1
|
Li X, Chang H, Bouma J, de Paus LV, Mukhopadhyay P, Paloczi J, Mustafa M, van der Horst C, Kumar SS, Wu L, Yu Y, van den Berg RJBHN, Janssen APA, Lichtman A, Liu ZJ, Pacher P, van der Stelt M, Heitman LH, Hua T. Structural basis of selective cannabinoid CB 2 receptor activation. Nat Commun 2023; 14:1447. [PMID: 36922494 PMCID: PMC10017709 DOI: 10.1038/s41467-023-37112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] [Imported: 08/29/2023] Open
Abstract
Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.
Collapse
Affiliation(s)
- Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Laura V de Paus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Sanjay Sunil Kumar
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Richard J B H N van den Berg
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
|
3
|
Lee JS, O’Connell EM, Pacher P, Lohoff FW. PCSK9 and the Gut-Liver-Brain Axis: A Novel Therapeutic Target for Immune Regulation in Alcohol Use Disorder. J Clin Med 2021; 10:jcm10081758. [PMID: 33919550 PMCID: PMC8074019 DOI: 10.3390/jcm10081758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to control or stop alcohol intake and is associated with organ damage including alcohol-associated liver disease (ALD) and progressive neurodegeneration. The etiology of AUD is complex, but organ injury due to chronic alcohol use can be partially attributed to systemic and local inflammation along the gut-liver-brain axis. Excessive alcohol use can result in translocation of bacterial products into circulation, increased expression of pro-inflammatory cytokines, and activation of immune cells, including macrophages and/or microglia in the liver and brain. One potential mediator of this alcohol-induced inflammation is proprotein convertase subtilisin/kexin type 9 (PCSK9). PCSK9 is primarily known for its regulation of plasma low-density lipoprotein cholesterol but has more recently been shown to influence inflammatory responses in the liver and brain. In rodent and post-mortem brain studies, chronic alcohol use altered methylation of the PCSK9 gene and increased expression of PCSK9 in the liver and cerebral spinal fluid. Additionally, PCSK9 inhibition in a rat model of ALD attenuated liver inflammation and steatosis. PCSK9 may play an important role in alcohol-induced pathologies along the gut-liver-brain axis and may be a novel therapeutic target for AUD-related liver and brain inflammation.
Collapse
Affiliation(s)
- Ji Soo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Emma M. O’Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
- Correspondence: ; Tel.: +1-301-827-1542
| |
Collapse
|
4
|
Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nat Rev Cardiol 2021; 18:117-35. [PMID: 32999450 DOI: 10.1038/s41569-020-0433-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.
Collapse
|
5
|
Trojnar E, Erdelyi K, Matyas C, Zhao S, Paloczi J, Mukhopadhyay P, Varga ZV, Hasko G, Pacher P. Cannabinoid-2 receptor activation ameliorates hepatorenal syndrome. Free Radic Biol Med 2020; 152:540-550. [PMID: 31770583 DOI: 10.1016/j.freeradbiomed.2019.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
STUDY RATIONALE Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease characterized by the rapid decline of kidney function. Herein, we explored the therapeutic potential of targeting the cannabinoid-2 receptor (CB2-R) utilizing a commonly used mouse model of liver fibrosis and hepatorenal syndrome (HRS), induced by bile duct ligation (BDL). METHODS Gene expression analysis, histological evaluation, determination of serum levels of renal injury-biomarkers were used to characterize the BDL-induced organ injury; laser speckle analysis to measure microcirculation in the kidneys. KEY RESULTS We found that liver injury triggered marked inflammation and oxidative stress in the kidneys of BDL-operated mice. We detected pronounced histopathological alterations with tubular injury paralleled with increased inflammation, oxidative/nitrative stress and fibrotic remodeling both in hepatic and renal tissues as well as endothelial activation and markedly impaired renal microcirculation. This was accompanied by increased CB2-R expression in both the liver and the kidney tissues of diseased animals. A selective CB2-R agonist, HU-910, markedly decreased numerous markers of inflammation, oxidative stress and fibrosis both in the liver and in the kidneys. HU-910 also attenuated markers of kidney injury and improved the impaired renal microcirculation in BDL-operated mice. CONCLUSIONS Our results suggest that oxidative stress, inflammation and microvascular dysfunction are key events in the pathogenesis of BDL-associated renal failure. Furthermore, we demonstrate that targeting the CB2-R by selective agonists may represent a promising new avenue to treat HRS by attenuating tissue and vascular inflammation, oxidative stress, fibrosis and consequent microcirculatory dysfunction in the kidneys.
Collapse
Affiliation(s)
- Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| | - Gyorgy Hasko
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, 20852, Rockville, MD, USA.
| |
Collapse
|
6
|
Matyas C, Erdelyi K, Trojnar E, Zhao S, Varga ZV, Paloczi J, Mukhopadhyay P, Nemeth BT, Haskó G, Cinar R, Rodrigues RM, Ahmed YA, Gao B, Pacher P. Interplay of Liver-Heart Inflammatory Axis and Cannabinoid 2 Receptor Signaling in an Experimental Model of Hepatic Cardiomyopathy. Hepatology 2020; 71:1391-1407. [PMID: 31469200 PMCID: PMC7048661 DOI: 10.1002/hep.30916] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
BACKGROUND AND AIMS Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA,ZVV’s present affiliation: HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Balazs T. Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Robim M. Rodrigues
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| |
Collapse
|
7
|
van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, Kuśmierczyk M, Leszek P, Ferdinandy P, Hankemeier T, van der Stelt M, Pacher P. Activity-based protein profiling of the human failing ischemic heart reveals alterations in hydrolase activities involving the endocannabinoid system. Pharmacol Res 2019; 151:104578. [PMID: 31794870 DOI: 10.1016/j.phrs.2019.104578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] [Imported: 08/29/2023]
Abstract
AIM Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Xinyu Di
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Mariusz Kuśmierczyk
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA.
| |
Collapse
|
8
|
Paloczi J, Matyas C, Cinar R, Varga ZV, Hasko G, Schindler TH, Kunos G, Pacher P. Alcohol Binge-Induced Cardiovascular Dysfunction Involves Endocannabinoid-CB1-R Signaling. JACC Basic Transl Sci 2019; 4:625-37. [PMID: 31768478 DOI: 10.1016/j.jacbts.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] [Imported: 08/29/2023]
Abstract
Alcohol is one of the most frequently used intoxicants in the United States. Binge alcohol drinking is a major contributor of emergency department visits. Binge alcohol drinking may adversely affect cardiovascular function. Here we show that acute alcohol intoxication is associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction and blood redistribution lasting for several hours. The adverse cardiovascular effects of acute alcohol intoxication are attenuated by CB1-R antagonist or in CB1-R knockout mice. A single alcohol binge has profound effect on the cardiovascular system, which involves endocannabinoid-CB1-R signaling.
Excessive binge alcohol drinking may adversely affect cardiovascular function. In this study we characterize the detailed hemodynamic effects of an acute alcohol binge in mice using multiple approaches and investigate the role of the endocannabinoid–cannabinoid 1 receptor (CB1-R) signaling in these effects. Acute alcohol binge was associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction lasting for several hours and redistribution of circulation. These changes were attenuated by CB1-R antagonist or in CB1-R knockout mice. Our results suggest that a single alcohol binge has profound effects on the cardiovascular system, which involve endocannabinoid–CB1-R signaling.
Collapse
Key Words
- 2-AG, 2-arachidonyl glycerol
- AEA, anandamide
- CB1-R (CB1), cannabinoid 1 receptor
- CB2-R (CB2), cannabinoid 2 receptor
- EF, ejection fraction
- LV, left ventricle
- MAP, mean arterial pressure
- P-V, pressure-volume
- PRSW, preload recruitable stroke work
- TPR, total peripheral resistance
- binge alcohol drinking
- cannabinoids
- contractility
- dP/dtmax, maximal slope of pressure increment
- endocannabinoids
Collapse
|
9
|
Abstract
PURPOSE OF THE REVIEW Activation of myocardial cannabinoid type 1 receptors (CB1-R) and/or angiotensin II type 1 receptors (AT1-R) likely plays an important mechanistic role in determining the left-ventricular remodeling process in systolic heart failure. We provide an overview on novel radiotracer probes and positron emission tomography (PET)/computed tomography (CT) imaging to noninvasively probe the expression of myocardial CB1-R and/or AT1-R. RECENT FINDINGS Recent translational investigations have demonstrated the feasibility of 11C-OMAR or 11C-KR31173 and PET/CT to image and quantify myocardial CB1-R and/or AT1-R expression, respectively. There is an increasing understanding of the mechanisms of activated myocardial CB1-R and/or AT1-R to influence the left-ventricular remodeling process in systolic heart failure in different disease entities. The review summarizes contributions of PET to image myocardial CB1-R and AT1-R expression that may have the potential to serve as a target to tailor preventive medical care in the individual patient.
Collapse
Affiliation(s)
- Ines Valenta
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, Washington University in St. Louis, 510 S. Kingshighway Boulevard, Campus Box 8223, St. Louis, MO, 63110, USA
| | - Pal Pacher
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, Washington University in St. Louis, 510 S. Kingshighway Boulevard, Campus Box 8223, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Ungvari Z, Yabluchanskiy A, Hasko G, Pacher P. Age-dependent cardiovascular effects of sepsis in a murine model of cecal ligation and puncture: implications for the design of interventional studies. Am J Physiol Heart Circ Physiol 2018; 315:H1356-H1357. [PMID: 30074837 PMCID: PMC6297823 DOI: 10.1152/ajpheart.00528.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] [Imported: 08/29/2023]
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Gyorgy Hasko
- Department of Anesthesiology, Columbia University , New York, New York
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism , Bethesda, Maryland
| |
Collapse
|
11
|
Varga ZV, Erdelyi K, Paloczi J, Cinar R, Zsengeller ZK, Jourdan T, Matyas C, Nemeth BT, Guillot A, Xiang X, Mehal A, Hasko G, Stillman IE, Rosen S, Gao B, Kunos G, Pacher P. Disruption of Renal Arginine Metabolism Promotes Kidney Injury in Hepatorenal Syndrome in Mice. Hepatology 2018; 68:1519-1533. [PMID: 29631342 PMCID: PMC6173643 DOI: 10.1002/hep.29915] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
UNLABELLED Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Zsuzsanna K. Zsengeller
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Tony Jourdan
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Balazs Tamas Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Adam Mehal
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - George Hasko
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - George Kunos
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| |
Collapse
|
12
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 08/29/2023]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
13
|
Valenta I, Varga ZV, Valentine H, Cinar R, Horti A, Mathews WB, Dannals RF, Steele K, Kunos G, Wahl RL, Pomper MG, Wong DF, Pacher P, Schindler TH. Feasibility Evaluation of Myocardial Cannabinoid Type 1 Receptor Imaging in Obesity: A Translational Approach. JACC Cardiovasc Imaging 2018; 11:320-332. [PMID: 29413441 PMCID: PMC6178217 DOI: 10.1016/j.jcmg.2017.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility of targeted imaging of myocardial cannabinoid type 1 receptor (CB1-R) and its potential up-regulation in obese mice with translation to humans using [11C]-OMAR and positron emission tomography (PET)/computed tomography (CT). BACKGROUND Activation of myocardial CB1-R by endocannabinoids has been implicated in cardiac dysfunction in diabetic mice. Obesity may lead to an up-regulation of myocardial CB1-R, potentially providing a mechanistic link between obesity and the initiation and/or progression of cardiomyopathy. METHODS Binding specificity of [11C]-OMAR to CB1-R was investigated by blocking studies with rimonabant in mice. The heart was harvested from each mouse, and its radioactivity was determined by γ-counter. Furthermore, [11C]-OMAR dynamic micro-PET/CT was carried out in obese and normal-weight mice. Ex vivo validation was performed by droplet digital polymerase chain reaction (absolute quantification) and RNAscope Technology (an in situ ribonucleic acid analysis platform). Subsequently, myocardial CB1-R expression was probed noninvasively with intravenous injection of CB1-R ligand [11C]-OMAR and PET/CT in humans with advanced obesity and normal-weight human control subjects, respectively. RESULTS Rimonabant significantly blocked OMAR uptake in the heart muscle compared with vehicle, signifying specific binding of OMAR to the CB1-R in the myocardium. The myocardial OMAR retention quantified by micro-PET/CT in mice was significantly higher in obese compared with normal-weight mice. Absolute quantification of CB1-R gene expression with droplet digital polymerase chain reaction and in situ hybridization confirmed CB1-R up-regulation in all major myocardial cell types (e.g., cardiomyocytes, endothelium, vascular smooth muscle cells, and fibroblasts) of obese mice. Obese mice also had elevated myocardial levels of endocannabinoids anandamide and 2-arachidonoylglycerol compared with lean mice. Translation to humans revealed higher myocardial OMAR retention in advanced obesity compared with normal-weight subjects. CONCLUSIONS Noninvasive imaging of cardiac CB1-R expression in obesity is feasible applying [11C]-OMAR and PET/CT. These results may provide a rationale for further clinical testing of CB1-R-targeted molecular imaging in cardiometabolic diseases.
Collapse
Affiliation(s)
- Ines Valenta
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Heather Valentine
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Andrew Horti
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Mathews
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert F Dannals
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kimberley Steele
- Department of Surgery, Bariatric Center at Bayview, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Kunos
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Richard L Wahl
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - Martin G Pomper
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dean F Wong
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Thomas H Schindler
- Department of Radiology, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
14
|
Wang Y, Mukhopadhyay P, Cao Z, Wang H, Feng D, Haskó G, Mechoulam R, Gao B, Pacher P. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci Rep 2017; 7:12064. [PMID: 28935932 PMCID: PMC5608708 DOI: 10.1038/s41598-017-10924-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/17/2017] [Indexed: 01/22/2023] [Imported: 08/29/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.
Collapse
Affiliation(s)
- Yuping Wang
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.,Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou Province, China
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Zongxian Cao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, 91120, Israel
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2017; 15:151-166. [DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 08/29/2023]
|
16
|
Mukhopadhyay P, Horváth B, Rajesh M, Varga ZV, Gariani K, Ryu D, Cao Z, Holovac E, Park O, Zhou Z, Xu MJ, Wang W, Godlewski G, Paloczi J, Nemeth BT, Persidsky Y, Liaudet L, Haskó G, Bai P, Boulares AH, Auwerx J, Gao B, Pacher P. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J Hepatol 2017; 66:589-600. [PMID: 27984176 DOI: 10.1016/j.jhep.2016.10.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] [Imported: 08/29/2023]
Abstract
BACKGROUND & AIMS Mitochondrial dysfunction, oxidative stress, inflammation, and metabolic reprograming are crucial contributors to hepatic injury and subsequent liver fibrosis. Poly(ADP-ribose) polymerases (PARP) and their interactions with sirtuins play an important role in regulating intermediary metabolism in this process. However, there is little research into whether PARP inhibition affects alcoholic and non-alcoholic steatohepatitis (ASH/NASH). METHODS We investigated the effects of genetic deletion of PARP1 and pharmacological inhibition of PARP in models of early alcoholic steatohepatitis, as well as on Kupffer cell activation in vitro using biochemical assays, real-time PCR, and histological analyses. The effects of PARP inhibition were also evaluated in high fat or methionine and choline deficient diet-induced steatohepatitis models in mice. RESULTS PARP activity was increased in livers due to excessive alcohol intake, which was associated with decreased NAD+ content and SIRT1 activity. Pharmacological inhibition of PARP restored the hepatic NAD+ content, attenuated the decrease in SIRT1 activation and beneficially affected the metabolic-, inflammatory-, and oxidative stress-related alterations due to alcohol feeding in the liver. PARP1-/- animals were protected against alcoholic steatohepatitis and pharmacological inhibition of PARP or genetic deletion of PARP1 also attenuated Kupffer cell activation in vitro. Furthermore, PARP inhibition decreased hepatic triglyceride accumulation, metabolic dysregulation, or inflammation and/or fibrosis in models of NASH. CONCLUSION Our results suggests that PARP inhibition is a promising therapeutic strategy in steatohepatitis with high translational potential, considering the availability of PARP inhibitors for clinical treatment of cancer. LAY SUMMARY Poly(ADP-ribose) polymerases (PARP) are the most abundant nuclear enzymes. The PARP inhibitor olaparib (Lynparza) is a recently FDA-approved therapy for cancer. This study shows that PARP is overactivated in livers of subjects with alcoholic liver disease and that pharmacological inhibition of this enzyme with 3 different PARP inhibitors, including olaparib, attenuates high fat or alcohol induced liver injury, abnormal metabolic alteration, fat accumulation, inflammation and/or fibrosis in preclinical models of liver disease. These results suggest that PARP inhibition is a promising therapeutic strategy in the treatment of alcoholic and non-alcoholic liver diseases.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA.
| | - Béla Horváth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Mohanraj Rajesh
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Zongxian Cao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Eileen Holovac
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Wei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Balazs Tamas Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, BH 08-621-University Hospital Medical Center, 1011 Lausanne, Switzerland
| | - György Haskó
- Department of Surgery and Center for Immunity & Inflammation of Surgery Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen H-4032, Hungary
| | - A Hamid Boulares
- The Stanley Scott Cancer Center and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20852, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852, USA.
| |
Collapse
|
17
|
Varga ZV, Matyas C, Erdelyi K, Cinar R, Nieri D, Chicca A, Nemeth BT, Paloczi J, Lajtos T, Corey L, Hasko G, Gao B, Kunos G, Gertsch J, Pacher P. β-Caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br J Pharmacol 2017; 175:320-334. [PMID: 28107775 DOI: 10.1111/bph.13722] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND AND AIMS β-Caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo are reported to involve activation of cannabinoid CB2 receptors that are predominantly expressed in immune cells. Here, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury. METHODS In this study, we investigated the effects of BCP on liver injury induced by chronic plus binge alcohol feeding in mice in vivo by using biochemical assays, real-time PCR and histology analyses. Serum and hepatic BCP levels were also determined by GC/MS. RESULTS Chronic treatment with BCP alleviated the chronic and binge alcohol-induced liver injury and inflammation by attenuating the pro-inflammatory phenotypic `M1` switch of Kupffer cells and by decreasing the expression of vascular adhesion molecules intercellular adhesion molecule 1, E-Selectin and P-Selectin, as well as the neutrophil infiltration. It also beneficially influenced hepatic metabolic dysregulation (steatosis, protein hyperacetylation and PPAR-α signalling). These protective effects of BCP against alcohol-induced liver injury were attenuated in CB2 receptor knockout mice, indicating that the beneficial effects of this natural product in liver injury involve activation of these receptors. Following acute or chronic administration, BCP was detectable both in the serum and liver tissue homogenates but not in the brain. CONCLUSIONS Given the safety of BCP in humans, this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | |
|