nmo.12486] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/15/2014] [Indexed: 12/16/2022] [Imported: 03/03/2025]
Abstract
BACKGROUND Early-life stress and a genetic predisposition to display an anxiety- and depressive-like phenotype are associated with behavioral and gastrointestinal (GI) dysfunction. Animals exposed to early-life stress, and those genetically predisposed to display anxiety or depressive behaviors, have proven useful tools in which to study stress-related GI disorders, such as irritable bowel syndrome (IBS). IBS is a heterogeneous disorder, and likely a consequence of both genetic and environmental factors. However, the combined effects of early-life stress and a genetic predisposition to display anxiety- and depression-like behaviors on GI function have not been investigated. METHODS We assessed the effect of maternal separation (MS) on behavioral and GI responses in WKY animals relative to a normo-anxious reference strain. KEY RESULTS Both non-separated (NS) WKY and WKY-MS animals displayed anxiety-like responses in the open-field test and depressive-like behaviors in the forced swim test relative to Sprague-Dawley rats. However, MS had no further influence on anxiety- and depressive-like behaviors exhibited by this stress-prone rat strain. Similarly, corticosterone levels measured after the OFT were insensitive to MS in WKY animals. However, WKY-MS displayed significantly increased colonic visceral hypersensitivity, fecal output, and altered colonic cholinergic sensitivity. CONCLUSIONS & INFERENCES Our data suggest that early-life stress, on the background of a genetic predisposition to display an anxiety- and depressive-like phenotype, selectively influences GI function rather than stress-related behaviors. Thus, our findings highlight the importance of genetic predisposition on the outcome of early-life adversity on GI function.
Collapse
|
|
10 |
33 |
19
|
O'Malley D, Harvey J. MAPK-dependent actin cytoskeletal reorganization underlies BK channel activation by insulin. Eur J Neurosci 2007; 25:673-682. [PMID: 17298596 DOI: 10.1111/j.1460-9568.2007.05347.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 03/03/2025]
Abstract
Numerous brain regions are enriched with insulin and insulin receptors, and several lines of evidence indicate that insulin is an important modulator of neuronal function. Indeed, recent studies have demonstrated that insulin inhibits hippocampal epileptiform-like activity, in part by activating large-conductance Ca2+-activated potassium (BK) channels. Moreover, the mitogen-activated protein kinase (MAPK) signalling cascade has been found to couple insulin to BK channel activation. However, the cellular events downstream of MAPK that underlie this action of insulin are unknown. Here we demonstrate that in hippocampal neurons, BK channel activation by insulin is blocked by actin filament stabilization, suggesting that this process is dependent on the actin cytoskeleton. Stabilizing actin filaments also markedly attenuated the ability of insulin to inhibit the aberrant hippocampal synaptic activity evoked following Mg2+ removal. Insulin also promoted rapid reorganization of fluorescently labelled polymerized actin filaments; an action that was prevented by inhibitors of MAPK activation. Moreover, in parallel studies, insulin increased the level of phospho-MAPK immunostaining in hippocampal neurons. These data are consistent with BK channel activation by insulin involving MAPK-dependent alterations in actin dynamics. This process may have important implications for the role of insulin in regulating hippocampal excitability.
Collapse
|
|
18 |
33 |
20
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-1315. [PMID: 27385793 PMCID: PMC5023417 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] [Imported: 08/29/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
|
Review |
9 |
32 |
21
|
O'Malley D, Cryan JF, Dinan TG. Crosstalk between interleukin-6 and corticotropin-releasing factor modulate submucosal plexus activity and colonic secretion. Brain Behav Immun 2013; 30:115-124. [PMID: 23369733 DOI: 10.1016/j.bbi.2013.01.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/10/2013] [Accepted: 01/18/2013] [Indexed: 01/01/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disorder of the gut with symptoms such as diarrhoea, constipation, abdominal pain and bloating, that are frequently exacerbated by stress. Circulating levels of the pro-inflammatory cytokine, interleukin-6 (IL-6), which can activate colonic enteric neurons, are elevated in IBS patients. These studies aim to explore the relationship between IL-6 and the stress peptide, corticotropin-releasing factor (CRF) in colonic submucosal neurons. METHODS Calcium imaging, Ussing chamber electrophysiology and immunohistochemistry were conducted on rat distal colons to investigate potential crosstalk between IL-6 and CRF. KEY RESULTS Colonic secretions from the maternal separation rat model of IBS stimulated increases in intracellular calcium in naïve submucosal neurons via CRF1 receptors (n=15, p<0.05). Moreover, IL-6 (n=50, p<0.01) but not IL-1β (n=46, p>0.05) or TNFα (n=46, p>0.05) potentiated the CRF-evoked calcium response. CRF (1μM, 1h, n=5) stimulation also induced colonic secretion of IL-6 and inhibited the pro-secretory effects of IL-6 on colonic ion transfer (n=12). CONCLUSIONS AND INFERENCES These studies demonstrate the modulatory effects of CRF on colonic IL-6 secretion, neuronal activation and secretory function. These findings may provide an insight into the molecular mechanisms underlying symptom flares in IBS during periods of high stress.
Collapse
|
|
12 |
28 |
22
|
O'Malley D, Dinan TG, Cryan JF. Altered expression and secretion of colonic interleukin-6 in a stress-sensitive animal model of brain-gut axis dysfunction. J Neuroimmunol 2011; 235:48-55. [PMID: 21565410 DOI: 10.1016/j.jneuroim.2011.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 12/21/2022] [Imported: 08/29/2023]
Abstract
Interleukin-6 (IL-6) can activate gastrointestinal submucosal neurons, with associated implications for motility and secretory function. Patients with irritable bowel syndrome (IBS) have elevated levels of circulating IL-6. Colons from the Wistar Kyoto (WKY) rat model of IBS secrete more IL-6 (12.84 pg/ml) than control Sprague Dawley (SD) colons (5.55 pg/ml) and WKY secretions stimulated calcium responses in naïve submucosal neurons of greater amplitude. Recombinant IL-6 activated more submucosal neurons in WKY tissue preparations (p<0.05). These data demonstrate that WKY colonic supernatants activate submucosal neurons using an IL-6-dependent mechanism, thereby providing a link between gastrointestinal dysfunction and alterations in IL-6 levels.
Collapse
|
Comparative Study |
14 |
27 |
23
|
O'Malley D, Harvey J. Insulin activates native and recombinant large conductance Ca(2+)-activated potassium channels via a mitogen-activated protein kinase-dependent process. Mol Pharmacol 2004; 65:1352-1363. [PMID: 15155829 DOI: 10.1124/mol.65.6.1352] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 03/03/2025] Open
Abstract
Evidence is accumulating that, in addition to regulating peripheral energy metabolism, insulin is an important modulator of neuronal function. Indeed, high levels of insulin and insulin receptors are expressed in several brain regions including the hippocampus. We have shown previously that insulin inhibits aberrant synaptic activity in hippocampal neurons via activation of large conductance Ca(2+)-activated K+ (BK) channels. In this study, we have examined further the effects of insulin on native hippocampal and recombinant (hSlo) BK channels expressed in human embryonic kidney (HEK) 293 cells. Pipette or bath application of insulin evoked a rapid increase in hippocampal BK channel activity, an action caused by activation of insulin receptors because insulin-like growth factor 1 (IGF-1) failed to mimic insulin action. In parallel studies, insulin, applied via the pipette or bath, also activated hSlo channels expressed in HEK293 cells. Although phosphoinositide 3-kinase is a key component of insulin and IGF-1 receptor signaling pathways, activation of this lipid kinase does not underlie the effects of insulin because neither 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) nor wortmannin inhibited or reversed insulin action. However, specific inhibitors of mitogen-activated protein kinase (MAPK) activation, 2'-amino-3'-methoxyflavone (PD98059) or 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene (U0126), attenuated insulin action, indicating that a MAPK-dependent mechanism underlies this process. Furthermore, insulin activation of this pathway enhances BK channel activity by shifting the Ca(2+)-sensitivity such that BK channels are active at more hyperpolarized membrane potentials. Because postsynaptic BK channels are important regulators of neuronal hyperexcitability, insulin-induced activation of BK channels, via stimulation of a MAPK-dependent pathway, may be an important process for regulating hippocampal function under normal and pathological conditions.
Collapse
|
|
21 |
26 |
24
|
Buckley MM, O’Mahony SM, O’Malley D. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2014; 20:8846-8858. [PMID: 25083058 PMCID: PMC4112880 DOI: 10.3748/wjg.v20.i27.8846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares. Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.
Collapse
|
Topic Highlight |
11 |
23 |
25
|
Manning J, Kulbida R, Rai P, Jensen L, Bouma J, Singh SP, O'Malley D, Yilmazer-Hanke D. Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy. Exp Physiol 2014; 99:1370-1386. [PMID: 24972834 DOI: 10.1113/expphysiol.2014.079475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] [Imported: 08/29/2023]
Abstract
Mutations in the structural protein dystrophin underlie muscular dystrophies characterized by progressive deterioration of muscle function. Dystrophin-deficient mdx mice are considered a model for Duchenne muscular dystrophy (DMD). Individuals with DMD are also susceptible to mood disorders, such as depression and anxiety. Therefore, the study objectives were to investigate the effects of the tricyclic antidepressant amitriptyline on mood, learning, central cytokine expression and skeletal muscle inflammation in mdx mice. Amitriptyline-induced effects (10 mg kg(-1) daily s.c. injections, 25 days) on the behaviour of mdx mice were investigated using the open field arena and tail suspension tests. The effects of chronic amitriptyline treatment on inflammatory markers were studied in the muscle and plasma of mdx mice, and mood-associated monoamine and cytokine concentrations were measured in the amygdala, hippocampus, prefrontal cortex, striatum, hypothalamus and midbrain. The mdx mice exhibited increased levels of anxiety and depressive-like behaviour compared with wild-type mice. Amitriptyline treatment had anxiolytic and antidepressant effects in mdx mice associated with elevations in serotonin levels in the amygdala and hippocampus. Inflammation in mdx skeletal muscle tissue was also reduced following amitriptyline treatment as indicated by decreased immune cell infiltration of muscle and lower levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the forelimb flexors. Interleukin-6 mRNA expression was remarkably reduced in the amygdala of mdx mice by chronic amitriptyline treatment. Positive effects of amitriptyline on mood, in addition to its anti-inflammatory effects in skeletal muscle, may make it an attractive therapeutic option for individuals with DMD.
Collapse
MESH Headings
- Amitriptyline/pharmacology
- Amitriptyline/therapeutic use
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Antidepressive Agents, Tricyclic/therapeutic use
- Behavior, Animal/drug effects
- Depression/drug therapy
- Depression/psychology
- Disease Models, Animal
- Inflammation/drug therapy
- Inflammation/pathology
- Learning/drug effects
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/psychology
Collapse
|
|
11 |
23 |