1
|
Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A, Bolaños JP. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 2015; 22:1877-89. [PMID: 25909891 DOI: 10.1038/cdd.2015.49] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/07/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] [Imported: 02/14/2025] Open
Abstract
Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca²⁺ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca²⁺ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr(395), Ser(433) and Thr(439) that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5-Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
138 |
2
|
González A, Pariente JA, Salido GM. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 2007; 1178:28-37. [PMID: 17888892 DOI: 10.1016/j.brainres.2007.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/29/2007] [Accepted: 08/12/2007] [Indexed: 01/04/2023] [Imported: 08/29/2023]
Abstract
We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
76 |
3
|
García LJ, Rosado JA, González A, Jensen RT. Cholecystokinin-stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C-dependent and -independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho. Biochem J 1997; 327 ( Pt 2):461-72. [PMID: 9359417 PMCID: PMC1218817 DOI: 10.1042/bj3270461] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 02/14/2025]
Abstract
Recent studies show that the effects of some oncogenes, integrins, growth factors and neuropeptides are mediated by tyrosine phosphorylation of the cytosolic kinase p125 focal adhesion kinase (p125(FAK)) and the cytoskeletal protein paxillin. Recently we demonstrated that cholecystokinin (CCK) C-terminal octapeptide (CCK-8) causes tyrosine phosphorylation of p125(FAK) and paxillin in rat pancreatic acini. The present study was aimed at examining whether protein kinase C (PKC) activation, calcium mobilization, cytoskeletal organization and small G-protein p21(rho) activation play a role in mediating the stimulation of tyrosine phosphorylation by CCK-8 in acini. CCK-8-stimulated phosphorylation of p125(FAK) and paxillin reached a maximum within 2.5 min. The CCK-8 dose response for causing changes in the cytosolic calcium concentration ([Ca2+]i) was similar to that for p125(FAK) and paxillin phosphorylation, and both were to the left of that for receptor occupation and inositol phosphate production. PMA increased tyrosine phosphorylation of both proteins. The calcium ionophore A23187 caused only 25% of the maximal stimulation caused by CCK-8. GF109203X, a PKC inhibitor, completely inhibited phosphorylation with PMA but had no effect on the response to CCK-8. Depletion of [Ca2+]i by thapsigargin had no effect on CCK-8-stimulated phosphorylation. Pretreatment with both GF109203X and thapsigargin decreased CCK-8-stimulated phosphorylation of both proteins by 50%. Cytochalasin D, but not colchicine, completely inhibited CCK-8- and PMA-induced p125(FAK) and paxillin phosphorylation. Treatment with Clostridium botulinum C3 transferase, which inactivates p21(rho), caused significant inhibition of CCK-8-stimulated p125(FAK) and paxillin phosphorylation. These results demonstrate that, in pancreatic acini, CCK-8 causes rapid p125(FAK) and paxillin phosphorylation that is mediated by both phospholipase C-dependent and -independent mechanisms. For this tyrosine phosphorylation to occur, the integrity of the actin, but not the microtubule, cytoskeleton is essential as well as the activation of p21(rho).
Collapse
|
research-article |
28 |
59 |
4
|
Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 2015; 87:226-36. [PMID: 26163001 DOI: 10.1016/j.freeradbiomed.2015.06.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/24/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022] [Imported: 08/29/2023]
Abstract
The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and evoked a concentration-dependent increase in the expression of the antioxidant enzymes NAD(P)H-quinone oxidoreductase 1, catalytic subunit of glutamate-cysteine ligase, and heme oxygenase-1. Incubation of MitoSOX Red-loaded pancreatic acinar cells in the presence of 1 nM CCK-8 induced a statistically significant increase in dye-derived fluorescence, reflecting an increase in oxidation, that was abolished by pretreatment of cells with melatonin (100 µM) or PMA (1 µM). On the contrary, pretreatment with Ro31-8220 (3 µM) blocked the effect of melatonin on CCK-8-induced increase in oxidation. Finally, phosphorylation of JNK in the presence of CCK-8 or melatonin was also observed. We conclude that melatonin, via modulation of PKC and Ca(2+) signaling, could potentially stimulate the Nrf2-mediated antioxidant response in mouse pancreatic acinar cells.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
52 |
5
|
Redondo PC, Lajas AI, Salido GM, Gonzalez A, Rosado JA, Pariente JA. Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem J 2003; 370:255-63. [PMID: 12423207 PMCID: PMC1223155 DOI: 10.1042/bj20021505] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 10/31/2002] [Accepted: 11/07/2002] [Indexed: 11/17/2022] [Imported: 02/14/2025]
Abstract
Store-mediated Ca2+ entry (SMCE) is one of the main pathways for Ca2+ influx in non-excitable cells. Recent studies favour a secretion-like coupling mechanism to explain SMCE, where Ca2+ entry is mediated by an interaction of the endoplasmic reticulum (ER) with the plasma membrane (PM) and is modulated by the actin cytoskeleton. To explore this possibility further we have now investigated the role of the actin cytoskeleton in the activation and maintenance of SMCE in pancreatic acinar cells, a more specialized secretory cell type which might be an ideal cellular model to investigate further the properties of the secretion-like coupling model. In these cells, the cytoskeletal disrupters cytochalasin D and latrunculin A inhibited both the activation and maintenance of SMCE. In addition, stabilization of a cortical actin barrier by jasplakinolide prevented the activation, but not the maintenance, of SMCE, suggesting that, as for secretion, the actin cytoskeleton plays a double role in SMCE as a negative modulator of the interaction between the ER and PM, but is also required for this mechanism, since the cytoskeleton disrupters impaired Ca2+ entry. Finally, depletion of the intracellular Ca2+ stores induces cytoskeletal association and activation of pp60(src), which is independent on Ca2+ entry. pp60(src) activation requires the integrity of the actin cytoskeleton and participates in the initial phase of the activation of SMCE in pancreatic acinar cells.
Collapse
|
research-article |
22 |
50 |
6
|
Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 2011; 50:250-60. [PMID: 21118301 DOI: 10.1111/j.1600-079x.2010.00834.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] [Imported: 08/29/2023]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. Thus, melatonin is considered a promising antitumor agent, promoting apoptosis in tumor cells while preserving viability of normal cells. Herein, we examined the effects of melatonin on the pancreatic AR42J tumor cell line. We have analyzed cytosolic-free Ca(2+) concentration ([Ca(2+) ](c) ), mitochondrial-free Ca(2+) concentration ([Ca(2+) ](m) ), mitochondrial membrane potential (Ψm), mitochondrial flavin adenine dinucleotide (FAD) oxidative state, cellular viability and caspase-3 activity. Our results show that melatonin induced transient changes in [Ca(2+) ](c) and [Ca(2+) ](m) . Melatonin also induced depolarization of Ψm and led to a reduction in the level of oxidized FAD. In addition, melatonin reduced AR42J cell viability. Finally, we found a Ca(2+) -dependent caspase-3 activation in response to melatonin. Collectively, these data support the likelihood that melatonin reduces viability of tumor AR42J cells via its action on mitochondrial activity and caspase-3 activation.
Collapse
|
|
14 |
48 |
7
|
Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis. Sci Rep 2018; 8:16999. [PMID: 30451898 PMCID: PMC6242935 DOI: 10.1038/s41598-018-35020-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] [Imported: 02/14/2025] Open
Abstract
It was already described that genetic inhibition of NUPR1 induces tumor growth arrest. In this paper we studied the metabolism changes after NUPR1 downregulation in pancreatic cancer cells, which results in a significant decrease of OXPHOS activity with a concomitant lower ATP production which precedes the necrotic cell death. We demonstrated that NUPR1 downregulation induces a mitochondrial failure with a loss of the mitochondrial membrane potential, a strong increase in ROS production and a concomitant relocalization of mitochondria to the vicinity of the endoplasmic reticulum (ER). In addition, the transcriptomic analysis of NUPR1-deficient cells shows a decrease in the expression of some ER stress response-associated genes. Indeed, in ER stressors-treated cells with thapsigargin, brefeldin A or tunicamycin, a greater increase in necrosis and decrease of ATP content was observed in NUPR1-defficent cells. Finally, in vivo experiments, using acute pancreatitis which induces ER stress as well as NUPR1 activation, we observed that NUPR1 expression protects acinar cells from necrosis in mice. Importantly, we also report that the cell death observed after knocking-down NUPR1 expression is completely reversed by incubation with Necrostatin-1, but not by inhibiting caspase activity with Z-VAD-FMK. Altogether, these data enable us to describe a model in which inactivation of NUPR1 in pancreatic cancer cells results in an ER stress that induces a mitochondrial malfunction, a deficient ATP production and, as consequence, the cell death mediated by a programmed necrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
43 |
8
|
Rosado JA, González A, Salido GM, Pariente JA. Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cell Signal 2002; 14:547-56. [PMID: 11897495 DOI: 10.1016/s0898-6568(01)00273-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] [Imported: 02/14/2025]
Abstract
The present study investigates the effect of reactive oxygen species (ROS) on actin filament reorganisation and its relevance to exocytosis in pancreatic acinar cells. Treatment of pancreatic acini with cholecystokinin (CCK-8) induced spatial and temporal changes in actin filament reorganisation with an initial depolymerisation of the apical actin barrier followed by an increase in the actin filament content in the subapical area leading to amylase release. Hydrogen peroxide (H(2)O(2)) increased actin filament content and potentiated the polymerizing effects of CCK-8 in these cells but abolished the disruption of the apical actin layer and amylase release induced by CCK-8. Similar to CCK-8, ROS generated by the oxidation of hypoxanthine (HX) with xanthine oxidase (XOD) induced an initial decrease in actin filaments located under the apical membrane followed by a smaller increase in the content of actin filaments in the subapical area. XOD-generated ROS are able to increase amylase release in pancreatic acini although combination with CCK-8 leads to abnormal exocytosis. We provide evidence that indicates that CCK-8- and ROS-induced actin reorganisation is entirely dependent on Ca(2+) mobilisation and independent of PKC activation. The regulation of the actin cytoskeleton by ROS might be involved in radical-induced cell injury in pancreatic acinar cells.
Collapse
|
|
23 |
40 |
9
|
González A, Schulz I, Schmid A. Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. J Biol Chem 2000; 275:38680-6. [PMID: 10995756 DOI: 10.1074/jbc.m005667200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 02/14/2025] Open
Abstract
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.
Collapse
|
|
25 |
38 |
10
|
González A, Camello PJ, Pariente JA, Salido GM. Free cytosolic calcium levels modify intracellular pH in rat pancreatic acini. Biochem Biophys Res Commun 1997; 230:652-6. [PMID: 9015379 DOI: 10.1006/bbrc.1996.6026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] [Imported: 02/14/2025]
Abstract
We have used BCECF- or Fura-2-loaded rat pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). Ca2+-mobilizing agonists CCK-8 and ACh induced a transient acidification totally dependent on release of Ca2+ from internal stores. Employment of different physiological tools including ionomycin and thapsigargin to increase the cytosolic Ca2+ concentration and capacitative calcium influx also induced cellular acidification. Application of 1mM LaCl3 reduced the CCK-8-evoked acidification. These data indicate that the mobilization of intracellular Ca2+ stores by CCK-8 decreases cellular pH by Ca2+/H+ exchanger.
Collapse
|
|
28 |
36 |
11
|
Granados MP, Salido GM, Pariente JA, González A. Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion 2005; 3:285-96. [PMID: 16120361 DOI: 10.1016/j.mito.2004.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 11/14/2003] [Accepted: 02/05/2004] [Indexed: 11/26/2022] [Imported: 02/14/2025]
Abstract
In the present study we have studied the changes in the intracellular reduction-oxidation state in mouse pancreatic acinar cells following stimulation with cholecystokinin octapeptide (CCK-8) and its dependence on Ca2+ mobilization. In our investigations cytosolic Ca2+ concentration and reactive oxygen species (ROS) production were determined by loading of cells with fura-2 and CM-H2DCF-DA, respectively. Changes in these parameters were determined by following changes in fluorescence in the cuvette of a spectrofluorimeter. The results show that stimulation of cells with CCK-8 and/or the sarco-endoplasmic reticulum Ca2+ pump inhibitor, thapsigargin (Tps), both induced changes in cytosolic free Ca2+ concentration and led to an increase in fluorescence of CM-H2DCF-DA, reflecting an increase in oxidation. In the presence of Tps, addition of CCK-8 did not significantly increase fluorescence compared to that evoked by the SERCA inhibitor. Similar results were obtained in the absence of extracellular Ca2+ and in the presence of EGTA. When the cells were challenged in the presence of the intracellular Ca2+ chelator BAPTA and in the absence of extracellular Ca2+ the responses to both CCK-8 and Tps were reduced although not completely inhibited. The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone and the inhibitor of the electron transport chain, antimycin, evoked a marked increase in CM-H2DCF-DA fluorescence and completely inhibited CCK-8 and Tps-evoked responses, indicating that ROS are generated in the mitochondria. In summary, stimulation of mouse pancreatic acinar cells with CCK-8 leads to generation of ROS, and this effect may be derived from Ca2+ mobilization from intracellular stores and involves mitochondrial metabolism.
Collapse
|
Journal Article |
20 |
36 |
12
|
Salazar M, Pariente JA, Salido GM, González A. Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochem Int 2007; 52:1061-7. [PMID: 18082912 DOI: 10.1016/j.neuint.2007.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/30/2007] [Accepted: 11/07/2007] [Indexed: 12/23/2022] [Imported: 02/14/2025]
Abstract
In this study we have investigated the effect of ethanol on [Ca2+]c by microfluorimetry and glutamate secretion using an enzyme-linked system, in rat hippocampal astrocytes in culture. Our results show that ethanol (1-200 mM) evoked a dose-dependent increase in glutamate secretion. 50 mM ethanol, a concentration within the range of blood alcohol levels in intoxicated humans, induced a release of Ca2+ from intracellular stores in the form of oscillations. Ca2+-mobilizing effect of ethanol was not prevented by preincubation of cells in the presence of 2 mM of the antioxidant dithiothreitol. Ethanol-evoked glutamate secretion was reduced when extracellular Ca2+ was omitted (medium containing 0.5 mM EGTA) and following preincubation of astrocytes in the presence of the intracellular Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (10 microM). Preincubation of astrocytes in the presence of 2 mM of the antioxidant dithiothreitol significantly reduced ethanol-evoked glutamate secretion. Finally, preincubation of astrocytes in the presence of bafilomycin (50 nM) significantly reduced ethanol-induced neurotransmitter release, indicating that exocytosis is involved in glutamate secretion. In conclusion, our results suggest that ethanol mobilizes Ca2+ from intracellular stores, and stimulates a Ca2+-dependent glutamate secretion, probably involving reactive oxygen species production, and therefore creating a situation potentially leading to neurotoxicity in the hippocampus.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
34 |
13
|
González A, Schmid A, Sternfeld L, Krause E, Salido GM, Schulz I. Cholecystokinin-evoked Ca(2+) waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A(2), phospholipase D, and protein kinase C. Biochem Biophys Res Commun 1999; 261:726-33. [PMID: 10441493 DOI: 10.1006/bbrc.1999.1106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 02/14/2025]
Abstract
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.
Collapse
|
|
26 |
30 |
14
|
González A, Granados MP, Pariente JA, Salido GM. H2O2 mobilizes Ca2+ from agonist- and thapsigargin-sensitive and insensitive intracellular stores and stimulates glutamate secretion in rat hippocampal astrocytes. Neurochem Res 2006; 31:741-50. [PMID: 16794860 DOI: 10.1007/s11064-006-9078-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2006] [Indexed: 11/26/2022] [Imported: 08/29/2023]
Abstract
The effect of hydrogen peroxide (H2O2) on cytosolic free calcium concentration ([Ca2+]c) as well as its effect on glutamate secretion in rat hippocampal astrocytes have been the aim of the present research. Our results show that 100 microM H2O2 induces an increase in [Ca2+]c, that remains at an elevated level while the oxidant is present in the perfusion medium, due to its release from intracellular stores as it was observed in the absence of extracellular Ca2+, followed by a significant increase in glutamate secretion. Ca2+-mobilization in response to the oxidant could only be reduced by thapsigargin plus FCCP, indicating that the Ca2+-mobilizable pool by H2O2 includes both endoplasmic reticulum and mitochondria. We conclude that ROS in hippocampal astrocytes might contribute to an elevation of resting [Ca2+]c which, in turn, could lead to a maintained secretion of the excitatory neurotransmitter glutamate, which has been considered a situation potentially leading to neurotoxicity in the hippocampus.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
29 |
15
|
González A, Granados MP, Salido GM, Pariente JA. Changes in mitochondrial activity evoked by cholecystokinin in isolated mouse pancreatic acinar cells. Cell Signal 2004; 15:1039-48. [PMID: 14499347 DOI: 10.1016/s0898-6568(03)00067-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] [Imported: 08/29/2023]
Abstract
In the present study, we have employed confocal laser scanning microscopy to investigate the effect that stimulation of mouse pancreatic acinar cells with the secretagogue cholecystokinin (CCK) has on mitochondrial activity. We have monitored changes in cytosolic as well as mitochondrial Ca2+ concentrations, mitochondrial membrane potential and FAD autofluorescence by loading the cells with fluo-3, rhod-2 or JC-1, respectively. Our results show that stimulation of cells with cholecystokinin led to release of Ca2+ from intracellular stores that then accumulated into mitochondria. In the presence of the hormone a depolarization of mitochondrial membrane potential was observed, which partially recovered; in addition a transient increase in FAD autofluorescence could be observed. Similarly, treatment of cells with thapsigargin induced increases in mitochondrial Ca2+ and FAD autofluorescence, and depolarized mitochondria. Pretreament of cells with thapsigargin blocked cholecystokinin-evoked changes. Similar results were obtained when the cells were incubated in the presence of rotenone, which blocks the mitochondrial electron transport chain. Our findings are consistent with changes in mitochondrial activity in response to stimulation of pancreatic acinar cells with cholecystokinin. Following stimulation, mitochondria take up Ca2+ that could in turn activate the mitochondrial machinery that may match the energy supply necessary for the cell function during secretion, suggesting that Ca2+ can act as a regulator of mitochondrial activity.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
28 |
16
|
Krause E, Schmid A, González A, Schulz I. Low cytoplasmic [Ca(2+)] activates I(CRAC) independently of global Ca(2+) store depletion in RBL-1 cells. J Biol Chem 1999; 274:36957-62. [PMID: 10601250 DOI: 10.1074/jbc.274.52.36957] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 02/14/2025] Open
Abstract
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.
Collapse
|
|
26 |
27 |
17
|
Bulcke F, Santofimia-Castaño P, Gonzalez-Mateos A, Dringen R. Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes. J Trace Elem Med Biol 2015; 32:168-76. [PMID: 26302925 DOI: 10.1016/j.jtemb.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022] [Imported: 02/14/2025]
Abstract
Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.
Collapse
|
|
10 |
26 |
18
|
Granados MP, Salido GM, González A, Pariente JA. Dose-dependent effect of hydrogen peroxide on calcium mobilization in mouse pancreatic acinar cells. Biochem Cell Biol 2006; 84:39-48. [PMID: 16462888 DOI: 10.1139/o05-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 02/14/2025] Open
Abstract
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 µmol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2at micromolar concentrations induces calcium release from agonist- sensitive stores, and at millimolar concentrations H2O2can also evoke calcium release from the mitochondria. The action of H2O2is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.Key words: hydrogen peroxide, pancreatic acinar cells, intracellular calcium stores, amylase secretion.
Collapse
|
|
19 |
26 |
19
|
González A, Schmid A, Salido GM, Camello PJ, Pariente JA. XOD-catalyzed ROS generation mobilizes calcium from intracellular stores in mouse pancreatic acinar cells. Cell Signal 2002; 14:153-9. [PMID: 11781140 DOI: 10.1016/s0898-6568(01)00247-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] [Imported: 08/29/2023]
Abstract
In fura-2 loaded isolated mouse pancreatic acinar cells, xanthine oxidase (XOD)-catalyzed reactive oxygen species (ROS) generation caused an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) by release of Ca(2+) from intracellular stores. The ROS-induced Ca(2+) signals showed large variability in shape and time-course and resembled in part Ca(2+) signals in response to physiological secretagogues. ROS-induced Ca(2+) mobilization started at the luminal cell pole and spread towards the basolateral side in a wave manner. ROS-evoked Ca(2+) responses were not inhibited by the phospholipase C (PLC) inhibitor U73122 (10 microM). Neither 2-aminoethoxy-diphenylborate (2-APB) (70 microM) nor ryanodine (50 microM) suppressed ROS-evoked Ca(2+) release. ROS still released Ca(2+) when the endoplasmic reticulum Ca(2+)-ATPase was blocked with thapsigargin (1 microM), or when rotenone (10 microM) was added to release Ca(2+) from mitochondria. Our results suggest that pancreatic acinar cells ROS do not unspecifically affect Ca(2+) homeostasis. ROS primarily affect Ca(2+) stores located in the luminal cell pole, which is also the trigger zone for agonist-induced Ca(2+) signals. Release of Ca(2+) induces Ca(2+) waves carried by Ca(2+)-induced Ca(2+) release and produces thereby global Ca(2+) signals. Under oxidative stress conditions, the increase in [Ca(2+)](i) could be one mechanism contributing to an overstimulation of the cell which could result in cell dysfunction and cell damage.
Collapse
|
|
23 |
25 |
20
|
González A, Granados MP, Salido GM, Pariente JA. H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol Cell Biochem 2005; 269:165-73. [PMID: 15786729 DOI: 10.1007/s11010-005-3457-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] [Imported: 08/29/2023]
Abstract
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
24 |
21
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
|
Journal Article |
5 |
21 |
22
|
Salazar M, Pariente JA, Salido GM, González A. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes. Toxicology 2007; 244:280-91. [PMID: 18237838 DOI: 10.1016/j.tox.2007.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/08/2007] [Accepted: 12/04/2007] [Indexed: 02/07/2023] [Imported: 02/14/2025]
Abstract
We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca2+](c) in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20microM) dose dependently increases [Ca2+](c), stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca2+-dependent, because incubation of astrocytes in the absence of extracellular Ca2+ (medium containing 0.5mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10microM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
21 |
23
|
del Castillo-Vaquero A, Salido GM, Gonzalez A. Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 2010; 49:256-63. [PMID: 20626590 DOI: 10.1111/j.1600-079x.2010.00790.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] [Imported: 08/29/2023]
Abstract
Melatonin is produced following circadian rhythm with high levels being released at night and has been implicated in the regulation of physiological processes in major tissues, including the pancreas. The aim of our study was to examine the effects of melatonin on intracellular free Ca(2+) concentration ([Ca(2+) ](c)) in AR42J pancreatic cells. Our results show that stimulation of cells with 1 nm cholecystokinin (CCK)-8 led to a transient increase in [Ca(2+) ](c) followed by a decrease towards a value close to the prestimulation level. Melatonin (at the concentrations 1, 10, 100 μm and 1 mm) induced changes in [Ca(2+) ](c) that consisted of single or short lasting spikes in the form of oscillations or slow transient increases followed by a slow reduction towards a value close to the resting level. Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nm CCK-8 or 1 μm thapsigargin (Tps) blocked Ca(2+) responses evoked by melatonin in the majority of cells. Conversely, prior stimulation of cells with 1 mm melatonin in the absence of extracellular Ca(2+) inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or Tps. In summary, our results show that melatonin releases Ca(2+) from intracellular stores and can therefore modulate the responses of the pancreas to CCK-8. The source for Ca(2+) mobilization most probably is the endoplasmic reticulum. These data raise the possibility that melatonin also involves Ca(2+) signalling, in addition to other intracellular messengers, to modulate cellular function.
Collapse
|
|
15 |
21 |
24
|
González A, Pfeiffer F, Schmid A, Schulz I. Effect of intracellular pH on acetylcholine-induced Ca2+ waves in mouse pancreatic acinar cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C810-7. [PMID: 9730965 DOI: 10.1152/ajpcell.1998.275.3.c810] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 02/14/2025]
Abstract
We have used fluo 3-loaded mouse pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). The Ca2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in the luminal cell pole followed by spreading of the Ca2+ signal toward the basolateral side with a mean speed of 16.1 +/- 0.3 micron/s. In the presence of an acidic pHi, achieved by blockade of the Na+/H+ exchanger or by incubation of the cells in a Na+-free buffer, a slower spreading of ACh-evoked Ca2+ waves was observed (7.2 +/- 0.6 micron/s and 7.5 +/- 0.3 micron/s, respectively). The effects of cytosolic acidification on the propagation rate of ACh-evoked Ca2+ waves were largely reversible and were not dependent on the presence of extracellular Ca2+. A reduction in the spreading speed of Ca2+ waves could also be observed by inhibition of the vacuolar H+-ATPase with bafilomycin A1 (11.1 +/- 0.6 micron/s), which did not lead to cytosolic acidification. In contrast, inhibition of the endoplasmic reticulum Ca2+-ATPase by 2,5-di-tert-butylhydroquinone led to faster spreading of the ACh-evoked Ca2+ signals (25.6 +/- 1.8 micron/s), which was also reduced by cytosolic acidification or treatment of the cells with bafilomycin A1. Cytosolic alkalinization had no effect on the spreading speed of the Ca2+ signals. The data suggest that the propagation rate of ACh-induced Ca2+ waves is decreased by inhibition of Ca2+ release from intracellular stores due to cytosolic acidification or to Ca2+ pool alkalinization and/or to a decrease in the proton gradient directed from the inositol 1,4, 5-trisphosphate-sensitive Ca2+ pool to the cytosol.
Collapse
|
|
27 |
21 |
25
|
Rivera-Barreno R, Castillo-Vaquero AD, Salido GM, Gonzalez A. Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 2010; 37:980-8. [PMID: 20626416 DOI: 10.1111/j.1440-1681.2010.05424.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 02/14/2025]
|
|
15 |
19 |