1
|
Neri M, Fineschi V, Di Paolo M, Pomara C, Riezzo I, Turillazzi E, Cerretani D. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol 2015; 13:26-36. [PMID: 23628007 DOI: 10.2174/15701611113119990003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022] [Imported: 10/18/2023]
Abstract
Oxidative stress in heart failure or during ischemia/reperfusion occurs as a result of the excessive generation or accumulation of free radicals or their oxidation products. Free radicals formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks. Oxidative stress is a condition in which oxidant metabolites exert toxic effects because of their increased production or an altered cellular mechanism of protection. In the early phase of acute heart ischemia cytokines have the feature to be functional pleiotropy and redundancy, moreover, several cytokines exert similar and overlapping actions on the same cell type and one cytokine shows a wide range of biological effects on various cell types. Activation of cytokine cascades in the infarcted myocardium was established in numerous studies. In experimental models of myocardial infarction, induction and release of the pro-inflammatory cytokines like TNF-α (Tumor Necrosis Factor α), IL-1β (Interleukin- 1β) and IL-6 (Interleukin-6) and chemokines are steadily described. The current review examines the role of oxidative stress and pro-inflammatory cytokines response following acute myocardial infarction and explores the inflammatory mechanisms of cardiac injury.
Collapse
|
Review |
10 |
207 |
2
|
Maiese A, Manetti AC, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Autopsy findings in COVID-19-related deaths: a literature review. Forensic Sci Med Pathol 2021; 17:279-296. [PMID: 33026628 PMCID: PMC7538370 DOI: 10.1007/s12024-020-00310-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
Although many clinical reports have been published, little is known about the pathological post-mortem findings from people who have died of the novel coronavirus disease. The need for postmortem information is urgent to improve patient management of mild and severe illness, and treatment strategies. The present systematic review was carried out according to the Preferred Reporting Items for Systematic Review (PRISMA) standards. A systematic literature search and a critical review of the collected studies were conducted. An electronic search of PubMed, Science Direct Scopus, Google Scholar, and Excerpta Medica Database (EMBASE) from database inception to June 2020 was performed. We found 28 scientific papers; the total amount of cases is 341. The major histological feature in the lung is diffuse alveolar damage with hyaline membrane formation, alongside microthrombi in small pulmonary vessels. It appears that there is a high incidence of deep vein thrombosis and pulmonary embolism among COVID-19 decedents, suggesting endothelial involvement, but more studies are needed. A uniform COVID-19 post-mortem diagnostic protocol has not yet been developed. In a time in which international collaboration is essential, standardized diagnostic criteria are fundamental requirements.
Collapse
|
Systematic Review |
4 |
130 |
3
|
Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18122600. [PMID: 29207487 PMCID: PMC5751203 DOI: 10.3390/ijms18122600] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Collapse
|
Review |
8 |
111 |
4
|
Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E, Fineschi V. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem 2013; 19:5624-46. [PMID: 22934772 DOI: 10.2174/092986712803988893] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 11/22/2022] [Imported: 10/18/2023]
Abstract
Cocaine is a powerful stimulant of the sympathetic nervous system by inhibiting catecholamine reuptake, stimulating central sympathetic outflow, and increasing the sensitivity of adrenergic nerve endings to norepinephrine (NE). It is known, from numerous studies, that cocaine causes irreversible structural changes on the brain, heart, lung and other organs such as liver and kidney and there are many mechanisms involved in the genesis of these damages. Some effects are determined by the overstimulation of the adrenergic system. Most of the direct toxic effects are mediated by oxidative stress and by mitochondrial dysfunction produced during the metabolism of noradrenaline or during the metabolism of norcocaina, as in cocaine-induced hepathotoxicity. Cocaine is responsible for the coronary arteries vasoconstriction, atherosclerotic phenomena and thrombus formation. In this way, cocaine favors the myocardial infarction. While the arrhythmogenic effect of cocaine is mediated by the action on potassium channel (blocking), calcium channels (enhances the function) and inhibiting the flow of sodium during depolarization. Moreover chronic cocaine use is associated with myocarditis, ventricular hypertrophy, dilated cardiomyopathy and heart failure. A variety of respiratory problems temporally associated with crack inhalation have been reported. Cocaine may cause changes in the respiratory tract as a result of its pharmacologic effects exerted either locally or systemically, its method of administration (smoking, sniffing, injecting), or its alteration of central nervous system neuroregulation of pulmonary function. Renal failure resulting from cocaine abuse has been also well documented. A lot of studies demonstrated a high incidence of congenital cardiovascular and brain malformations in offspring born to mothers with a history of cocaine abuse.
Collapse
|
Review |
12 |
108 |
5
|
Frati P, Busardò FP, Cipolloni L, Dominicis ED, Fineschi V. Anabolic Androgenic Steroid (AAS) related deaths: autoptic, histopathological and toxicological findings. Curr Neuropharmacol 2015; 13:146-59. [PMID: 26074749 PMCID: PMC4462039 DOI: 10.2174/1570159x13666141210225414] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/01/2014] [Accepted: 10/25/2014] [Indexed: 12/22/2022] [Imported: 10/18/2023] Open
Abstract
Anabolic androgenic steroids (AASs) represent a large group of synthetic derivatives of testosterone, produced to maximize anabolic effects and minimize the androgenic ones. AAS can be administered orally, parenterally by intramuscular injection and transdermally. Androgens act by binding to the nuclear androgen receptor (AR) in the cytoplasm and then translocate into the nucleus. This binding results in sequential conformational changes of the receptor affecting the interaction between receptor and protein, and receptor and DNA. Skeletal muscle can be considered as the main target tissue for the anabolic effects of AAS, which are mediated by ARs which after exposure to AASs are up-regulated and their number increases with body building. Therefore, AASs determine an increase in muscle size as a consequence of a dose-dependent hypertrophy resulting in an increase of the cross-sectional areas of both type I and type II muscle fibers and myonuclear domains. Moreover, it has been reported that AASs can increase tolerance to exercise by making the muscles more capable to overload therefore shielding them from muscle fiber damage and improving the level of protein synthesis during recovery. Despite some therapeutic use of AASs, there is also wide abuse among athletes especially bodybuilders in order to improve their performances and to increase muscle growth and lean body mass, taking into account the significant anabolic effects of these drugs. The prolonged misuse and abuse of AASs can determine several adverse effects, some of which may be even fatal especially on the cardiovascular system because they may increase the risk of sudden cardiac death (SCD), myocardial infarction, altered serum lipoproteins, and cardiac hypertrophy. The aim of this review is to focus on deaths related to AAS abuse, trying to evaluate the autoptic, histopathological and toxicological findings in order to investigate the pathophysiological mechanism that underlines this type of death, which is still obscure in several aspects. The review of the literature allowed us to identify 19 fatal cases between 1990 and 2012, in which the autopsy excluded in all cases, extracardiac causes of death.
Collapse
|
Meta-Analysis |
10 |
99 |
6
|
Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, Micheli L, Bruni G, Nencini C, Giorgi G, D'Errico S, Fiore C, Pomara C, Riezzo I, Turillazzi E, Fineschi V. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 2007; 11:156-70. [PMID: 17367510 PMCID: PMC4401229 DOI: 10.1111/j.1582-4934.2007.00009.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] [Imported: 10/18/2023] Open
Abstract
Background: To investigate the cardiotoxic role of reactive oxygen species (ROS) and of products derived from catecholamines auto-oxidation, we studied: (1) the response of antioxidant cardiac cellular defence systems to oxidative stress induced by norepinephrine (NE) administration, (2) the effect of NE administration on cardiac β1-adrenergic receptors by means of receptor binding assay, (3) the cellular morphological alterations related to the biologically cross-talk between the NE administration and cytokines [tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukins IL6, IL8, IL10]Methods and Results: A total of 195 male rats was used in the experiment. All animals underwent electrocardiogram (EKG) before being sacrificed. The results obtained show that NE administration influences the antioxidant cellular defence system significantly increasing glutathione peroxidase (GPx) activity, glutathione reductase (GR) and superoxide dismutase (SOD). The oxidized glutathione (GSH/GSSG) ratio significantly decreases and malondialdehyde (MDA) levels increase showing a state of lipoperoxidation of cardiac tissue. We describe a significant apoptotic process randomly sparse in the damaged myocardium and the effect of ROS on the NE-mediated TNF-α, MCP-1, and IL6, IL8, IL10 production. Conclusions: Our results support the hypothesis that catecholamines may induce oxidative damage through reactive intermediates resulting from their auto-oxidation, irrespective of their interaction with adrenergic receptors, thus representing an important factor in the pathogenesis of catecholamines-induced cardiotoxicity. The rise of the cardioinhibitory cytokines may be interpreted as the adaptive response of jeopardized myocardium with respect to the cardiac dysfunction resulting from NE injection.
Collapse
|
Journal Article |
18 |
95 |
7
|
Fineschi V, Riezzo I, Centini F, Silingardi E, Licata M, Beduschi G, Karch SB. Sudden cardiac death during anabolic steroid abuse: morphologic and toxicologic findings in two fatal cases of bodybuilders. Int J Legal Med 2005; 121:48-53. [PMID: 16292586 DOI: 10.1007/s00414-005-0055-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022] [Imported: 10/18/2023]
Abstract
We report two cases of sudden cardiac death (SCD) involving previously healthy bodybuilders who were chronic androgenic-anabolic steroids users. In both instances, autopsies, histology of the organs, and toxicologic screening were performed. Our findings support an emerging consensus that the effects of vigorous weight training, combined with anabolic steroid use and increased androgen sensitivity, may predispose these young men to myocardial injury and even SCD.
Collapse
|
Review |
20 |
91 |
8
|
Fineschi V, Baroldi G, Monciotti F, Paglicci Reattelli L, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med 2001; 125:253-5. [PMID: 11175645 DOI: 10.5858/2001-125-0253-asaacs] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 10/18/2023]
Abstract
CONTEXT Androgenic anabolic steroids (AAS) used for improving physical performance have been considered responsible for acute myocardial infarction and sudden cardiac death. OBJECTIVE To establish the relationship between AAS and cardiac death. DESIGN Case report. PATIENTS Two young, healthy, male bodybuilders using AAS. MAIN OUTCOME MEASURES Pathologic cardiac findings associated with AAS ingestion. RESULTS The autopsy revealed normal coronary arteries. In one case, we documented a typical infarct with a histologic age of 2 weeks. A segmentation of myocardial cells at the intercalated disc level was observed in the noninfarcted region. This segmentation was the only anomaly detected in the second case. No other pathologic findings in the heart or other organs were found. Urine in both subjects contained the metabolites of nortestosterone and stanozolol. COMMENT A myocardial infarct without vascular lesions is rare. To our knowledge, its association with AAS use, bodybuilding, or both lacks any evidence of a cause-effect relationship. The histologic findings in our 2 cases and in the few others reported in medical literature are nonspecific and do not prove the cardiac toxicity of AAS. A better understanding of AAS action on the neurogenic control of the cardiac function in relation to regional myocardial contraction and vascular regulation is required.
Collapse
|
Case Reports |
24 |
88 |
9
|
Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: A neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int 2009; 186:22-8. [PMID: 19203853 DOI: 10.1016/j.forsciint.2009.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 11/22/2008] [Accepted: 01/03/2009] [Indexed: 11/25/2022] [Imported: 10/18/2023]
|
|
16 |
80 |
10
|
Caffeine-Related Deaths: Manner of Deaths and Categories at Risk. Nutrients 2018; 10:nu10050611. [PMID: 29757951 PMCID: PMC5986491 DOI: 10.3390/nu10050611] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023] [Imported: 08/29/2023] Open
Abstract
Caffeine is the most widely consumed psychoactive compound worldwide. It is mostly found in coffee, tea, energizing drinks and in some drugs. However, it has become really easy to obtain pure caffeine (powder or tablets) on the Internet markets. Mechanisms of action are dose-dependent. Serious toxicities such as seizure and cardiac arrhythmias, seen with caffeine plasma concentrations of 15 mg/L or higher, have caused poisoning or, rarely, death; otherwise concentrations of 3–6 mg/kg are considered safe. Caffeine concentrations of 80–100 mg/L are considered lethal. The aim of this systematic review, performed following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement for the identification and selection of studies, is to review fatal cases in which caffeine has been recognized as the only cause of death in order to identify potential categories at risk. A total of 92 cases have been identified. These events happened more frequently in infants, psychiatric patients, and athletes. Although caffeine intoxication is relatively uncommon, raising awareness about its lethal consequences could be useful for both clinicians and pathologists to identify possible unrecognized cases and prevent related severe health conditions and deaths.
Collapse
|
Systematic Review |
7 |
65 |
11
|
Baroldi G, Mittleman RE, Parolini M, Silver MD, Fineschi V. Myocardial contraction bands. Definition, quantification and significance in forensic pathology. Int J Legal Med 2001; 115:142-51. [PMID: 11775016 DOI: 10.1007/s004140100229] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 10/18/2023]
Abstract
Pathological contraction bands affecting myocardial cells are observed in many different human conditions and in different experimental models. Their morphology was defined long ago but we need to understand the pathogenesis and functional meaning. A distinction between different histological forms of contraction bands and their quantification in a large spectrum of human diseases (262 cases) and a normal population sample where death was due to various types of accidental death (170 cases) produced the following conclusions: 1) The term "contraction band necrosis", as used presently, is ambiguous and should be reserved for a specific morpho-functional entity induced experimentally by intravenous catecholamine infusion and seen in equivalent human cases with pheochromocytoma. 2) In human pathology it may represent a sign of adrenergic stress linked with malignant arrhythmia/ventricular fibrillation. 3) Beyond a histological threshold of 37+/-7 foci and 322+/-99 myocells/100 mm2, the lesion may indicate sympathetic overdrive in the natural history of a disease and associated arrhythmogenic supersensitivity. 4) The detection of few pathological contraction bands in normal subjects in some types of accidental death correlates with the survival time, suggesting an agonal adrenergic stimulation to promote the cardiac pump.
Collapse
|
Comparative Study |
24 |
64 |
12
|
Maiese A, Manetti AC, Bosetti C, Del Duca F, La Russa R, Frati P, Di Paolo M, Turillazzi E, Fineschi V. SARS-CoV-2 and the brain: A review of the current knowledge on neuropathology in COVID-19. Brain Pathol 2021; 31:e13013. [PMID: 34390282 PMCID: PMC8420197 DOI: 10.1111/bpa.13013] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
SARS‐CoV‐2 (severe acute respiratory syndrome coronavirus 2), the new coronavirus responsible for the pandemic disease in the last year, is able to affect the central nervous system (CNS). Compared with its well‐known pulmonary tropism and respiratory complications, little has been studied about SARS‐CoV‐2 neurotropism and pathogenesis of its neurological manifestations, but also about postmortem histopathological findings in the CNS of patients who died from COVID‐19 (coronavirus disease 2019). We present a systematic review, carried out according to the Preferred Reporting Items for Systematic Review standards, of the neuropathological features of COVID‐19. We found 21 scientific papers, the majority of which refer to postmortem examinations; the total amount of cases is 197. Hypoxic changes are the most frequently reported alteration of brain tissue, followed by ischemic and hemorrhagic lesions and reactive astrogliosis and microgliosis. These findings do not seem to be specific to SARS‐CoV‐2 infection, they are more likely because of systemic inflammation and coagulopathy caused by COVID‐19. More studies are needed to confirm this hypothesis and to detect other possible alterations of neural tissue. Brain examination of patients dead from COVID‐19 should be included in a protocol of standardized criteria to perform autopsies on these subjects.
Collapse
|
Review |
4 |
64 |
13
|
Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R, Maiese A, Neri M, Santurro A, Scopetti M, Viola RV, Turillazzi E, Fineschi V. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med 2019; 23:6005-6016. [PMID: 31240830 PMCID: PMC6714215 DOI: 10.1111/jcmm.14463] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
MicroRNAs (miRNAs) are strongly up-regulated under pathological stress and in a wide range of diseases. In recent years, miRNAs are under investigation for their potential use as biomarkers in cardiovascular diseases. We investigate whether specific cardio-miRNAs are overexpressed in heart samples from subjects deceased for acute myocardial infarction (AMI) or sudden cardiac death (SCD), and whether miRNA could help differentiate between them. Forty four cases of death due to cardiovascular disease were selected, respectively, 19 cases categorized as AMI and 25 as SCD. Eighteen cases of traumatic death without pathological cardiac involvement were selected as control. Immunohistochemical investigation was performed for CD15, IL-15, Cx43, MCP-1, tryptase, troponin C and troponin I. Reverse transcription and quantitative real-time PCR were performed for miR-1, miR-133, miR-208 and miR-499. In AMI group, stronger immunoreaction for the CD15, IL-15 and MCP-1 antibodies was detectable compared with SCD and control. Cx43 showed a negative reaction with respect to the other groups. Real-time PCR results showed a down-regulation of all miRNAs in the AMI group compared with SCD and control. The selected miRNAs presented high accuracy in discriminating SCD from AMI (miR-1 and miR-499) and AMI from control (miR-208) representing a potential aid for both clinicians and pathologists for differential diagnosis.
Collapse
|
research-article |
6 |
58 |
14
|
Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 2016; 20:601-12. [PMID: 26828721 PMCID: PMC5125979 DOI: 10.1111/jcmm.12748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
Collapse
|
Journal Article |
9 |
55 |
15
|
Immunohistochemical Evaluation of Aquaporin-4 and its Correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 Expressions in Fatal Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19113544. [PMID: 30423808 PMCID: PMC6274714 DOI: 10.3390/ijms19113544] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Our understanding of its pathobiology has substantially increased. Following TBI, the following occur, edema formation, brain swelling, increased intracranial pressure, changes in cerebral blood flow, hypoxia, neuroinflammation, oxidative stress, excitotoxicity, and apoptosis. Experimental animal models have been developed. However, the difficulty in mimicking human TBI explains why few neuroprotective strategies, drawn up on the basis of experimental studies, have translated into improved therapeutic strategies for TBI patients. In this study, we retrospectively examined brain samples in 145 cases of death after different survival times following TBI, to investigate aquaporin-4 (AQP4) expression and correlation with hypoxia, and neuroinflammation in human TBI. Antibodies anti-glial fibrillary acid protein (GFAP), aquaporin-4 (AQP4), hypoxia induced factor-1α (HIF-1α), macrophage/phagocytic activation (CD68), ionized calcium-binding adapter molecule-1 (IBA-1), and neutrophils (CD15) were used. AQP4 showed a significant, progressive increase between the control group and groups 2 (one-day survival) and 3 (three-day survival). There were further increases in AQP4 immunopositivity in groups 4 (seven-day survival), 5 (14-dayssurvival), and 6 (30-day survival), suggesting an upregulation of AQP4 at 7 to 30 days compared to group 1. GFAP showed its highest expression in non-acute cases at the astrocytic level compared with the acute TBI group. Data emerging from the HIF-1α reaction showed a progressive, significant increase. Immunohistochemistry with IBA-1 revealed activated microglia starting three days after trauma and progressively increasing in the next 15 to 20 days after the initial trauma. CD68 expression demonstrated basal macrophage and phagocytic activation mostly around blood vessels. Starting from one to three days of survival after TBI, an increase in the number of CD68 cells was progressively observed; at 15 and 30 days of survival, CD68 showed the most abundant immunopositivity inside or around the areas of necrosis. These findings need to be developed further to gain insight into the mechanisms through which brain AQP4 is upregulated. This could be of the utmost clinicopathological importance.
Collapse
|
Journal Article |
7 |
52 |
16
|
Pinchi E, Frati A, Cantatore S, D'Errico S, Russa RL, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P, Fineschi V. Acute Spinal Cord Injury: A Systematic Review Investigating miRNA Families Involved. Int J Mol Sci 2019; 20:E1841. [PMID: 31013946 PMCID: PMC6515063 DOI: 10.3390/ijms20081841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) involves primary and secondary injury mechanisms. The primary mechanism is related to the initial traumatic damage caused by the damaging impact and this damage is irreversible. Secondary mechanisms, which begin as early as a few minutes after the initial trauma, include processes such as spinal cord ischemia, cellular excitotoxicity, ionic dysregulation, and free radical-mediated peroxidation. SCI is featured by different forms of injury, investigating the pathology and degree of clinical diagnosis and treatment strategies, the animal models that have allowed us to better understand this entity and, finally, the role of new diagnostic and prognostic tools such as miRNA could improve our ability to manage this pathological entity. Autopsy could benefit from improvements in miRNA research: the specificity and sensitivity of miRNAs could help physicians in determining the cause of death, besides the time of death.
Collapse
|
Systematic Review |
6 |
51 |
17
|
Neri M, Bello S, Bonsignore A, Cantatore S, Riezzo I, Turillazzi E, Fineschi V. Anabolic androgenic steroids abuse and liver toxicity. Mini Rev Med Chem 2011; 11:430-7. [PMID: 21443508 DOI: 10.2174/138955711795445916] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 01/14/2011] [Indexed: 12/26/2022] [Imported: 10/18/2023]
Abstract
In the athletes the wide use of Anabolic Androgenic Steroids (AAS) cause series damage in various organs, in particular, analyzing the liver, elevation on the levels of liver enzymes, cholestatic jaundice, liver tumors, both benign and malignant, and peliosis hepatis are described. A prolonged AAS administration provokes an increase in the activities of liver lysosomal hydrolases and a decrease in some components of the microsomal drug-metabolizing system and in the activity of the mitochondrial respiratory chain complexes without modifying classical serum indicators of hepatic function. Liver is a key organ actively involved in numerous metabolic and detoxifying functions. As a consequence, it is continuously exposed to high levels of endogenous and exogenous oxidants that are by-products of many biochemical pathways and, in fact, it has been demonstrated that intracellular oxidant production is more active in liver than in tissues, like the increase of inflammatory cytokines, apoptosis and the inhibitors of apoptosis NF- κB and Heat Shock Proteins.
Collapse
|
Review |
14 |
51 |
18
|
Fineschi V, Cecchi R, Centini F, Reattelli LP, Turillazzi E. Immunohistochemical quantification of pulmonary mast-cells and post-mortem blood dosages of tryptase and eosinophil cationic protein in 48 heroin-related deaths. Forensic Sci Int 2001; 120:189-94. [PMID: 11473801 DOI: 10.1016/s0379-0738(00)00469-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] [Imported: 10/18/2023]
Abstract
Recent studies suggest that many fatal heroin overdoses are caused by anaphylactoid reaction. In the present study we measured tryptase and eosinophil cationic protein in post-mortem blood of 48 deaths after heroin injection. We also investigated the presence and pulmonary distribution of mast-cells using specific immunohistochemical antibody for tryptase and morphometric evaluation in those cases of heroin-related deaths. The data were compared with 44 subjects who died following head trauma and to 32 cases of fatal anaphylactic shock. In the heroin-related death cases, the measurements of serum tryptase levels and eosinophil cationic protein dosages resulted in particularly elevated concentrations compared with the trauma cases. Nevertheless, the data that our study supplies by immunohistochemical techniques indicate that when mast-cells count in the lung was determined, no definite pattern was obtained between fatal heroin overdose cases and the control groups. Furthermore, the wide range of morphine concentrations found in post-mortem blood samples suggest that the term 'overdose' is relative and does not sufficiently characterize death associated with heroin addiction. Our study confirms that elevated concentrations of serum tryptase are associated with many heroin-related deaths. At this moment to attribute the cause of these deaths to 'heroin overdose' ignores the likely causal contribution of other possible systemic reactions to the mechanism of death.
Collapse
|
|
24 |
47 |
19
|
Turillazzi E, Perilli G, Di Paolo M, Neri M, Riezzo I, Fineschi V. Side effects of AAS abuse: an overview. Mini Rev Med Chem 2011; 11:374-89. [PMID: 21443513 DOI: 10.2174/138955711795445925] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/22/2011] [Indexed: 11/22/2022] [Imported: 10/18/2023]
Abstract
Anabolic - androgenic steroids (AAS) were originally developed to promote growth of skeletal muscle. AAS abuse is commonly associated with bodybuilders, weightlifters, and other athletes. The issue of AAS toxicity is not yet completely understood since the adverse effects outline a varied scenario with side effects reported affecting many organs and systems in humans. The true incidence of AAS related medical problems is not known, due to several drawbacks in human studies. The entity of side effects depends on the sex, the dose, the duration of treatment, whether they are taken during exercise training or under sedentary conditions, and the susceptibility of the individuals themselves to androgen exposure partly depending on genetic factors. Both the acute and the chronic effects can lead to toxicity, but generally the serious and even fatal effects depend on the time and the duration of AAS administration. A limitation of human studies is represented by the fact that information about the intake of steroids are, generally, self reported and it is hardly possible to assess the exact dosage. AAS are often used in combination with other dugs or substances, so it is difficult to separate their toxic effects from those caused by the other drugs abused. Hence experimental studies conducted on animal models are mandatory to investigate the mechanisms underlying to AAS toxicity and the organ alterations due to these substances. Finally, clinicians should be aware of the complex and varied pattern of toxicity so as to be able to perform correct diagnoses and treatments.
Collapse
|
Review |
14 |
46 |
20
|
Fineschi V, Masti A. Fatal poisoning by MDMA (ecstasy) and MDEA: a case report. Int J Legal Med 1996; 108:272-5. [PMID: 8721431 DOI: 10.1007/bf01369826] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 10/18/2023]
Abstract
The first observation of lethal recreational use of MDMA (ecstasy) and MDEA in Italy is reported, together with extensive toxicological and histopathological documentation. Findings such as disseminated intravascular coagulation, rarely reported before, are colocated in the framework of the toxic syndrome for a better definition of criteria for forensic diagnosis.
Collapse
|
|
29 |
44 |
21
|
Myocardial Pathology in COVID-19-Associated Cardiac Injury: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11091647. [PMID: 34573988 PMCID: PMC8472043 DOI: 10.3390/diagnostics11091647] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023] [Imported: 08/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can potentially affect all organs owing to the ubiquitous diffusion of the angiotensin-converting enzyme II (ACE2) receptor-binding protein. Indeed, the SARS-CoV-2 virus is capable of causing heart disease. This systematic review can offer a new perspective on the potential consequences of COVID-19 through an analysis of the current literature on cardiac involvement. This systematic review, conducted from March 2020 to July 2021, searched the current literature for postmortem findings in patients who were positive for SARS-CoV-2 by combining and meshing the terms “COVID-19”, “postmortem”, “autopsy”, and “heart” in titles, abstracts, and keywords. The PubMed database was searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Sixteen papers met the inclusion criteria (case reports and series, original research, only English-written). A total of 209 patients were found (mean age (interquartile range (IQR)), 60.17 years (IQR, 54.75–70.75 years); 122 men (58.37%, ratio of men to women of 1:0.7%)). Each patient tested positive for SARS-CoV-2. Death was mainly the result of respiratory failure. The second most common cause of death was acute heart failure. Few patients specifically died of myocarditis. Variables such as pathological findings, immunohistochemical data, and previous clinical assessments were analyzed. Main cardiac pathological findings were cardiac dilatation, necrosis, lymphocytic infiltration of the myocardium, and small coronary vessel microthrombosis. Immunohistochemical analyses revealed an inflammatory state dominated by the constant presence of CD3+ and CD8+ cytotoxic lymphocytes and CD68+ macrophages. COVID-19 leads to a systemic inflammatory response and a constant prothrombotic state. The results of our systematic review suggest that SARS-CoV-2 was able to cause irreversible changes in several organs, including the heart; this is reflected by the increased cardiac risk in patients who survive COVID-19. Postmortem analysis (including autopsy, histologic, and immunohistochemical examination) is an indispensable tool to better understand pathological changes caused by emerging diseases such as COVID-19. Our results may provide more information on the involvement of the heart in COVID-19 patients.
Collapse
|
Review |
4 |
43 |
22
|
Fineschi V, Aprile A, Aquila I, Arcangeli M, Asmundo A, Bacci M, Cingolani M, Cipolloni L, D’Errico S, De Casamassimi I, Di Mizio G, Di Paolo M, Focardi M, Frati P, Gabbrielli M, La Russa R, Maiese A, Manetti F, Martelloni M, Mazzeo E, Montana A, Neri M, Padovano M, Pinchi V, Pomara C, Ricci P, Salerno M, Santurro A, Scopetti M, Testi R, Turillazzi E, Vacchiano G, Crivelli F, Bonoldi E, Facchetti F, Nebuloni M, Sapino A. Management of the corpse with suspect, probable or confirmed COVID-19 respiratory infection - Italian interim recommendations for personnel potentially exposed to material from corpses, including body fluids, in morgue structures and during autopsy practice. Pathologica 2020; 112:64-77. [PMID: 32324727 PMCID: PMC7931563 DOI: 10.32074/1591-951x-13-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] [Imported: 10/18/2023] Open
|
Practice Guideline |
5 |
43 |
23
|
Fineschi V, Gambassi R, Gherardi M, Turillazzi E. The diagnosis of amniotic fluid embolism: an immunohistochemical study for the quantification of pulmonary mast cell tryptase. Int J Legal Med 1998; 111:238-43. [PMID: 9728749 DOI: 10.1007/s004140050160] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] [Imported: 10/18/2023]
Abstract
Recent clinical articles have suggested that amniotic fluid embolism (AFE) may be the result of anaphylactic reactions to fetal antigens and that the major part of this clinical syndrome is the result of mast cell degranulation and of the release of histamine, tryptase and other mediators. Tryptase, a neutral protease, is known to be the dominant protein component of the secretory granules of T and TC mast cells. In this paper we have examined the presence and the pulmonary distribution of mast cell tryptase utilizing specific immunohistochemical studies and morphometric evaluation in six cases of fatal amniotic fluid embolism compared to six subjects who died following anaphylactic shock and two control groups (five and six cases respectively) of traumatic death. The results demonstrate a numerical increase of pulmonary mast cells in the subjects who died of AFE (average cell number 54.095) with values corresponding to those encountered in cases of death due to anaphylactic shock (average cell number 51.378) compared with that of the traumatic control groups (average cell number 24.477 and 9.995 respectively). These results can shed light on additional criteria for the diagnosis of amniotic fluid embolism.
Collapse
|
|
27 |
42 |
24
|
Turillazzi E, Di Paolo M, Neri M, Riezzo I, Fineschi V. A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J Transl Med 2014; 12:188. [PMID: 24989171 PMCID: PMC4094437 DOI: 10.1186/1479-5876-12-188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/11/2014] [Indexed: 01/01/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Experimental and human studies have demonstrated that innate immune mechanisms and consequent inflammatory reaction play a critical role in cardiac response to ischemic injury. Thus, the detection of immuno-inflammatory and cellular phenomena accompanying cardiac alterations during the early inflammatory phase of myocardial infarction (MI) may be an excellent diagnostic tool. Current knowledge of the chronology of the responses of myocardial tissue following the occurrence of ischemic insult, as well as the existence of numerous studies aiming to identify reliable markers in dating MI, induced us to investigate the myocardial specimens of MI fatal cases in order to better define the age of MI. METHODS We performed an immunohistochemical study and a Western blot analysis to evaluate detectable morphological changes in myocardial specimens of fatal MI cases and to quantify the effects of cardiac expression of inflammatory mediators (CD15, IL-1β, IL-6, TNF-α, IL-15, IL-8, MCP-1, ICAM-1, CD18, tryptase) and structural and functional cardiac proteins. RESULTS We observed a biphasic course of MCP-1: it was strongly expressed in the very early phase (0-4 hrs), to diminish in the early period (after 6-8 hrs). Again, our choice of IL-15 is explained by the synergism with neutrophilic granulocytes (CD15) and our study shows the potential for striking cytokine synergy in promoting fast, local neutrophil response in damaged tissues. A progressively stronger immunoreaction for the CD15 antibody was visible in the areas where the margination of circulating inflammatory cells was detectable, up to very strong expression in the oldest ones (>12 hours). Further, the induction of CD15, IL-15, MCP-1 expression levels was quantified by Western blot analysis. The results were as follows: IL-15/β-actin 0.80, CD15/β-actin 0.30, and MCP-1/β-actin 0.60, matching perfectly with the results of immunohistochemistry. Control hearts from traumatic death cases did not show any immunoreactivity to the pro-inflammatory markers, neither were there any reactions in Western blot analysis. CONCLUSIONS Essential markers (i.e. IL-15, MCP-1) are suitable indicators of myocardial response to ischemic insult involving very early phase reaction (inflammatory response and cytokine release). In the very near future, proteomics may help clinicians and pathologists to better understand mechanisms relating to cardiac repair and remodeling and provide targets for future therapies.
Collapse
|
research-article |
11 |
42 |
25
|
Fineschi V, Monasterolo G, Rosi R, Turillazzi E. Fatal anaphylactic shock during a fluorescein angiography. Forensic Sci Int 1999; 100:137-42. [PMID: 10356782 DOI: 10.1016/s0379-0738(98)00205-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 10/18/2023]
Abstract
The Authors describe an extremely rare fatal case (sixth case in the literature) of anaphylactic shock following a fluorescein angiography. This is the first report in which the diagnosis of anaphylactic reaction to the dye was made through laboratory analyses. The diagnosis of fatal shock due to sodium fluorescein was made based on clinical, laboratory and immunohistochemical data. Mast-cell tryptase was dosed in serum and a pulmonary immunohistochemical evaluation was performed. Tryptase, a neutral protease of human mast-cells is a potentially important indicator of mast-cell involvement in anaphylactic events.
Collapse
|
Case Reports |
26 |
42 |