1
|
Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm 2014; 2014:170381. [PMID: 24966464 PMCID: PMC4055660 DOI: 10.1155/2014/170381] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/02/2014] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer.
Collapse
|
Review |
11 |
89 |
2
|
Mukaida N, Sasaki SI, Baba T. CCL4 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:23-32. [PMID: 32060843 DOI: 10.1007/978-3-030-36667-4_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 08/29/2023]
Abstract
CCL4, a CC chemokine, previously known as macrophage inflammatory protein (MIP)-1β, has diverse effects on various types of immune and nonimmune cells by the virtue of its interaction with its specific receptor, CCR5, in collaboration with related but distinct CC chemokines such as CCL3 and CCL5, which can also bind CCR5. Several lines of evidence indicate that CCL4 can promote tumor development and progression by recruiting regulatory T cells and pro-tumorigenic macrophages, and acting on other resident cells present in the tumor microenvironment, such as fibroblasts and endothelial cells, to facilitate their pro-tumorigenic capacities. These observations suggest the potential efficacy of CCR5 antagonists for cancer treatment. On the contrary, under some situations, CCL4 can enhance tumor immunity by recruiting cytolytic lymphocytes and macrophages with phagocytic ability. Thus, presently, the clinical application of CCR5 antagonists warrants more detailed analysis of the role of CCL4 and other CCR5-binding chemokines in the tumor microenvironment.
Collapse
|
Review |
5 |
73 |
3
|
Sasaki S, Baba T, Shinagawa K, Matsushima K, Mukaida N. Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer 2014; 135:1297-306. [PMID: 24510316 DOI: 10.1002/ijc.28779] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] [Imported: 08/29/2023]
Abstract
Patients with inflammatory bowel diseases often develop colon carcinoma. Combined treatment of azoxymethane (AOM) and dextran sulfate sodium (DSS) recapitulates colitis-associated cancer in mice. AOM/DSS-induced tumor formation was reduced in CCL3- or its specific receptor, CCR5-deficient mice despite the presence of a massive infiltration of inflammatory cells. However, AOM/DSS-induced type I collagen-positive fibroblast accumulation in the colon was reduced in CCL3- or CCR5-deficient mice. This was associated with depressed expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is expressed mainly by fibroblasts. Moreover in vitro, CCL3 induced fibroblasts to proliferate and to enhance HB-EGF expression. Furthermore, CCR5 blockade reduced tumor formation together with reduced fibroblast accumulation and HB-EGF expression, even when administered after the development of multiple colon tumors. Thus, CCL3-CCR5-mediated fibroblast accumulation may be required, in addition to leukocyte infiltration, to induce full-blown colitis-associated carcinogenesis. Our studies shed light on a therapeutic potential of CCR5 antagonist for patients with colitis-associated cancer.
Collapse
|
Journal Article |
11 |
57 |
4
|
Two-Faced Roles of Tumor-Associated Neutrophils in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21103457. [PMID: 32422991 PMCID: PMC7278934 DOI: 10.3390/ijms21103457] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans. Neutrophil infiltration into tumor tissues has long been observed but its roles have been ignored due to the presumed short life cycle and metabolic incompetence of neutrophils. Recent advances in neutrophil biology research have revealed that neutrophils have a longer life cycle with a potential to express various bioactive molecules. Clinical studies have simultaneously unraveled an increase in the neutrophil–lymphocyte ratio (NLR), a ratio of absolute neutrophil to absolute lymphocyte numbers in cancer patient peripheral blood and an association of higher NLR with more advanced or aggressive disease. As a consequence, tumor-associated neutrophils (TANs) have emerged as important players in tumor microenvironment. The elucidation of the roles of TANs, however, has been hampered by their multitude of plasticity in terms of phenotypes and functionality. Difficulties are further enhanced by the presence of a related cell population—polymorphonuclear leukocyte (PMN)-myeloid-derived suppressor cells (MDSCs)—and various dissimilar aspects of neutrophil biology between humans and mice. Here, we discuss TAN biology in various tumorigenesis processes, and particularly focus on the context-dependent functional heterogeneity of TANs.
Collapse
|
Review |
5 |
53 |
5
|
Sasaki S, Baba T, Nishimura T, Hayakawa Y, Hashimoto SI, Gotoh N, Mukaida N. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett 2016; 378:23-32. [PMID: 27177471 DOI: 10.1016/j.canlet.2016.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity.
Collapse
|
Journal Article |
9 |
51 |
6
|
Mukaida N, Sasaki S. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World J Gastroenterol 2016; 22:5301-5316. [PMID: 27340347 PMCID: PMC4910652 DOI: 10.3748/wjg.v22.i23.5301] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Tumor microenvironments have a crucial role in cancer initiation and progression, and share many molecular and pathological features with wound healing process. Unless treated, tumors, however, do not heal in contrast to wounds that heal within a limited time framework. Wounds heal in coordination of a myriad of types of cells, particularly endothelial cells, leukocytes, and fibroblasts. Similar sets of cells also contribute to cancer initiation and progression, and as a consequence, anti-cancer treatment strategies have been proposed and tested by targeting endothelial cells and/or leukocytes. Compared with endothelial cells and leukocytes, less attention has been paid to the roles of cancer-associated fibroblasts (CAFs), fibroblasts present in tumor tissues, because their heterogeneity hinders the elucidation on them at cellular and molecular levels. Here, we will discuss the origin of CAFs and their crucial roles in cancer initiation and progression, and the possibility to develop a novel type of anti-cancer treatment by manipulating the migration and functions of CAFs.
Collapse
|
Topic Highlight |
9 |
42 |
7
|
Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. Int J Mol Sci 2017; 18:ijms18081824. [PMID: 28829353 PMCID: PMC5578209 DOI: 10.3390/ijms18081824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
All blood lineage cells are generated from hematopoietic stem cells (HSCs), which reside in bone marrow after birth. HSCs self-renew, proliferate, and differentiate into mature progeny under the control of local microenvironments including hematopoietic niche, which can deliver regulatory signals in the form of bound or secreted molecules and from physical cues such as oxygen tension and shear stress. Among these mediators, accumulating evidence indicates the potential involvement of several chemokines, particularly CXCL12, in the interaction between HSCs and bone marrow microenvironments. Fusion between breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog (ABL)-1 gene gives rise to BCR-ABL protein with a constitutive tyrosine kinase activity and transforms HSCs and/or hematopoietic progenitor cells (HPCs) into disease-propagating leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). LSCs can self-renew, proliferate, and differentiate under the influence of the signals delivered by bone marrow microenvironments including niche, as HSCs can. Thus, the interaction with bone marrow microenvironments is indispensable for the initiation, maintenance, and progression of CML. Moreover, the crosstalk between LSCs and bone marrow microenvironments can contribute to some instances of therapeutic resistance. Furthermore, evidence is accumulating to indicate the important roles of bone marrow microenvironment-derived chemokines. Hence, we will herein discuss the roles of chemokines in CML with a focus on bone marrow microenvironments.
Collapse
|
Review |
8 |
27 |
8
|
Sasaki S, Baba T, Muranaka H, Tanabe Y, Takahashi C, Matsugo S, Mukaida N. Involvement of Prokineticin 2-expressing Neutrophil Infiltration in 5-Fluorouracil-induced Aggravation of Breast Cancer Metastasis to Lung. Mol Cancer Ther 2018; 17:1515-1525. [PMID: 29643149 DOI: 10.1158/1535-7163.mct-17-0845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/23/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022] [Imported: 08/29/2023]
Abstract
Adjuvant chemotherapy is used for human breast cancer patients, even after curative surgery of primary tumor, to prevent tumor recurrence primarily as a form of metastasis. However, anticancer drugs can accelerate metastasis in several mouse metastasis models. Hence, we examined the effects of postsurgical administration with 5-fluorouracil (5-FU), doxorubicin, and cyclophosphamide, on lung metastasis process, which developed after the resection of the primary tumor arising from the orthotopic injection of a mouse triple-negative breast cancer cell line, 4T1. Only 5-FU markedly increased the numbers and sizes of lung metastasis foci, with enhanced tumor cell proliferation and angiogenesis as evidenced by increases in Ki67-positive cell numbers and CD31-positive areas, respectively. 5-FU-mediated augmented lung metastasis was associated with increases in intrapulmonary neutrophil numbers and expression of neutrophilic chemokines, Cxcl1 and Cxcl2 in tumor cells, with few effects on intrapulmonary T-cell or macrophage numbers. 5-FU enhanced Cxcl1 and Cxcl2 expression in 4T1 cells in a NFκB-dependent manner. Moreover, the administration of a neutrophil-depleting antibody or a Cxcr2 antagonist, SB225002, significantly attenuated 5-FU-mediated enhanced lung metastasis with depressed neutrophil infiltration. Furthermore, infiltrating neutrophils and 4T1 cells abundantly expressed prokineticin-2 (Prok2) and its receptor, Prokr1, respectively. Finally, the administration of 5-FU after the resection of the primary tumor failed to augment lung metastasis in the mice receiving Prokr1-deleted 4T1 cells. Collectively, 5-FU can enhance lung metastasis by inducing tumor cells to produce Cxcl1 and Cxcl2, which induced the migration of neutrophils expressing Prok2 with a capacity to enhance 4T1 cell proliferation. Mol Cancer Ther; 17(7); 1515-25. ©2018 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
27 |
9
|
Mukaida N, Nakamoto Y. Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma. World J Gastroenterol 2018; 24:1839-1858. [PMID: 29740200 PMCID: PMC5937202 DOI: 10.3748/wjg.v24.i17.1839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Tumor immunity proceeds through multiple processes, which consist of antigen presentation by antigen presenting cells (APCs) to educate effector cells and destruction by the effector cytotoxic cells. However, tumor immunity is frequently repressed at tumor sites. Malignantly transformed cells rarely survive the attack by the immune system, but cells that do survive change their phenotypes to reduce their immunogenicity. The resultant cells evade the attack by the immune system and form clinically discernible tumors. Tumor microenvironments simultaneously contain a wide variety of immune suppressive molecules and cells to dampen tumor immunity. Moreover, the liver microenvironment exhibits immune tolerance to reduce aberrant immune responses to massively-exposed antigens via the portal vein, and immune dysfunction is frequently associated with liver cirrhosis, which is widespread in hepatocellular carcinoma (HCC) patients. Immune therapy aims to reduce tumor burden, but it is also expected to prevent non-cancerous liver lesions from progressing to HCC, because HCC develops or recurs from non-cancerous liver lesions with chronic inflammatory states and/or cirrhosis and these lesions cannot be cured and/or eradicated by local and/or systemic therapies. Nevertheless, cancer immune therapy should augment specific tumor immunity by using two distinct measures: enhancing the effector cell functions such as antigen presentation capacity of APCs and tumor cell killing capacity of cytotoxic cells, and reactivating the immune system in immune-suppressive tumor microenvironments. Here, we will summarize the current status and discuss the future perspective on immune therapy for HCC.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Humans
- Immune Tolerance/genetics
- Immunotherapy/methods
- Immunotherapy/trends
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocyte Activation/genetics
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Tumor Microenvironment/immunology
Collapse
|
Review |
7 |
26 |
10
|
Song Y, Baba T, Mukaida N. Gemcitabine induces cell senescence in human pancreatic cancer cell lines. Biochem Biophys Res Commun 2016; 477:515-9. [DOI: 10.1016/j.bbrc.2016.06.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] [Imported: 08/29/2023]
|
|
9 |
25 |
11
|
Mukaida N, Zhang D, Sasaki SI. Emergence of Cancer-Associated Fibroblasts as an Indispensable Cellular Player in Bone Metastasis Process. Cancers (Basel) 2020; 12:E2896. [PMID: 33050237 PMCID: PMC7600711 DOI: 10.3390/cancers12102896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
Bone metastasis is frequently complicated in patients with advanced solid cancers such as breast, prostate and lung cancers, and impairs patients' quality of life and prognosis. At the first step of bone metastasis, cancer cells adhere to the endothelium in bone marrow and survive in a dormant state by utilizing hematopoietic niches present therein. Once a dormant stage is disturbed, cancer cells grow through the interaction with various bone marrow resident cells, particularly osteoclasts and osteoblasts. Consequently, osteoclast activation is a hallmark of bone metastasis. As a consequence, the drugs targeting osteoclast activation are frequently used to treat bone metastasis but are not effective to inhibit cancer cell growth in bone marrow. Thus, additional types of resident cells are presumed to contribute to cancer cell growth in bone metastasis sites. Cancer-associated fibroblasts (CAFs) are fibroblasts that accumulate in cancer tissues and can have diverse roles in cancer progression and metastasis. Given the presence of CAFs in bone metastasis sites, CAFs are emerging as an important cellular player in bone metastasis. Hence, in this review, we will discuss the potential roles of CAFs in tumor progression, particularly bone metastasis.
Collapse
|
Review |
5 |
19 |
12
|
Song Y, Baba T, Li YY, Furukawa K, Tanabe Y, Matsugo S, Sasaki S, Mukaida N. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization. Biochem Biophys Res Commun 2015; 458:341-6. [DOI: 10.1016/j.bbrc.2015.01.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 11/16/2022] [Imported: 08/29/2023]
|
|
10 |
18 |
13
|
Lung Macrophages: Multifunctional Regulator Cells for Metastatic Cells. Int J Mol Sci 2018; 20:ijms20010116. [PMID: 30597969 PMCID: PMC6337639 DOI: 10.3390/ijms20010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
Metastasis is responsible for most of the cancer-associated deaths and proceeds through multiple steps. Several lines of evidence have established an indispensable involvement of macrophages present at the primary tumor sites in various steps of metastasis, from primary tumor growth to its intravasation into circulation. The lungs encompass a large, dense vascular area and, therefore, are vulnerable to metastasis, particularly, hematogenous ones arising from various types of neoplasms. Lung tissues constitutively contain several types of tissue-resident macrophages and circulating monocytes to counteract potentially harmful exogenous materials, which directly reach through the airway. Recent advances have provided an insight into the ontogenetic, phenotypic, and functional heterogeneity of these lung macrophage and monocyte populations, under resting and inflammatory conditions. In this review, we discuss the ontogeny, trafficking dynamics, and functions of these pulmonary macrophages and monocytes and their potential roles in lung metastasis and measures to combat lung metastasis by targeting these populations.
Collapse
|
Review |
7 |
15 |
14
|
Li YY, Mukaida N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J Gastroenterol 2014; 20:9392-9404. [PMID: 25071334 PMCID: PMC4110571 DOI: 10.3748/wjg.v20.i28.9392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.
Collapse
|
Topic Highlight |
11 |
15 |
15
|
Zhang D, Iwabuchi S, Baba T, Hashimoto SI, Mukaida N, Sasaki SI. Involvement of a Transcription factor, Nfe2, in Breast Cancer Metastasis to Bone. Cancers (Basel) 2020; 12:cancers12103003. [PMID: 33081224 PMCID: PMC7602858 DOI: 10.3390/cancers12103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) is frequently complicated by bone metastasis, which deteriorates the life expectancy of this patient cohort. In order to develop a novel type of therapy for bone metastasis, we established 4T1.3 clone with a high capacity to metastasize to bone after orthotopic injection, from a murine TNBC cell line, 4T1.0. To elucidate the molecular mechanism underlying a high growth ability of 4T1.3 in a bone cavity, we searched for a novel candidate molecule with a focus on a transcription factor whose expression was selectively enhanced in a bone cavity. Comprehensive gene expression analysis detected enhanced Nfe2 mRNA expression in 4T1.3 grown in a bone cavity, compared with in vitro culture conditions. Moreover, Nfe2 gene transduction into 4T1.0 cells enhanced their capability to form intraosseous tumors. Moreover, Nfe2 shRNA treatment reduced tumor formation arising from intraosseous injection of 4T1.3 clone as well as another mouse TNBC-derived TS/A.3 clone with an augmented intraosseous tumor formation ability. Furthermore, NFE2 expression was associated with in vitro growth advantages of these TNBC cell lines under hypoxic condition, which mimics the bone microenvironment, as well as Wnt pathway activation. These observations suggest that NFE2 can potentially contribute to breast cancer cell survival in the bone microenvironment.
Collapse
|
Journal Article |
5 |
13 |
16
|
Yoshimura T, Nakamura K, Li C, Fujisawa M, Shiina T, Imamura M, Li T, Mukaida N, Matsukawa A. Cancer Cell-Derived Granulocyte-Macrophage Colony-Stimulating Factor Is Dispensable for the Progression of 4T1 Murine Breast Cancer. Int J Mol Sci 2019; 20:ijms20246342. [PMID: 31888216 PMCID: PMC6941073 DOI: 10.3390/ijms20246342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
We previously reported that 4T1 murine breast cancer cells produce GM-CSF that up-regulates macrophage expression of several cancer promoting genes, including Mcp-1/Ccl2, Ccl17 and Rankl, suggesting a critical role of cancer cell-derived GM-CSF in cancer progression. Here, we attempted to define whether 4T1 cell-derived GM-CSF contributes to the expression of these genes by 4T1tumors, and their subsequent progression. Intraperitoneal injection of anti-GM-CSF neutralizing antibody did not decrease the expression of Mcp-1, Ccl17 or Rankl mRNA by 4T1 tumors. To further examine the role of cancer cell-derived GM-CSF, we generated GM-CSF-deficient 4T1 cells by using the Crisper-Cas9 system. As previously demonstrated, 4T1 cells are a mixture of cells and cloning of cells by itself significantly reduced tumor growth and lung metastasis. By contrast, GM-CSF-deficiency did not affect tumor growth, lung metastasis or the expression of these chemokine and cytokine genes in tumor tissues. By in-situ hybridization, the expression of Mcp-1 mRNA was detected in both F4/80-expressing and non-expressing cells in tumors of GM-CSF-deficient cells. These results indicate that cancer cell-derived GM-CSF is dispensable for the tuning of the 4T1 tumor microenvironment and the production of MCP-1, CCL17 or RANKL in the 4T1 tumor microenvironment is likely regulated by redundant mechanisms.
Collapse
|
Journal Article |
6 |
7 |
17
|
Mukaida N, Tanabe Y, Baba T. Cancer non-stem cells as a potent regulator of tumor microenvironment: a lesson from chronic myeloid leukemia. MOLECULAR BIOMEDICINE 2021; 2:7. [PMID: 35006395 PMCID: PMC8607377 DOI: 10.1186/s43556-021-00030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 01/10/2023] [Imported: 08/29/2023] Open
Abstract
A limited subset of human leukemia cells has a self-renewal capacity and can propagate leukemia upon their transplantation into animals, and therefore, are named as leukemia stem cells, in the early 1990’s. Subsequently, cell subpopulations with similar characteristics were detected in various kinds of solid cancers and were denoted as cancer stem cells. Cancer stem cells are presently presumed to be crucially involved in malignant progression of solid cancer: chemoresitance, radioresistance, immune evasion, and metastasis. On the contrary, less attention has been paid to cancer non-stem cell population, which comprise most cancer cells in cancer tissues, due to the lack of suitable markers to discriminate cancer non-stem cells from cancer stem cells. Chronic myeloid leukemia stem cells generate a larger number of morphologically distinct non-stem cells. Moreover, accumulating evidence indicates that poor prognosis is associated with the increases in these non-stem cells including basophils and megakaryocytes. We will discuss the potential roles of cancer non-stem cells in fostering tumor microenvironment, by illustrating the roles of chronic myeloid leukemia non-stem cells including basophils and megakaryocytes in the pathogenesis of chronic myeloid leukemia, a typical malignant disorder arising from leukemic stem cells.
Collapse
|
Review |
4 |
4 |