1
|
Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006; 107:358-366. [PMID: 16150936 PMCID: PMC1895367 DOI: 10.1182/blood-2005-04-1418] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 08/23/2005] [Indexed: 02/06/2023] [Imported: 04/09/2025] Open
Abstract
Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the defect in HSC self-renewal. It was found that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a sustained quantitative and qualitative reduction of LKS+ HSCs. In addition, LKS+ HSCs from irradiated mice exhibited an increased expression of the 2 commonly used biomarkers of cellular senescence, p16(Ink4a) and SA-beta-gal. In contrast, no such changes were observed in irradiated LKS- hematopoietic progenitor cells. These results provide the first direct evidence demonstrating that IR exposure can selectively induce HSC senescence. Of interest, the induction of HSC senescence was associated with a prolonged elevation of p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) mRNA expression, while the expression of p27(Kip1) and p18(Ink4c) mRNA was not increased following TBI. This suggests that p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) may play an important role in IR-induced senescence in HSCs.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
276 |
2
|
Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med 2010; 48:348-356. [PMID: 19925862 PMCID: PMC2818724 DOI: 10.1016/j.freeradbiomed.2009.11.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 10/29/2009] [Accepted: 11/09/2009] [Indexed: 02/07/2023] [Imported: 04/09/2025]
Abstract
Ionizing radiation (IR) and/or chemotherapy causes not only acute tissue damage but also late effects including long-term (or residual) bone marrow (BM) injury. The induction of residual BM injury is primarily attributable to the induction of hematopoietic stem cell (HSC) senescence. However, the molecular mechanisms by which IR and/or chemotherapy induces HSC senescence have not been clearly defined, nor has an effective treatment been developed to ameliorate the injury. Thus, we investigated these mechanisms in this study. The results from this study show that exposure of mice to a sublethal dose of total body irradiation (TBI) induced a persistent increase in reactive oxygen species (ROS) production in HSCs only. The induction of chronic oxidative stress in HSCs was associated with sustained increases in oxidative DNA damage, DNA double-strand breaks (DSBs), inhibition of HSC clonogenic function, and induction of HSC senescence but not apoptosis. Treatment of the irradiated mice with N-acetylcysteine after TBI significantly attenuated IR-induced inhibition of HSC clonogenic function and reduction of HSC long-term engraftment after transplantation. The induction of chronic oxidative stress in HSCs by TBI is probably attributable to the up-regulation of NADPH oxidase 4 (NOX4), because irradiated HSCs expressed an increased level of NOX4, and inhibition of NOX activity with diphenylene iodonium but not apocynin significantly reduced TBI-induced increases in ROS production, oxidative DNA damage, and DNA DSBs in HSCs and dramatically improved HSC clonogenic function. These findings provide the foremost direct evidence demonstrating that TBI selectively induces chronic oxidative stress in HSCs at least in part via up-regulation of NOX4, which leads to the induction of HSC senescence and residual BM injury.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
227 |
3
|
Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. CURRENT CANCER THERAPY REVIEWS 2006; 2:271-279. [PMID: 19936034 PMCID: PMC2779029 DOI: 10.2174/157339406777934717] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 04/09/2025]
Abstract
Bone marrow (BM) suppression is the important dose-limiting side effect of chemotherapy and radiotherapy for cancer. Although acute myelosuppression is an immediate concern for patients undergoing cancer therapy, its management has been improved significantly in recent years by the use of various hematopoietic growth factors. However, many patients receiving chemotherapy and/or ionizing radiation (IR) also develop residual (or long-term) BM injury (a sustained decrease in HSC reserves due to an impairment in HSC self-renewal) after the recovery from acute myelosuppression. Unlike acute myelosuppression, residual BM injury is latent and long lasting and shows little tendency for recovery. Following additional hematopoietic stress such as subsequent cycles of consolidation cancer treatment or autologous BM transplantation, residual BM injury can deteriorate to become a hypoplastic or myelodysplastic syndrome. This article review some of the new developments in elucidating the cellular and molecular mechanisms whereby chemotherapy and radiotherapy cause residual BM injury. Particularly, we discuss the role of induction of hematopoietic stem cell (HSC) senescence via the p53-p21(Cip1/Waf1) and/or p16(Ink4a)-RB pathways in the induction of the injury and the therapeutic potential of molecularly targeting these pathways for amelioration of chemotherapy- and radiotherapy-induced long-term BM toxicity.
Collapse
|
research-article |
19 |
151 |
4
|
Shao L, Li H, Pazhanisamy SK, Meng A, Wang Y, Zhou D. Reactive oxygen species and hematopoietic stem cell senescence. Int J Hematol 2011; 94:24-32. [PMID: 21567162 PMCID: PMC3390185 DOI: 10.1007/s12185-011-0872-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 12/31/2022] [Imported: 04/09/2025]
Abstract
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism through self-renewal, proliferation, differentiation, and mobilization. Their functions can be affected by reactive oxygen species (ROS) that are produced endogenously through cellular metabolism or after exposure to exogenous stress. At physiological levels, ROS function as signal molecules which can regulate a variety of cellular functions, including HSC proliferation, differentiation, and mobilization. However, an abnormal increase in ROS production occurs under various pathological conditions, which can inhibit HSC self-renewal and induce HSC senescence, resulting in premature exhaustion of HSCs and hematopoietic dysfunction. This review aims to provide a summary of a number of recent findings regarding the cellular sources of ROS in HSCs and the mechanisms of action whereby ROS induce HSC senescence. In particular, we highlight the roles of the p38 mitogen-activated protein kinase (p38)-p16(Ink4a) (p16) pathway in mediating ROS-induced HSC senescence.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
146 |
5
|
Johnson SM, Torrice CD, Bell JF, Monahan KB, Jiang Q, Wang Y, Ramsey MR, Jin J, Wong KK, Su L, Zhou D, Sharpless NE. Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin Invest 2010; 120:2528-36. [PMID: 20577054 PMCID: PMC2898594 DOI: 10.1172/jci41402] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/28/2010] [Indexed: 01/28/2023] [Imported: 04/09/2025] Open
Abstract
Total body irradiation (TBI) can induce lethal myelosuppression, due to the sensitivity of proliferating hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation (IR). No effective therapy exists to mitigate the hematologic toxicities of TBI. Here, using selective and structurally distinct small molecule inhibitors of cyclin-dependent kinase 4 (CDK4) and CDK6, we have demonstrated that selective cellular quiescence increases radioresistance of human cell lines in vitro and mice in vivo. Cell lines dependent on CDK4/6 were resistant to IR and other DNA-damaging agents when treated with CDK4/6 inhibitors. In contrast, CDK4/6 inhibitors did not protect cell lines that proliferated independently of CDK4/6 activity. Treatment of wild-type mice with CDK4/6 inhibitors induced reversible pharmacological quiescence (PQ) of early HSPCs but not most other cycling cells in the bone marrow or other tissues. Selective PQ of HSPCs decreased the hematopoietic toxicity of TBI, even when the CDK4/6 inhibitor was administered several hours after TBI. Moreover, PQ at the time of administration of therapeutic IR to mice harboring autochthonous cancers reduced treatment toxicity without compromising the therapeutic tumor response. These results demonstrate an effective method to mitigate the hematopoietic toxicity of IR in mammals, which may be potentially useful after radiological disaster or as an adjuvant to anticancer therapy.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
140 |
6
|
Luo H, Yang A, Schulte BA, Wargovich MJ, Wang GY. Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage. PLoS One 2013; 8:e60065. [PMID: 23533664 PMCID: PMC3606183 DOI: 10.1371/journal.pone.0060065] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/20/2013] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Resveratrol (RV) is a natural component of red wine and grapes that has been shown to be a potential chemopreventive and anticancer agent. However, the molecular mechanisms underlying RV's anticancer and chemopreventive effects are incompletely understood. Here we show that RV treatment inhibits the clonogenic growth of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Interestingly, the tumor-suppressive effect of low dose RV was not associated with any significant changes in the expression of cleaved PARP and activated caspase-3, suggesting that low dose RV treatment may suppress tumor cell growth via an apoptosis-independent mechanism. Subsequent studies reveal that low dose RV treatment induces a significant increase in senescence-associated β-galactosidase (SA-β-gal) staining and elevated expression of p53 and p21 in NSCLC cells. Furthermore, we show that RV-induced suppression of lung cancer cell growth is associated with a decrease in the expression of EF1A. These results suggest that RV may exert its anticancer and chemopreventive effects through the induction of premature senescence. Mechanistically, RV-induced premature senescence correlates with increased DNA double strand breaks (DSBs) and reactive oxygen species (ROS) production in lung cancer cells. Inhibition of ROS production by N-acetylcysteine (NAC) attenuates RV-induced DNA DSBs and premature senescence. Furthermore, we show that RV treatment markedly induces NAPDH oxidase-5 (Nox5) expression in both A549 and H460 cells, suggesting that RV may increase ROS generation in lung cancer cells through upregulating Nox5 expression. Together, these findings demonstrate that low dose RV treatment inhibits lung cancer cell growth via a previously unappreciated mechanism, namely the induction of premature senescence through ROS-mediated DNA damage.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
134 |
7
|
Yang A, Qin S, Schulte BA, Ethier SP, Tew KD, Wang GY. MYC Inhibition Depletes Cancer Stem-like Cells in Triple-Negative Breast Cancer. Cancer Res 2017; 77:6641-6650. [PMID: 28951456 PMCID: PMC5712265 DOI: 10.1158/0008-5472.can-16-3452] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 07/31/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
There is mounting evidence that cancer stem-like cells (CSC) are selectively enriched in residual tumors after anticancer therapies, which may account for tumor recurrence and metastasis by regenerating new tumors. Thus, there is a critical need to develop new therapeutic agents that can effectively eliminate drug-resistant CSCs and improve the efficacy of cancer therapy. Here, we report that Triptolide (C1572), a small-molecule natural product, selectively depletes CSCs in a dose-dependent fashion in human triple-negative breast cancer (TNBC) cell lines. Nanomolar concentrations of C1572 markedly reduced c-MYC (MYC) protein levels via a proteasome-dependent mechanism. Silencing MYC expression phenocopied the CSC depletion effects of C1572 and induced senescence in TNBC cells. Limited dilution assays revealed that ex vivo treatment of TNBC cells with C1572 reduced CSC levels by 28-fold. In mouse xenograft models of human TNBC, administration of C1572 suppressed tumor growth and depleted CSCs in a manner correlated with diminished MYC expression in residual tumor tissues. Together, these new findings provide a preclinical proof of concept defining C1572 as a promising therapeutic agent to eradicate CSCs for drug-resistant TNBC treatment. Cancer Res; 77(23); 6641-50. ©2017 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
89 |
8
|
Probin V, Wang Y, Zhou D. Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med 2007; 42:1858-65. [PMID: 17512465 PMCID: PMC1939827 DOI: 10.1016/j.freeradbiomed.2007.03.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 02/26/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022] [Imported: 04/09/2025]
Abstract
Induction of cellular senescence is a common response of a normal cell to a DNA-damaging agent, which may contribute to cancer chemotherapy- and ionizing radiation-induced normal tissue injury. The induction has been largely attributed to the activation of p53. However, the results from the present study suggest that busulfan (BU), an alkylating agent that causes DNA damage by cross-linking DNAs and DNA and proteins, induces senescence in normal human diploid WI38 fibroblasts through the extracellular signal-regulated kinase (Erk) and p38 mitogen-activated protein kinase (p38 MAPK) cascade independent of the p53-DNA damage pathway. The induction of WI38 cell senescence is initiated by a transient depletion of intracellular glutathione (GSH) and followed by a continuous increase in reactive oxygen species (ROS) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which leads to the activation of the Erk and p38 MAPK pathway. Incubation of WI38 cells with N-acetylcysteine (NAC) replenishes intracellular GSH, abrogates the increased production of ROS, ameliorates Erk and p38 MAPK activation, and attenuates senescence induction by BU. Thus, inhibition of senescence induction using a potent antioxidant or specific inhibitor of the Erk and p38 MAPK pathway has the potential to be developed as a mechanism-based strategy to ameliorate cancer therapy-induced normal tissue damage.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
84 |
9
|
Meng A, Wang Y, Brown SA, Van Zant G, Zhou D. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol 2003; 31:1348-1356. [PMID: 14662344 DOI: 10.1016/j.exphem.2003.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 04/09/2025]
Abstract
OBJECTIVE Ionizing radiation (IR) and busulfan (BU) are commonly used as preconditioning regimens for bone marrow transplantation (BMT). We examined whether induction of apoptosis in murine bone marrow (BM) hematopoietic cells contributes to IR- and BU-induced suppression of their hematopoietic function. METHODS The hematopoietic functions of hematopoietic stem cells (HSCs) and progenitors were analyzed by the cobblestone area-forming cell (CAFC) assay. Apoptosis was determined by measuring 3,3'-dihexyloxacarbocyanine iodide (DiCO6) uptake, annexin V staining, and/or sub-G(0/1) cells. Four cell types were studied: murine BM mononuclear cells (BM-MNCs), linage-negative hematopoietic cells (Lin-) cells), Lin- Scal+ c-kit+ cells, and Lin- Scal- c-kit+ cells by flow cytometry. RESULTS Exposure of BM-MNCs to IR (4 Gy) or incubation of the cells with BU (30 microM) resulted in a significant reduction in CAFC frequency (p<0.001). The survival fractions of various day-types of CAFC for the irradiated cells were less than 10%, while that for BU-treated cells was 71.3% on day 7 and progressively declined to 5.3% on day 35. Interestingly, IR significantly induced apoptosis in BM-MNCs, Lin- cells, HSCs, and progenitors, whereas BU failed to increase apoptosis in these cells. In addition, preincubation of BM-MNCs with z-Val-Ala-Asp (OCH3)-fluoromethylketone, methyl ester (z-VAD) attenuated IR-induced reduction in CAFC but not that induced by BU. CONCLUSION IR and BU differentially suppress the hematopoietic function of HSCs and progenitors by fundamentally different mechanisms. IR inhibits the function primarily by the induction of HSC and progenitor apoptosis. In contrast, BU suppresses HSC and progenitor function via an apoptosis-independent mechanism.
Collapse
|
|
22 |
73 |
10
|
Wang Y, Scheiber MN, Neumann C, Calin GA, Zhou D. MicroRNA regulation of ionizing radiation-induced premature senescence. Int J Radiat Oncol Biol Phys 2011; 81:839-48. [PMID: 21093163 PMCID: PMC3056910 DOI: 10.1016/j.ijrobp.2010.09.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/20/2010] [Accepted: 09/24/2010] [Indexed: 12/24/2022] [Imported: 08/29/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. METHODS AND MATERIALS In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. RESULTS We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. CONCLUSION Our results suggest that SA-miRNAs are involved in the regulation of IR-induced senescence, so targeting these miRNAs may be a novel approach for modulating cellular response to radiation exposure.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
72 |
11
|
Wang Y, Meng A, Lang H, Brown SA, Konopa JL, Kindy MS, Schmiedt RA, Thompson JS, Zhou D. Activation of nuclear factor kappaB In vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res 2004; 64:6240-6246. [PMID: 15342410 DOI: 10.1158/0008-5472.can-04-0591] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] [Imported: 04/09/2025]
Abstract
Exposure of mice to total body irradiation induces nuclear factor kappaB (NFkappaB) activation in a tissue-specific manner. In addition to the spleen, lymph nodes, and bone marrow, the tissues that exhibit NFkappaB activation now include the newly identified site of the intestinal epithelial cells. NFkappaB activated by total body irradiation mainly consists of NFkappaB p50/RelA heterodimers, and genetically targeted disruption of the NFkappaB p50 gene in mice significantly decreased the activation. By comparing tissue damage and lethality in wild-type and NFkappaB p50 knockout (p50-/-) mice after they were exposed to increasing doses of total body irradiation, we additionally examined the role of NFkappaB activation in total body irradiation-induced tissue damage. The results show that p50-/- mice are more sensitive to total body irradiation-induced lethality than wild-type mice (LD50/Day 7: wild-type = 13.12 Gy versus p50-/- = 7.75 Gy and LD50/Day 30: wild-type = 9.31 Gy versus p50-/- = 7.81 Gy). The increased radiosensitivity of p50-/- mice was associated with an elevated level of apoptosis in intestinal epithelial cells and decreased survival of the small intestinal crypts compared with wild-type mice (P < 0.01). In addition, RelA/TNFR1-deficient (RelA/TNFR1-/-) mice also exhibited a significant increase in intestinal epithelial cell apoptosis after they were exposed to total body irradiation as compared with TNFR1-deficient (TNFR1-/-) mice (P < 0.01). In contrast, no significant increase in total body irradiation-induced apoptosis or tissue injury was observed in bone marrow cells, spleen lymphocytes, and the liver, heart, lung, and kidney of p50-/- mice in comparison with wild-type mice. These findings indicate that activation of NFkappaB selectively protects the small intestine against ionizing radiation-induced damage.
Collapse
|
|
21 |
58 |
12
|
Probin V, Wang Y, Bai A, Zhou D. Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther 2006; 319:551-560. [PMID: 16882877 DOI: 10.1124/jpet.106.107771] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] [Imported: 04/09/2025] Open
Abstract
Busulfan (BU) is a unique alkylating agent that primarily targets slowly proliferating or nonproliferating cells in the body, leading to various normal tissue damage while killing leukemia cells. However, the mechanism(s) of action whereby BU injures normal cells has not been well defined and, therefore, was investigated in the present study by using the normal human diploid WI38 fibroblasts as a model system. We found that WI38 fibroblasts incubated with BU (from 7.5-120 microM) for 24 h underwent senescence but not apoptosis in a dose-independent manner, whereas cells incubated with 80 and 20 microM etoposide (Etop) were committed to apoptosis and senescence, respectively. The induction of WI38 cell senescence by Etop was associated with p53 activation and could be attenuated by down-regulation of p53 using alpha-pifithrin (alpha-PFT) or p53 small interference RNA (siRNA). In contrast, WI38 cell senescence induced by BU was associated with prolonged activation of extracellular signal-regulated kinase (Erk), p38 mitogen-activated protein kinase (p38), and c-Jun NH(2)-terminal kinase (JNK) and could be suppressed by the inhibition of Erk and/or p38 with PD98059 (2'-amino-3'-methoxyflavone) and/or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole], respectively. However, inhibition of p53 with alpha-PFT or p53 siRNA or JNK with SP600125 (1,9-pyrazoloanthrone) failed to protect WI38 cells from BU-induced senescence. These findings suggest that BU is a distinctive chemotherapeutic agent that can selectively induce normal human fibroblast senescence through the Erk and p38 pathways.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
54 |
13
|
Luo H, Yount C, Lang H, Yang A, Riemer EC, Lyons K, Vanek KN, Silvestri GA, Schulte BA, Wang GY. Activation of p53 with Nutlin-3a radiosensitizes lung cancer cells via enhancing radiation-induced premature senescence. Lung Cancer 2013; 81:167-173. [PMID: 23683497 PMCID: PMC3739976 DOI: 10.1016/j.lungcan.2013.04.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022] [Imported: 08/29/2023]
Abstract
Radiotherapy is routinely used for the treatment of lung cancer. However, the mechanisms underlying ionizing radiation (IR)-induced senescence and its role in lung cancer treatment are poorly understood. Here, we show that IR suppresses the proliferation of human non-small cell lung cancer (NSCLC) cells via an apoptosis-independent mechanism. Further investigations reveal that the anticancer effect of irradiation correlates well with IR-induced premature senescence, as evidenced by increased senescence-associated β-glactosidase (SA-β-gal) staining, decreased BrdU incorporation and elevated expression of p16(INK4a) (p16) in irradiated NSCLC cells. Mechanistic studies indicate that the induction of senescence is associated with activation of the p53-p21 pathway, and that inhibition of p53 transcriptional activity by PFT-α attenuates IR-induced tumor cell killing and senescence. Gain-of-function assays demonstrate that restoration of p53 expression sensitizes H1299 cells to irradiation, whereas knockdown of p53 expression by siRNA inhibits IR-induced senescence in H460 cells. Furthermore, treatment with Nutlin-3a, a small molecule inhibitor of MDM2, enhances IR-induced tumor cell killing and senescence by stabilizing the activation of the p53-p21 signaling pathway. Taken together, these findings demonstrate for the first time that pharmacological activation of p53 by Nutlin-3a can sensitize lung cancer cells to radiation therapy via promoting IR-induced premature senescence.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
51 |
14
|
He X, Yang A, McDonald DG, Riemer EC, Vanek KN, Schulte BA, Wang GY. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017; 8:69797-69807. [PMID: 29050242 PMCID: PMC5642517 DOI: 10.18632/oncotarget.19267] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] [Imported: 08/29/2023] Open
Abstract
MicroRNAs (miRNAs) are a new class of gene expression regulators that have been implicated in tumorigenesis and modulation of the responses to cancer treatment including that of human non-small cell lung cancer (NSCLC). However, the role of miR-34a in ionizing radiation (IR)-induced senescence in NSCLC cells remains poorly understood. Here we report that IR-induced premature senescence correlates with upregulation of miR-34a expression in NSCLC cells. Ectopic overexpression of miR-34a by transfection with synthetic miR-34a mimics markedly enhances IR-induced senescence, whereas inhibition of miR-34a by transfection with a synthetic miR-34a inhibitor attenuates IR-induced senescence. Clonogenic assays reveal that treatment with miR-34a mimics augments IR-induced cell killing in human NSCLC cells. Mechanistically, we found that the senescence-promoting effect of miR-34a is associated with a dramatic down-regulation of c-Myc (Myc) expression, suggesting that miR-34a may promote IR-induced senescence via targeting Myc. In agreement with this suggestion, knockdown of Myc expression by RNAi recapitulates the senescence-promoting effect of miR-34a and enhances IR-induced cell killing in NSCLC cells. Collectively, these results demonstrate a previously unrecognized role for miR-34a in modulating IR-induced senescence in human NSCLC cells and suggest that pharmacological intervention of miR-34a expression may represent a new therapeutic strategy for improving the efficacy of lung cancer radiotherapy.
Collapse
|
research-article |
8 |
49 |
15
|
Zhong G, Qin S, Townsend D, Schulte BA, Tew KD, Wang GY. Oxidative stress induces senescence in breast cancer stem cells. Biochem Biophys Res Commun 2019; 514:1204-1209. [PMID: 31109646 PMCID: PMC6556123 DOI: 10.1016/j.bbrc.2019.05.098] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
Cancer stem cells (CSCs) have been shown to be resistant to current anticancer therapies and the induction of oxidative stress is an important mechanism of action for many anticancer agents. However, it is still largely unknown how CSCs respond to hydrogen peroxide (H2O2)-induced oxidative stress. Here, we show that the levels of reactive oxygen species (ROS) are markedly lower in breast CSCs (BCSCs) than that in non-cancer stem cells (NCSCs). A transient exposure of breast cancer cells to sublethal doses of H2O2 resulted in a dose-dependent increase of the epithelium-specific antigen (ESA)+/CD44+/CD24- subpopulations, a known phenotype for BCSCs. Although BCSCs survived sublethal doses of H2O2 treatment, they lost the ability to form tumor spheres and failed to generate colonies as demonstrated by mammosphere-formation and clonogenic assays, respectively. Mechanistic studies revealed that H2O2 treatment led to a marked increase of senescence-associated β-galactosidase activity but only minimal apoptotic cell death in BCSCs. Furthermore, H2O2 triggers p53 activation and promotes p21 expression, indicating a role for the p53/p21 signaling pathway in oxidative stress-induced senescence in BCSCs. Taken together, these results demonstrate that the maintenance of a lower level of ROS is critical for CSCs to avoid oxidative stress and H2O2-induced BCSC loss of function is likely attributable to oxidative stress-triggered senescence induction, suggesting that ROS-generating drugs may have the therapeutic potential to eradicate drug-resistant CSCs via induction of premature senescence.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
49 |
16
|
LUO HONGMEI, WANG LU, SCHULTE BRADLEYA, YANG AIMIN, TANG SHENGSONG, WANG GAVINY. Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol 2013; 43:1999-2006. [PMID: 24141489 PMCID: PMC3834547 DOI: 10.3892/ijo.2013.2141] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022] [Imported: 08/29/2023] Open
Abstract
Radiotherapy is used in >50% of patients during the course of cancer treatment both as a curative modality and for palliation. However, radioresistance is a major obstacle to the success of radiation therapy and contributes significantly to tumor recurrence and treatment failure, highlighting the need for the development of novel radiosensitizers that can be used to overcome tumor radioresistance and, thus, improve the efficacy of radiotherapy. Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells. Comet assays demonstrate that RV and IR combined treatment causes more DNA double-strand breaks (DSBs) than IR or RV treatment alone. DCF-DA staining and flow cytometric analyses demonstrate that RV and IR combined treatment leads to a significant increase in ROS production in irradiated NSCLC cells. Furthermore, our investigation show that inhibition of ROS production by N-acetyl-cysteine attenuates RV-induced radiosensitization in lung cancer cells. Collectively, these results demonstrate that RV-induced radiosensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
48 |
17
|
Wang Y, Meng A, Zhou D. Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts. Exp Cell Res 2004; 298:188-196. [PMID: 15242773 DOI: 10.1016/j.yexcr.2004.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/08/2004] [Indexed: 11/23/2022] [Imported: 04/09/2025]
Abstract
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.
Collapse
|
|
21 |
46 |
18
|
Wang Y, Liu L, Zhou D. Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat Res 2011; 176:743-752. [PMID: 22014293 PMCID: PMC3390189 DOI: 10.1667/rr2727.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] [Imported: 08/29/2023]
Abstract
Exposure to a moderate or high total-body dose of radiation induces not only acute bone marrow suppression but also residual (or long-term) bone marrow injury. The induction of residual bone marrow injury is primarily attributed to the induction of hematopoietic cell senescence by ionizing radiation. However, the mechanisms underlying radiation-induced hematopoietic cell senescence are not known and thus were investigated in the present study. Using a well-established long-term bone marrow cell culture system, we found that radiation induced hematopoietic cell senescence at least in part via activation of p38 mitogen-activated protein kinase (p38). This suggestion is supported by the finding that exposure to radiation selectively activated p38 in bone marrow hematopoietic cells. The activation was associated with a significant reduction in hematopoietic cell clonogenic function, an increased expression of p16(INK4a) (p16), and an elevated senescence-associated β-galactosidase (SA-β-gal) activity. All these changes were attenuated by p38 inhibition with a specific p38 inhibitor, SB203580 (SB). Selective activation of p38 was also observed in bone marrow hematopoietic stem cells (HSCs) after mice were exposed to a sublethal total-body dose (6.5 Gy) of radiation. Treatment of the irradiated mice with SB after total-body irradiation (TBI) increased the frequencies of HSCs and hematopoietic progenitor cells (HPCs) in their bone marrow and the clonogenic functions of the irradiated HSCs and HPCs. These findings suggest that activation of p38 plays a role in mediating radiation-induced hematopoietic cell senescence and residual bone marrow suppression.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
46 |
19
|
Zou J, Zou P, Wang J, Li L, Wang Y, Zhou D, Liu L. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hematol 2012; 91:813-823. [PMID: 22258328 PMCID: PMC3390192 DOI: 10.1007/s00277-011-1397-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022] [Imported: 04/09/2025]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) depends on HSC self-renewing proliferation and functional maintenance, which can be negatively affected by HSC differentiation, apoptosis, and senescence. Therefore, inhibition of HSC senescence may promote HSC expansion. To test this hypothesis, we examined the effect of inhibition of p38 mitogen-activated protein kinase (p38) on the expansion of human umbilical cord blood (hUCB) CD133(+) cells because activation of p38 has been implicated in the induction of HSC senescence under various physiological and pathological conditions. Our results showed that ex vivo expansion of hUCB CD133(+) cells activated p38, which was abrogated by the p38 specific inhibitor SB203580 (SB). Inhibition of p38 activity with SB promoted the expansion of CD133(+) cells and CD133(+)CD38(-) cells. In addition, hUCB CD133(+) cells expanded in the presence of SB for 7 days showed about threefold increase in the clonogenic function of HSCs and engraftment in non-obese diabetic/severe combined immunodeficient mice after transplantation compared to the input cells. In contrast, the cells expanded without SB exhibited a significant reduction in these HSC functions. The enhancement of ex vivo expansion of hUCB HSCs is primarily attributable to SB-mediated inhibition of HSC senescence. In addition, inhibition of HSC apoptosis and upregulation of CXCR4 may also contribute to the enhancement. However, p38 inhibition had no significant effect on HSC differentiation and proliferation. These findings suggest that inhibition of p38 activation may represent a novel strategy to promote ex vivo expansion of hUCB HSCs.
Collapse
|
Evaluation Study |
13 |
41 |
20
|
Qin S, He X, Lin H, Schulte BA, Zhao M, Tew KD, Wang GY. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med 2021; 169:238-247. [PMID: 33892113 PMCID: PMC8138866 DOI: 10.1016/j.freeradbiomed.2021.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] [Imported: 08/29/2023]
Abstract
Radiation is widely used for cancer treatment but the radioresistance properties of cancer stem cells (CSCs) pose a significant challenge to the success of cancer therapy. Nuclear factor erythroid-2-related factor 2 (Nrf2) has emerged as a prominent regulator of cellular antioxidant responses and its over-activation is associated with drug resistant in cancer cells. However, the role of Nrf2 signaling in regulating the response of CSCs to irradiation has yet to be defined. Here, we show that exposure of triple-negative breast cancer (TNBC) cells to ionizing radiation (IR) upregulates Nrf2 expression and promotes its nuclear translocation in a reactive oxygen species (ROS)-dependent manner. Ectopic overexpression of Nrf2 attenuates, whereas knockdown of Nrf2 potentiates IR-induced killing of TNBC CSCs. Mechanistically, we found that Nrf2 knockdown increases IR-induced ROS production and impedes DNA repair at least in part via inhibition of DNA-PK. Furthermore, activation of Nrf2 by sulforaphane diminishes, whereas inhibition of Nrf2 by ML385 enhances IR-induced killing of TNBC CSCs. Collectively, these results demonstrate that IR-induced ROS production can activate Nrf2 signaling, which in turn counteracts the killing effect of irradiation. Therefore, pharmacological inhibition of IR-induced Nrf2 activation by ML385 could be a new therapeutic approach to sensitize therapy-resistant CSCs to radiotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
35 |
21
|
Qin S, Schulte BA, Wang GY. Role of senescence induction in cancer treatment. World J Clin Oncol 2018; 9:180-187. [PMID: 30622926 PMCID: PMC6314866 DOI: 10.5306/wjco.v9.i8.180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Cellular senescence is a form of permanent cell cycle arrest that can be triggered by a variety of cell-intrinsic and extrinsic stimuli, including telomere shortening, DNA damage, oxidative stress, and exposure to chemotherapeutic agents and ionizing radiation. Although the induction of apoptotic cell death is a desirable outcome in cancer therapy, mutations and/or deficiencies in the apoptotic signaling pathways have been frequently identified in many human cancer types, suggesting the importance of alternative apoptosis-independent therapeutic approaches for cancer treatment. A growing body of evidence has documented that senescence induction in tumor cells is a frequent response to many anticancer modalities including cyclin-dependent kinases 4/6 small molecule inhibitor-based targeted therapeutics and T helper-1 cytokine-mediated immunotherapy. This review discusses the recent advances and clinical relevance of therapy-induced senescence in cancer treatment.
Collapse
|
Minireviews |
7 |
30 |
22
|
Xiao X, Luo H, Vanek KN, LaRue AC, Schulte BA, Wang GY. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells. Stem Cells Dev 2015; 24:1342-1351. [PMID: 25603016 PMCID: PMC4440990 DOI: 10.1089/scd.2014.0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] [Imported: 08/29/2023] Open
Abstract
Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
30 |
23
|
Bai A, Meier GP, Wang Y, Luberto C, Hannun YA, Zhou D. Prodrug modification increases potassium tricyclo[5.2.1.0(2,6)]-decan-8-yl dithiocarbonate (D609) chemical stability and cytotoxicity against U937 leukemia cells. J Pharmacol Exp Ther 2004; 309:1051-1059. [PMID: 14960662 DOI: 10.1124/jpet.103.064600] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 04/09/2025] Open
Abstract
Potassium tricyclo[5.2.1.0(2,6)]-decan-8-yl dithiocarbonate (D609) is a selective antitumor agent, potent antioxidant, and cytoprotectant. It has the potential to be developed as a unique chemotherapeutic agent that may provide dual therapeutic benefits against cancer, e.g., enhancing tumor cell death while protecting normal tissues from damage. However, D609 contains a dithiocarbonate (xanthate) group [O-C(=S)S(-)/O-C(=S)SH], which is chemically unstable, being readily oxidized to form a disulfide bond with subsequent loss of all biological activities. Therefore, we developed the synthesis of a series of S-(alkoxyacyl) D609 prodrugs by connecting the xanthate group of D609 to an ester via a self-immolative methyleneoxyl group. These S-(alkoxylacyl)-D609 prodrugs are designed to release D609 in two steps: esterase-catalyzed hydrolysis of the acyl ester bond followed by conversion of the resulting hydroxymethyl D609 to formaldehyde and D609. Three S-(alkoxyacyl) D609 prodrugs were synthesized by varying the steric bulkiness of the acyl group. These prodrugs are stable to ambient conditions, but readily hydrolyzed by esterases to liberate D609 in a controlled manner. More importantly, the lead prodrug methyleneoxybutyryl D609 is biologically more effective than D609 in inhibiting sphingomyelin synthase, thereby increasing the level of ceramide and inducing apoptosis in U937 leukemia cells. The prodrug has a significantly lower LD(50) value than that of D609 (56.6 versus 117 microM) against U937 cells. These findings demonstrate that prodrug modification of the xanthate moiety with an alkoxyacyl group can improve D609 oxidative stability and enhance its antitumor activity.
Collapse
|
|
21 |
30 |
24
|
An N, Lin YW, Mahajan S, Kellner JN, Wang Y, Li Z, Kraft AS, Kang Y. Pim1 serine/threonine kinase regulates the number and functions of murine hematopoietic stem cells. Stem Cells 2013; 31:1202-1212. [PMID: 23495171 PMCID: PMC3664117 DOI: 10.1002/stem.1369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/25/2013] [Indexed: 01/01/2023] [Imported: 04/09/2025]
Abstract
The genes and pathways that govern the functions and expansion of hematopoietic stem cells (HSC) are not completely understood. In this study, we investigated the roles of serine/threonine Pim kinases in hematopoiesis in mice. We generated PIM1 transgenic mice (Pim1-Tx) overexpressing human PIM1 driven by vav hematopoietic promoter/regulatory elements. Compared to wild-type littermates, Pim1-Tx mice showed enhanced hematopoiesis as demonstrated by increased numbers of Lin(-) Sca-1 (+) c-Kit (+) (LSK) hematopoietic stem/progenitor cells and cobblestone area forming cells, higher BrdU incorporation in long-term HSC population, and a better ability to reconstitute lethally irradiated mice. We then extended our study using Pim1(-/-), Pim2(-/-), Pim3(-/-) single knockout (KO) mice. HSCs from Pim1(-/-) KO mice showed impaired long-term hematopoietic repopulating capacity in secondary and competitive transplantations. Interestingly, these defects were not observed in HSCs from Pim2(-/-) or Pim3(-/-) KO mice. Limiting dilution competitive transplantation assay estimated that the frequency of LSKCD34(-) HSCs was reduced by approximately 28-fold in Pim1(-/-) KO mice compared to wild-type littermates. Mechanistic studies demonstrated an important role of Pim1 kinase in regulating HSC cell proliferation and survival. Finally, our polymerase chain reaction (PCR) array and confirmatory real-time PCR (RT-PCR) studies identified several genes including Lef-1, Pax5, and Gata1 in HSCs that were affected by Pim1 deletion. Our data provide the first direct evidence for the important role of Pim1 kinase in the regulation of HSCs. Our study also dissects out the relative role of individual Pim kinase in HSC functions and regulation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
25 |
25
|
Burns TA, Subathra M, Signorelli P, Choi Y, Yang X, Wang Y, Villani M, Bhalla K, Zhou D, Luberto C. Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene. J Lipid Res 2013; 54:794-805. [PMID: 23160178 PMCID: PMC3617953 DOI: 10.1194/jlr.m033985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 01/07/2023] [Imported: 04/09/2025] Open
Abstract
Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
24 |