1
|
Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 2011; 50:193-211. [PMID: 21295074 PMCID: PMC3062638 DOI: 10.1016/j.plipres.2011.01.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
319 |
2
|
Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, de Petrocellis L, Ullmer C, Rothenhäusler B, Perret C, van Gils N, Finlay D, MacDonald C, Chicca A, Gens MD, Stuart J, de Vries H, Mastrangelo N, Xia L, Alachouzos G, Baggelaar MP, Martella A, Mock ED, Deng H, Heitman LH, Connor M, Di Marzo V, Gertsch J, Lichtman AH, Maccarrone M, Pacher P, Glass M, van der Stelt M. Cannabinoid CB 2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 2017; 8:13958. [PMID: 28045021 PMCID: PMC5216056 DOI: 10.1038/ncomms13958] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023] [Imported: 01/22/2025] Open
Abstract
The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
Collapse
|
research-article |
8 |
264 |
3
|
Pacher P, Kecskemeti V. Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns? Curr Pharm Des 2004; 10:2463-2475. [PMID: 15320756 PMCID: PMC2493295 DOI: 10.2174/1381612043383872] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] [Imported: 01/22/2025]
Abstract
The cardiovascular toxicity of older generation of tricyclic antidepressants (e.g. imipramine, desipramine, amitriptyline, clomipramine) and neuroleptics (e.g. haloperidol, droperidol, thioridazine, pimozide) is well established. These drugs inhibit cardiovascular Na(+), Ca(2+) and K(+) channels often leading to life-threatening arrhythmia. To overcome the toxicity of old generation of antidepressants and antipsychotics, selective serotonin reuptake inhibitor antidepressants (SSRIs: fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, venlafaxin) and several new antipsychotics (e.g. clozapine, olanzapine, risperidone, sertindole, aripiprazole, ziprasidone, quetiapine) were introduced during the past decade. Although these new compounds are not more effective in treating psychiatric disorders than older medications, they gained incredible popularity since they have been reported to have fewer and more benign side effect profile (including cardiovascular) than predecessors. Surprisingly, an increasing number of case reports have demonstrated that the use of SSRIs and new antipsychotics (e.g. clozapine, olanzapine, risperidone, sertindole, aripiprazole, ziprasidone, quetiapine) is associated with cases of arrhythmias, prolonged QTc interval on electrocardiogram (ECG) and orthostatic hypotension in patients lacking cardiovascular disorders, raising new concerns about the putative cardiovascular safety of these compounds. In agreement with these clinical reports these new compounds indeed show marked cardiovascular depressant effects in different mammalian and human cardiovascular preparations by inhibiting cardiac and vascular Na(+), Ca(2+) and K(+) channels. Taken together, these results suggest that the new generation of antidepressants and antipsychotics also have clinically important cardiac as well as vascular effects. Clinicians should be more vigilant about these potential adverse reactions and ECG control may be suggested during therapy, especially in patients with cardiovascular disorders. The primary goal of this review is to shed light on the recently observed clinically important cardiovascular effects of new antidepressants and antipsychotics and discuss the mechanism beyond this phenomenon.
Collapse
|
Review |
21 |
251 |
4
|
Pacher P, Haskó G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2008; 153:252-62. [PMID: 18026124 PMCID: PMC2219536 DOI: 10.1038/sj.bjp.0707582] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Ischaemia-reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
175 |
5
|
Rajesh M, Mukhopadhyay P, Haskó G, Huffman JW, Mackie K, Pacher P. CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 2008; 153:347-57. [PMID: 17994109 PMCID: PMC2219520 DOI: 10.1038/sj.bjp.0707569] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 12/24/2022] [Imported: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli are involved in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation in various cell types through cannabinoid 2 (CB2) receptors. Here, we investigated the effects of CB2 receptor agonists on TNF-alpha-induced proliferation, migration and signal transduction in human coronary artery smooth muscle cells (HCASMCs). EXPERIMENTAL APPROACH HCASMCs were stimulated with TNF-alpha. Smooth muscle proliferation was determined by the extent of BrdU incorporation and the migration was assayed by modified Boyden chamber. CB2 and/or CB1 receptor expressions were determined by immunofluorescence staining, western blotting, RT-PCR, real-time PCR and flow cytometry. KEY RESULTS Low levels of CB2 and CB1 receptors were detectable in HCASMCs compared to the high levels of CB2 receptors expressed in THP-1 monocytes. TNF-alpha triggered up to approximately 80% increase (depending on the method used) in CB2 receptor mRNA and/or protein expression in HCASMCs, and induced Ras, p38 MAPK, ERK 1/2, SAPK/JNK and Akt activation, while increasing proliferation and migration. The CB2 agonists, JWH-133 and HU-308, dose-dependently attenuated these effects of TNF-alpha. CONCLUSIONS AND IMPLICATIONS Since the above-mentioned TNF-alpha-induced phenotypic changes are critical in the initiation and progression of atherosclerosis and restenosis, our findings suggest that CB2 agonists may offer a novel approach in the treatment of these pathologies by decreasing vascular smooth muscle proliferation and migration.
Collapse
MESH Headings
- Antibodies/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Flow Cytometry
- Fluorescent Antibody Technique, Direct
- Genes, ras/drug effects
- Humans
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oncogene Protein v-akt/genetics
- Oncogene Protein v-akt/physiology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/biosynthesis
- Receptor, Cannabinoid, CB2/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/drug effects
Collapse
|
Research Support, N.I.H., Extramural |
17 |
128 |
6
|
Gruden G, Barutta F, Kunos G, Pacher P. Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 2016; 173:1116-1127. [PMID: 26076890 PMCID: PMC4941127 DOI: 10.1111/bph.13226] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/04/2015] [Accepted: 06/07/2015] [Indexed: 01/04/2023] [Imported: 08/29/2023] Open
Abstract
UNLABELLED Increasing evidence suggests that an overactive endocannabinoid system (ECS) may contribute to the development of diabetes by promoting energy intake and storage, impairing both glucose and lipid metabolism, by exerting pro-apoptotic effects in pancreatic beta cells and by facilitating inflammation in pancreatic islets. Furthermore, hyperglycaemia associated with diabetes has also been implicated in triggering perturbations of the ECS amplifying the pathological processes mentioned above, eventually culminating in a vicious circle. Compelling evidence from preclinical studies indicates that the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis and subsequent tissue injury in target organs for diabetic complications. In this review, we provide an update on the contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, nephropathy and neuropathy) and cardiovascular complications. The therapeutic potential of targeting the ECS is also discussed. LINKED ARTICLES This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Antioxidants/therapeutic use
- Cannabidiol/therapeutic use
- Chronic Disease
- Diabetes Complications/metabolism
- Diabetes Complications/prevention & control
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Endocannabinoids/metabolism
- Humans
- Insulin Resistance
- Insulin-Secreting Cells/metabolism
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
Collapse
|
Research Support, N.I.H., Intramural |
9 |
116 |
7
|
Pacher P, Kecskemeti V. Trends in the development of new antidepressants. Is there a light at the end of the tunnel? Curr Med Chem 2004; 11:925-943. [PMID: 15078174 PMCID: PMC2495050 DOI: 10.2174/0929867043455594] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 01/22/2025]
Abstract
Since the introduction of tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) in mid-1950's, treatment of depression has been dominated by monoamine hypotheses. The well-established clinical efficacy of TCAs and MAOIs is due, at least in part, to the enhancement of noradrenergic or serotonergic mechanisms, or to both. Unfortunately, their very broad mechanisms of action also include many unwanted effects related to their potent activity on cholinergic, adrenergic and histaminergic receptors. The introduction of selective serotonin reuptake inhibitors (SSRIs) over twenty years ago had been the next major step in the evolution of antidepressants to develop drugs as effective as the TCAs but of higher safety and tolerability profile. During the past two decades SSRIs (fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram) gained incredible popularity and have become the most widely prescribed medication in the psychiatric practice. The evolution of antidepressants continued resulting in introduction of selective and reversible monoamine oxidase inhibitors (eg. moclobemid), selective noradrenaline (eg. reboxetine), dual noradrenaline and serotonin reuptake inhibitors (milnacipram, venlafaxin, duloxetin) and drugs with distinct neurochemical profiles such as mirtazapine, nefazadone and tianeptine. Different novel serotonin receptor ligands have also been intensively investigated. In spite of the remarkable structural diversity, most currently introduced antidepressants are 'monoamine based'. Furthermore, these newer agents are neither more efficacious nor rapid acting than their predecessors and approximately 30% of the population do not respond to current therapies. By the turn of the new millennium, we are all witnessing a result of innovative developmental strategies based on the better understanding of pathophysiology of depressive disorder. Several truly novel concepts have emerged suggesting that the modulation of neuropeptide (substance P, corticotrophin-releasing factor, neuropeptide Y, vasopressin V1b, melanin-concentrating hormone-1), N-methyl-D-aspartate, nicotinic acetylcholine, dopaminergic, glucocorticoid, delta-opioid, cannabinoid and cytokine receptors, gamma-amino butyric acid (GABA) and intracellular messenger systems, transcription, neuroprotective and neurogenic factors, may provide an entirely new set of potential therapeutic targets, giving hope that further major advances might be anticipated in the treatment of depressive disorder soon. The goal of this review is to give a brief overview of the major advances from monoamine-based treatment strategies, and particularly focus on the new emerging approaches in the treatment of depression.
Collapse
|
Review |
21 |
116 |
8
|
Nemeth BT, Varga ZV, Wu WJ, Pacher P. Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br J Pharmacol 2017; 174:3727-3748. [PMID: 27714776 PMCID: PMC5647179 DOI: 10.1111/bph.13643] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/03/2023] [Imported: 01/22/2025] Open
Abstract
UNLABELLED Epidermal growth factor receptor-2 (HER-2) is overexpressed in 20 to 25% of human breast cancers, which is associated with aggressive tumour growth and poor prognosis. Trastuzumab (Herceptin®) is a humanized monoclonal antibody directed against HER-2, the first highly selective form of therapy targeting HER-2 overexpressing tumours. Although initial trials indicated high efficacy and a favourable safety profile of the drug, the first large, randomized trial prompted a retrospective analysis of cardiac dysfunction in earlier trials utilizing trastuzumab. There has been ongoing debate on the cardiac safety of trastuzumab ever since, initiating numerous clinical and preclinical investigations to better understand the background of trastuzumab cardiotoxicity and evaluate its effects on patient morbidity. Here, we have given a comprehensive overview of our current knowledge on the cardiotoxicity of trastuzumab, primarily focusing on data from clinical trials and highlighting the main molecular mechanisms proposed. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
|
Review |
8 |
96 |
9
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
|
Review |
7 |
79 |
10
|
Wang Y, Mukhopadhyay P, Cao Z, Wang H, Feng D, Haskó G, Mechoulam R, Gao B, Pacher P. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci Rep 2017; 7:12064. [PMID: 28935932 PMCID: PMC5608708 DOI: 10.1038/s41598-017-10924-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/17/2017] [Indexed: 01/22/2023] [Imported: 08/29/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
78 |
11
|
El-Remessy AB, Rajesh M, Mukhopadhyay P, Horváth B, Patel V, Al-Gayyar MMH, Pillai BA, Pacher P. Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 2011; 54:1567-78. [PMID: 21373835 PMCID: PMC3375271 DOI: 10.1007/s00125-011-2061-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022] [Imported: 08/29/2023]
Abstract
AIMS/HYPOTHESIS Recent studies have demonstrated that cannabinoid-1 (CB(1)) receptor blockade ameliorated inflammation, endothelial and/or cardiac dysfunction, and cell death in models of nephropathy, atherosclerosis and cardiomyopathy. However the role of CB(1) receptor signalling in diabetic retinopathy remains unexplored. Using genetic deletion or pharmacological inhibition of the CB(1) receptor with SR141716 (rimonabant) in a rodent model of diabetic retinopathy or in human primary retinal endothelial cells (HREC) exposed to high glucose, we explored the role of CB(1) receptors in the pathogenesis of diabetic retinopathy. METHODS Diabetes was induced using streptozotocin in C57BL/6J Cb(1) (also known as Cnr1)(+/+) and Cb(1)(-/-) mice aged 8 to 12 weeks. Samples from mice retina or HREC were used to determine: (1) apoptosis; (2) activity of nuclear factor kappa B, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), poly (ADP-ribose) polymerase and caspase-3; (3) content of 3-nitrotyrosine and reactive oxygen species; and (4) activation of p38/Jun N-terminal kinase/mitogen-activated protein kinase (MAPK). RESULTS Deletion of CB(1) receptor or treatment of diabetic mice with CB(1) receptor antagonist SR141716 prevented retinal cell death. Treatment of diabetic mice or HREC cells exposed to high glucose with SR141716 attenuated the oxidative and nitrative stress, and reduced levels of nuclear factor κB, ICAM-1 and VCAM-1. In addition, SR141716 attenuated the diabetes- or high glucose-induced pro-apoptotic activation of MAPK and retinal vascular cell death. CONCLUSIONS/INTERPRETATION Activation of CB(1) receptors may play an important role in the pathogenesis of diabetic retinopathy by facilitating MAPK activation, oxidative stress and inflammatory signalling. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of this devastating complication of diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Caspase 3/metabolism
- Cell Line
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Glucose/pharmacology
- Humans
- Intercellular Adhesion Molecule-1/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Oxidative Stress/drug effects
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Retina/metabolism
- Retina/pathology
- Retina/physiopathology
- Retinal Vasculitis/metabolism
- Retinal Vasculitis/physiopathology
- Signal Transduction/physiology
- Streptozocin/adverse effects
Collapse
|
Research Support, N.I.H., Extramural |
14 |
67 |
12
|
Matyas C, Varga ZV, Mukhopadhyay P, Paloczi J, Lajtos T, Erdelyi K, Nemeth BT, Nan M, Hasko G, Gao B, Pacher P. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am J Physiol Heart Circ Physiol 2016; 310:H1658-H1670. [PMID: 27106042 PMCID: PMC4935511 DOI: 10.1152/ajpheart.00214.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022] [Imported: 08/29/2023]
Abstract
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
64 |
13
|
Varga ZV, Matyas C, Erdelyi K, Cinar R, Nieri D, Chicca A, Nemeth BT, Paloczi J, Lajtos T, Corey L, Hasko G, Gao B, Kunos G, Gertsch J, Pacher P. β-Caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br J Pharmacol 2018; 175:320-334. [PMID: 28107775 PMCID: PMC5758392 DOI: 10.1111/bph.13722] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND AND AIMS β-Caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo are reported to involve activation of cannabinoid CB2 receptors that are predominantly expressed in immune cells. Here, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury. METHODS In this study, we investigated the effects of BCP on liver injury induced by chronic plus binge alcohol feeding in mice in vivo by using biochemical assays, real-time PCR and histology analyses. Serum and hepatic BCP levels were also determined by GC/MS. RESULTS Chronic treatment with BCP alleviated the chronic and binge alcohol-induced liver injury and inflammation by attenuating the pro-inflammatory phenotypic `M1` switch of Kupffer cells and by decreasing the expression of vascular adhesion molecules intercellular adhesion molecule 1, E-Selectin and P-Selectin, as well as the neutrophil infiltration. It also beneficially influenced hepatic metabolic dysregulation (steatosis, protein hyperacetylation and PPAR-α signalling). These protective effects of BCP against alcohol-induced liver injury were attenuated in CB2 receptor knockout mice, indicating that the beneficial effects of this natural product in liver injury involve activation of these receptors. Following acute or chronic administration, BCP was detectable both in the serum and liver tissue homogenates but not in the brain. CONCLUSIONS Given the safety of BCP in humans, this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
63 |
14
|
Lee WS, Erdelyi K, Matyas C, Mukhopadhyay P, Varga ZV, Liaudet L, Hask’ G, ’iháková D, Mechoulam R, Pacher P. Cannabidiol Limits T Cell-Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation. Mol Med 2016; 22:136-146. [PMID: 26772776 PMCID: PMC5004721 DOI: 10.2119/molmed.2016.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell-mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation.
Collapse
|
research-article |
9 |
56 |
15
|
Matyas C, Erdelyi K, Trojnar E, Zhao S, Varga ZV, Paloczi J, Mukhopadhyay P, Nemeth BT, Haskó G, Cinar R, Rodrigues RM, Ahmed YA, Gao B, Pacher P. Interplay of Liver-Heart Inflammatory Axis and Cannabinoid 2 Receptor Signaling in an Experimental Model of Hepatic Cardiomyopathy. Hepatology 2020; 71:1391-1407. [PMID: 31469200 PMCID: PMC7048661 DOI: 10.1002/hep.30916] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
BACKGROUND AND AIMS Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
54 |
16
|
Varga ZV, Erdelyi K, Paloczi J, Cinar R, Zsengeller ZK, Jourdan T, Matyas C, Nemeth BT, Guillot A, Xiang X, Mehal A, Hasko G, Stillman IE, Rosen S, Gao B, Kunos G, Pacher P. Disruption of Renal Arginine Metabolism Promotes Kidney Injury in Hepatorenal Syndrome in Mice. Hepatology 2018; 68:1519-1533. [PMID: 29631342 PMCID: PMC6173643 DOI: 10.1002/hep.29915] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
UNLABELLED Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).
Collapse
|
Research Support, N.I.H., Intramural |
7 |
43 |
17
|
Li X, Chang H, Bouma J, de Paus LV, Mukhopadhyay P, Paloczi J, Mustafa M, van der Horst C, Kumar SS, Wu L, Yu Y, van den Berg RJBHN, Janssen APA, Lichtman A, Liu ZJ, Pacher P, van der Stelt M, Heitman LH, Hua T. Structural basis of selective cannabinoid CB 2 receptor activation. Nat Commun 2023; 14:1447. [PMID: 36922494 PMCID: PMC10017709 DOI: 10.1038/s41467-023-37112-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] [Imported: 08/29/2023] Open
Abstract
Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.
Collapse
|
Research Support, N.I.H., Intramural |
2 |
33 |
18
|
Valenta I, Varga ZV, Valentine H, Cinar R, Horti A, Mathews WB, Dannals RF, Steele K, Kunos G, Wahl RL, Pomper MG, Wong DF, Pacher P, Schindler TH. Feasibility Evaluation of Myocardial Cannabinoid Type 1 Receptor Imaging in Obesity: A Translational Approach. JACC Cardiovasc Imaging 2018; 11:320-332. [PMID: 29413441 PMCID: PMC6178217 DOI: 10.1016/j.jcmg.2017.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility of targeted imaging of myocardial cannabinoid type 1 receptor (CB1-R) and its potential up-regulation in obese mice with translation to humans using [11C]-OMAR and positron emission tomography (PET)/computed tomography (CT). BACKGROUND Activation of myocardial CB1-R by endocannabinoids has been implicated in cardiac dysfunction in diabetic mice. Obesity may lead to an up-regulation of myocardial CB1-R, potentially providing a mechanistic link between obesity and the initiation and/or progression of cardiomyopathy. METHODS Binding specificity of [11C]-OMAR to CB1-R was investigated by blocking studies with rimonabant in mice. The heart was harvested from each mouse, and its radioactivity was determined by γ-counter. Furthermore, [11C]-OMAR dynamic micro-PET/CT was carried out in obese and normal-weight mice. Ex vivo validation was performed by droplet digital polymerase chain reaction (absolute quantification) and RNAscope Technology (an in situ ribonucleic acid analysis platform). Subsequently, myocardial CB1-R expression was probed noninvasively with intravenous injection of CB1-R ligand [11C]-OMAR and PET/CT in humans with advanced obesity and normal-weight human control subjects, respectively. RESULTS Rimonabant significantly blocked OMAR uptake in the heart muscle compared with vehicle, signifying specific binding of OMAR to the CB1-R in the myocardium. The myocardial OMAR retention quantified by micro-PET/CT in mice was significantly higher in obese compared with normal-weight mice. Absolute quantification of CB1-R gene expression with droplet digital polymerase chain reaction and in situ hybridization confirmed CB1-R up-regulation in all major myocardial cell types (e.g., cardiomyocytes, endothelium, vascular smooth muscle cells, and fibroblasts) of obese mice. Obese mice also had elevated myocardial levels of endocannabinoids anandamide and 2-arachidonoylglycerol compared with lean mice. Translation to humans revealed higher myocardial OMAR retention in advanced obesity compared with normal-weight subjects. CONCLUSIONS Noninvasive imaging of cardiac CB1-R expression in obesity is feasible applying [11C]-OMAR and PET/CT. These results may provide a rationale for further clinical testing of CB1-R-targeted molecular imaging in cardiometabolic diseases.
Collapse
|
research-article |
7 |
24 |
19
|
Rajesh M, Mukhopadhyay P, Bátkai S, Arif M, Varga ZV, Mátyás C, Paloczi J, Lehocki A, Haskó G, Pacher P. Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis. GeroScience 2022; 44:1727-1741. [PMID: 35460032 PMCID: PMC9213632 DOI: 10.1007/s11357-022-00565-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] [Imported: 01/22/2025] Open
Abstract
Diabetes mellitus promotes accelerated cardiovascular aging and inflammation, which in turn facilitate the development of cardiomyopathy/heart failure. High glucose-induced oxidative/nitrative stress, activation of various pro-inflammatory, and cell death pathways are critical in the initiation and progression of the changes culminating in diabetic cardiomyopathy. Cannabinoid 2 receptor (CB2R) activation in inflammatory cells and activated endothelium attenuates the pathological changes associated with atherosclerosis, myocardial infarction, stroke, and hepatic cardiomyopathy. In this study, we explored the role of CB2R signaling in myocardial dysfunction, oxidative/nitrative stress, inflammation, cell death, remodeling, and fibrosis associated with diabetic cardiomyopathy in type 1 diabetic mice. Control human heart left ventricles and atrial appendages, similarly to mouse hearts, had negligible CB2R expression determine by RNA sequencing or real-time RT-PCR. Diabetic cardiomyopathy was characterized by impaired diastolic and systolic cardiac function, enhanced myocardial CB2R expression, oxidative/nitrative stress, and pro-inflammatory response (tumor necrosis factor-α, interleukin-1β, intracellular adhesion molecule 1, macrophage inflammatory protein-1, monocyte chemoattractant protein-1), macrophage infiltration, fibrosis, and cell death. Pharmacological activation of CB2R with a selective agonist attenuated diabetes-induced inflammation, oxidative/nitrative stress, fibrosis and cell demise, and consequent cardiac dysfunction without affecting hyperglycemia. In contrast, genetic deletion of CB2R aggravated myocardial pathology. Thus, selective activation of CB2R ameliorates diabetes-induced myocardial tissue injury and preserves the functional contractile capacity of the myocardium in the diabetic milieu. This is particularly encouraging, since unlike CB1R agonists, CB2R agonists do not elicit psychoactive activity and cardiovascular side effects and are potential clinical candidates in the treatment of diabetic cardiovascular and other complications.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
17 |
20
|
Matyas C, Trojnar E, Zhao S, Arif M, Mukhopadhyay P, Kovacs A, Fabian A, Tokodi M, Bagyura Z, Merkely B, Kohidai L, Lajko E, Takacs A, He Y, Gao B, Paloczi J, Lohoff FW, Haskó G, Ding WX, Pacher P. PCSK9, A Promising Novel Target for Age-Related Cardiovascular Dysfunction. JACC Basic Transl Sci 2023; 8:1334-1353. [PMID: 38094682 PMCID: PMC10715889 DOI: 10.1016/j.jacbts.2023.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 12/29/2023] [Imported: 01/22/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.
Collapse
|
research-article |
2 |
14 |
21
|
Pacher P. Cyanide emerges as an endogenous mammalian gasotransmitter. Proc Natl Acad Sci U S A 2021; 118:e2108040118. [PMID: 34099579 PMCID: PMC8237670 DOI: 10.1073/pnas.2108040118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 08/29/2023] Open
|
article-commentary |
4 |
11 |
22
|
Arif M, Matyas C, Mukhopadhyay P, Yokus B, Trojnar E, Paloczi J, Paes-Leme B, Zhao S, Lohoff FW, Haskó G, Pacher P. Data-driven transcriptomics analysis identifies PCSK9 as a novel key regulator in liver aging. GeroScience 2023; 45:3059-3077. [PMID: 37726433 PMCID: PMC10643490 DOI: 10.1007/s11357-023-00928-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] [Imported: 01/22/2025] Open
Abstract
The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.
Collapse
|
Research Support, N.I.H., Intramural |
2 |
8 |
23
|
Paloczi J, Matyas C, Cinar R, Varga ZV, Hasko G, Schindler TH, Kunos G, Pacher P. Alcohol Binge-Induced Cardiovascular Dysfunction Involves Endocannabinoid-CB1-R Signaling. JACC Basic Transl Sci 2019; 4:625-637. [PMID: 31768478 PMCID: PMC6872859 DOI: 10.1016/j.jacbts.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] [Imported: 08/29/2023]
Abstract
Excessive binge alcohol drinking may adversely affect cardiovascular function. In this study we characterize the detailed hemodynamic effects of an acute alcohol binge in mice using multiple approaches and investigate the role of the endocannabinoid-cannabinoid 1 receptor (CB1-R) signaling in these effects. Acute alcohol binge was associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction lasting for several hours and redistribution of circulation. These changes were attenuated by CB1-R antagonist or in CB1-R knockout mice. Our results suggest that a single alcohol binge has profound effects on the cardiovascular system, which involve endocannabinoid-CB1-R signaling.
Collapse
Key Words
- 2-AG, 2-arachidonyl glycerol
- AEA, anandamide
- CB1-R (CB1), cannabinoid 1 receptor
- CB2-R (CB2), cannabinoid 2 receptor
- EF, ejection fraction
- LV, left ventricle
- MAP, mean arterial pressure
- P-V, pressure-volume
- PRSW, preload recruitable stroke work
- TPR, total peripheral resistance
- binge alcohol drinking
- cannabinoids
- contractility
- dP/dtmax, maximal slope of pressure increment
- endocannabinoids
Collapse
|
research-article |
6 |
8 |
24
|
Ungvari Z, Yabluchanskiy A, Hasko G, Pacher P. Age-dependent cardiovascular effects of sepsis in a murine model of cecal ligation and puncture: implications for the design of interventional studies. Am J Physiol Heart Circ Physiol 2018; 315:H1356-H1357. [PMID: 30074837 PMCID: PMC6297823 DOI: 10.1152/ajpheart.00528.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] [Imported: 08/29/2023]
|
Comment |
7 |
3 |
25
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] [Imported: 01/22/2025]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
|
research-article |
1 |
1 |