1
|
Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol 2018; 9:657. [PMID: 29675022 PMCID: PMC5895643 DOI: 10.3389/fimmu.2018.00657] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/16/2018] [Indexed: 12/28/2022] [Imported: 09/03/2023] Open
Abstract
The role of immune system in various bone pathologies, such as osteoporosis, osteoarthritis, and rheumatoid arthritis is now well established. This had led to the emergence of a modern field of systems biology called as osteoimmunology, an integrated research between fields of immunology and bone biology under one umbrella. Osteoporosis is one of the most common inflammatory bone loss condition with more than 200 million individuals affected worldwide. T helper (Th) cells along with various other immune cells are major players involved in bone homeostasis. In the present review, we specifically discuss the role of various defined T lymphocyte subsets (Th cells comprising Th1, Th2, Th9, Th17, Th22, regulatory T cells, follicular helper T cells, natural killer T cells, γδ T cells, and CD8+ T cells) in the pathophysiology of osteoporosis. The study of the specific role of immune system in osteoporosis has now been proposed by our group as "immunoporosis: the immunology of osteoporosis" with special emphasis on the role of various subsets of T lymphocytes. The establishment of this new field had been need of the hour due to the emergence of novel roles of various T cell lymphocytes in accelerated bone loss observed during osteoporosis. Activated T cells either directly or indirectly through the secretion of various cytokines and factors modulate bone health and thereby regulate bone remodeling. Several studies have summarized the role of inflammation in pathogenesis of osteoporosis but very few reports had delineated the precise role of various T cell subsets in the pathobiology of osteoporosis. The present review thus for the first time clearly highlights and summarizes the role of various T lymphocytes in the development and pathophysiology of osteoporosis, giving birth to a new field of biology termed as "immunoporosis". This novel field will thus provide an overview of the nexus between the cellular components of both bone and immune systems, responsible for the observed bone loss in osteoporosis. A molecular insight into the upcoming and novel field of immunoporosis would thus leads to development of innovative approaches for the prevention and treatment of osteoporosis.
Collapse
|
Review |
7 |
206 |
2
|
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2023-2050. [PMID: 29944981 DOI: 10.1016/j.nano.2018.05.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] [Imported: 09/03/2023]
Abstract
Over the recent couple of decades, pharmaceutical field has embarked most phenomenal noteworthy achievements in the field of medications as well as drug delivery. The rise of Nanotechnology in this field has reformed the existing drug delivery for targeting, diagnostic, remedial applications and patient monitoring. The convincing usage of nanotechnology in the conveyance of medications that prompts an extension of novel lipid-based nanocarriers and non-liposomal systems has been discussed. Present review deals with the late advances and updates in lipidic nanocarriers, their formulation strategies, challenging aspects, stability profile, clinical applications alongside commercially available products and products under clinical trials. This exploration may give a complete idea viewing the lipid based nanocarriers as a promising choice for the formulation of pharmaceutical products, the challenges looked by the translational process of lipid-based nanocarriers and the combating methodologies to guarantee the headway of these nanocarriers from bench to bedside.
Collapse
|
Review |
7 |
138 |
3
|
Dar HY, Shukla P, Mishra PK, Anupam R, Mondal RK, Tomar GB, Sharma V, Srivastava RK. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep 2018; 8:46-56. [PMID: 29955622 PMCID: PMC6019967 DOI: 10.1016/j.bonr.2018.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/02/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022] [Imported: 09/03/2023] Open
Abstract
Osteoporosis is one of the most important but often neglected bone disease associated with aging and postmenopausal condition leading to bone loss and fragility. Probiotics have been associated with various immunomodulatory properties and have the potential to ameliorate several inflammatory conditions including osteoporosis. Lactobacillus acidophilus (LA) was selected as probiotic of choice in our present study due its common availability and established immunomodulatory properties. In the present study, we report for the first time that administration of LA in ovariectomized (ovx) mice enhances both trabecular and cortical bone microarchitecture along with increasing the mineral density and heterogeneity of bones. This effect of LA administration is due to its immunomodulatory effect on host immune system. LA thus skews the Treg-Th17 cell balance by inhibiting osteoclastogenic Th17 cells and promoting anti-osteoclastogenic Treg cells in ovx mice. LA administration also suppressed expression of osteoclastogenic factors (IL-6, IL-17, TNF-α and RANKL) and increased expression of anti-osteoclastogenic factors (IL-10, IFN-γ). Taken together the present study for the first time clearly demonstrates the therapeutic potential of LA as an osteo-protective agent in enhancing bone health (via tweaking Treg-Th17 cell balance) in postmenopausal osteoporosis.
Collapse
|
research-article |
7 |
120 |
4
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023] [Imported: 08/30/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
|
Review |
6 |
102 |
5
|
Pandey KC, De S, Mishra PK. Role of Proteases in Chronic Obstructive Pulmonary Disease. Front Pharmacol 2017; 8:512. [PMID: 28848433 PMCID: PMC5550664 DOI: 10.3389/fphar.2017.00512] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] [Imported: 09/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine) of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.
Collapse
|
Review |
8 |
89 |
6
|
Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm 2012; 80:1-28. [PMID: 22396901 PMCID: PMC3293348 DOI: 10.3797/scipharm.1108-20] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022] [Imported: 09/11/2023] Open
Abstract
The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application.
Collapse
|
review-article |
13 |
86 |
7
|
Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, Upmanyu V, Anwar A, Shukla P, Mishra PK, Saini C, Verma B, Srivastava RK. Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep 2021; 11:1807. [PMID: 33469043 PMCID: PMC7815799 DOI: 10.1038/s41598-020-80536-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] [Imported: 09/03/2023] Open
Abstract
Osteoporosis is a systemic-skeletal disorder characterized by enhanced fragility of bones leading to increased rates of fractures and morbidity in large number of populations. Probiotics are known to be involved in management of various-inflammatory diseases including osteoporosis. But no study till date had delineated the immunomodulatory potential of Lactobacillus rhamnosus (LR) in bone-health. In the present study, we examined the effect of probiotic-LR on bone-health in ovariectomy (Ovx) induced postmenopausal mice model. In the present study, we for the first time report that LR inhibits osteoclastogenesis and modulates differentiation of Treg-Th17 cells under in vitro conditions. We further observed that LR attenuates bone loss under in vivo conditions in Ovx mice. Both the cortical and trabecular bone-content of Ovx+LR treated group was significantly higher than Ovx-group. Remarkably, the percentage of osteoclastogenic CD4+Rorγt+Th17 cells at distinct immunological sites such as BM, spleen, LN and PP were significantly reduced, whereas the percentage of anti-osteoclastogenic CD4+Foxp3+Tregs and CD8+Foxp3+Tregs were significantly enhanced in LR-treated group thereby resulting in inhibition of bone loss. The osteoprotective role of LR was further supported by serum cytokine data with a significant reduction in osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with enhancement in anti-osteoclastogenic cytokines (IL-4, IL-10, IFN-γ) in LR treated-group. Altogether, the present study for the first time establishes the osteoprotective role of LR on bone health, thus highlighting the immunomodulatory potential of LR in the treatment and management of various bone related diseases including osteoporosis.
Collapse
|
research-article |
4 |
80 |
8
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022] [Imported: 09/03/2023]
Abstract
Early cancer diagnosis is of prime importance as it paves the way for effective treatment and possible patient survival. The recent advancements in the field of biosensorics have facilitated the development of functionalized nanobiosensors which have the potential to provide a cost-effective, reliable and rapid diagnostic strategy for cancers. These nanoscaled sensing systems utilize electrochemical, optical, mass and calorimetric sensing mechanisms to specifically identify the disease-specific biomarkers. Because of clinical translational utility, the present review aims to describe the recent developments and status of the nanobiosensors as a point-of-care approach for cancer diagnosis. The review also offers important insights into the design, preparation and characterization of these nano-frameworks. In particular, the state-of-art nanobiosensors based on carbon nanostructures, metal nanoparticles, magnetic nanoparticles, silica-based nanomaterials, conducting polymers based nanoparticles and quantum dots, which provide countless opportunities in the field of cancer biosensorics have been summarized. It also showcases the need to perform robust clinical validation of the emerging nanobiosensor strategies that would act as the ultimate point-of-care test for the personalized cancer therapeutics.
Collapse
|
|
6 |
73 |
9
|
Mittra I, Khare NK, Raghuram GV, Chaubal R, Khambatti F, Gupta D, Gaikwad A, Prasannan P, Singh A, Iyer A, Singh A, Upadhyay P, Nair NK, Mishra PK, Dutt A. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci 2015; 40:91-111. [PMID: 25740145 PMCID: PMC5779614 DOI: 10.1007/s12038-015-9508-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 09/03/2023]
Abstract
Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored.We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.
Collapse
|
research-article |
10 |
72 |
10
|
Bhargava A, Tamrakar S, Aglawe A, Lad H, Srivastava RK, Mishra DK, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:406-419. [PMID: 29202419 DOI: 10.1016/j.envpol.2017.11.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023] [Imported: 08/30/2023]
Abstract
Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response pathway, an unknown molecular paradigm of ultrafine PM exposure. Our findings also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in air pollution associated immune disorders.
Collapse
|
|
7 |
67 |
11
|
Mishra PK, Samarth RM, Pathak N, Jain SK, Banerjee S, Maudar KK. Bhopal Gas Tragedy: review of clinical and experimental findings after 25 years. Int J Occup Med Environ Health 2009; 22:193-202. [PMID: 19819837 DOI: 10.2478/v10001-009-0028-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] [Imported: 09/03/2023] Open
Abstract
The Bhopal gas tragedy is undoubtedly one of the worst industrial disasters in the history of mankind resulting in mortality of 2500-6000 and debilitating over 200 000 people. Inhabitants in the township were exposed to different degrees and there are more than 500 000 registered victims that survived the tragedy. Clinical studies have shown chronic illnesses such as pulmonary fibrosis, bronchial asthma, chronic obstructive pulmonary disease (COPD), emphysema, recurrent chest infections, keratopathy and corneal opacities in exposed cohorts. Survivors continue to experience higher incidence of reported health problems including febrile illnesses, respiratory, neurologic, psychiatric and ophthalmic symptoms. In-utero exposure to methyl isocyanate in the first trimester of pregnancy caused a persistent immune system hyper-responsiveness, which was in an evident way genetically linked with the organic exposure. Recent experimental studies have provided mechanistic understanding of methyl isocyanate exposure at a molecular level. Immunotoxic implications, toxico-genomic effect, inflammatory response, elicitation of mitochondrial oxidative stress, chromosomal and microsatellite instability have been studied comprehensively in cultured mammalian cells. Besides providing a framework for understanding potential mechanisms of toxicity of a host of other exposures, these studies may also uncover unique abnormalities thereby stimulating efforts to design newer and effective diagnostic and therapeutic strategies. The authors recommend long-term monitoring of the affected area and use of appropriate methods of investigation that include well-designed cohort studies, case-control studies for rare condition, characterization of personal exposure and accident analysis to determine the possible elements of the gas cloud.
Collapse
|
|
16 |
61 |
12
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] [Imported: 08/30/2023] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
|
Review |
7 |
60 |
13
|
Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, Srivastava RK. Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition 2018; 54:118-128. [PMID: 29793054 DOI: 10.1016/j.nut.2018.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022] [Imported: 09/03/2023]
Abstract
OBJECTIVES Postmenopausal osteoporosis is one of most commonly occurring skeletal diseases leading to bone loss and fragility. Probiotics have been associated with various immunomodulatory properties and thus can be exploited to enhance bone health. In the present study, we report, to our knowledge for the first time, that oral administration of Bacillus clausii (BC) in postmenopausal osteoporotic (OVX) mice model enhances bone health. METHODS BC was selected as probiotic of choice due to its established immunomodulatory properties. BC skews the Treg-Th17 cell balance in vivo by inhibiting osteoclastogenic Th17 cells and promoting antiosteoclastogenic Treg cell development in postmenopausal osteoporotic mice. Mice were divided into three groups (sham, OVX, and OVX + BC), and BC was administered orally in drinking water for 6 wk post-ovariectomy. At the end of experiment, mice were sacrificed and bones were analyzed for various parameters, along with lymphoid tissues for Treg-Th17 cells and serum cytokines. RESULTS We observed that BC administration enhanced bone health. This effect of BC administration was found due to skewing of Treg-Th17 cell balance (enhanced Treg and decreased Th17 cells) in vivo. BC administration reduced levels of proinflammatory cytokines (interleukin [IL]-6, IL-17, IFN-γ and tumor necrosis factor-α) and increased levels of anti-inflammatory cytokine (IL-10). CONCLUSIONS The present study strongly supports and establishes the osteoprotective potential of BC leading to enhanced bone health in postmenopausal osteoporotic mice model.
Collapse
|
|
7 |
58 |
14
|
Mittra I, Nair NK, Mishra PK. Nucleic acids in circulation: are they harmful to the host? J Biosci 2012; 37:301-312. [PMID: 22581336 DOI: 10.1007/s12038-012-9192-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] [Imported: 09/11/2023]
Abstract
It has been estimated that 10(11) -10(12) cells, primarily of haematogenous origin, die in the adult human body daily, and a similar number is regenerated to maintain homeostasis. Despite the presence of an efficient scavenging system for dead cells, considerable amounts of fragmented genetic material enter the circulation in healthy individuals. Elevated blood levels of extracellular nucleic acids have been reported in various disease conditions; such as ageing and age-related degenerative disorders, cancer; acute and chronic inflammatory conditions, severe trauma and autoimmune disorders. In addition to genomic DNA and nucleosomes, mitochondrial DNA is also found in circulation, as are RNA and microRNA. There is extensive literature that suggests that extraneously added nucleic acids have biological actions. They can enter into cells in vitro and in vivo and induce genetic transformation and cellular and chromosomal damage; and experimentally added nucleic acids are capable of activating both innate and adaptive immune systems and inducing a sterile inflammatory response. The possibility as to whether circulating nucleic acids may, likewise, have biological activities has not been explored. In this review we raise the question as to whether circulating nucleic acids may have damaging effects on the host and be implicated in ageing and diverse acute and chronic human pathologies.
Collapse
|
Review |
13 |
53 |
15
|
Bhargava A, Shukla A, Bunkar N, Shandilya R, Lodhi L, Kumari R, Gupta PK, Rahman A, Chaudhury K, Tiwari R, Goryacheva IY, Mishra PK. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:39-50. [PMID: 31146237 DOI: 10.1016/j.envpol.2019.05.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023] [Imported: 08/30/2023]
Abstract
Exposure to ultrafine particulate matter (PM0.1) is positively associated with the etiology of different acute and chronic disorders; however, the in-depth biological imprints that link these submicron particles with the disturbances in the epigenomic machinery are not well defined. Earlier, we showed that exposure to these particles causes significant disturbances in the mitochondrial machinery and triggers PI-3-kinase mediated DNA damage responses. In the present study, we aimed to further understand the epigenomic insights of the ultrafine PM exposure. The higher levels of intracellular reactive oxygen species and depleted Nrf-2 in ultrafine PM exposed cells reconfirmed its potential to induce oxidative stress. Importantly, the observed increase in the levels of NF-κβ and associated cytokines among exposed cells suggested the activation of NF-κβ mediated inflammatory loop which potentially serves as a platform for initiating epigenetic insinuations. This fact was strongly supported by the altered miRNA expression profile of the ultrafine PM exposed cells. These NF-κβ induced miRNA alterations were also found to be associated with other epigenetic targets as the exposed cells showed higher expression levels of DNA methyltransferases which positively corresponded with the global changes in DNA methylation levels. Upon further analysis, significant alterations in histone code were also reported in ultrafine PM exposed cells. Conclusively our results suggested that NF-κβ acts as an inflammatory switch that possesses the potential to induce genome-wide epigenetic modification upon ultrafine PM exposure.
Collapse
|
|
6 |
53 |
16
|
Sapra L, Shokeen N, Porwal K, Saini C, Bhardwaj A, Mathew M, Mishra PK, Chattopadhyay N, Dar HY, Verma B, Srivastava RK. Bifidobacterium longum Ameliorates Ovariectomy-Induced Bone Loss via Enhancing Anti-Osteoclastogenic and Immunomodulatory Potential of Regulatory B Cells (Bregs). Front Immunol 2022; 13:875788. [PMID: 35693779 PMCID: PMC9174515 DOI: 10.3389/fimmu.2022.875788] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] [Imported: 09/03/2023] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between osteo-immune systems. These discoveries fuel novel approaches for the treatment of several bone pathologies including osteoporosis. Bifidobacterium longum (BL) is a preferred probiotic of choice due to its varied immunomodulatory potential in alleviating various inflammatory diseases. Here, we evaluate the effect of BL in an ovariectomy (ovx)-induced post-menopausal osteoporotic mouse model. Our in vitro findings reveal that BL suppresses the differentiation and functional activity of RANKL-induced osteoclastogenesis in both mouse bone marrow cells and human PBMCs. Strikingly, BL-induced Bregs were found to be significantly more efficient in suppressing osteoclastogenesis and modulating Treg-Th17 cell balance with respect to control Bregs in vitro. Our in vivo µCT and bone mechanical strength data further confirm that BL supplementation significantly enhanced bone mass and bone strength, along with improving the bone microarchitecture in ovx mice. Remarkably, alterations in frequencies of CD19+CD1dhiCD5+IL-10+ Bregs, CD4+Foxp3+IL-10+ Tregs, and CD4+Rorγt+IL-17+ Th17 cells in distinct lymphoid organs along with serum-cytokine data (enhanced anti-osteoclastogenic cytokines IFN-γ and IL-10 and reduced osteoclastogenic-cytokines IL-6, IL-17, and TNF-α) strongly support the immunomodulatory potential of BL. Altogether, our findings establish a novel osteo-protective and immunomodulatory potential of BL in augmenting bone health under osteoporotic conditions.
Collapse
|
research-article |
3 |
52 |
17
|
Mishra D, Mishra PK, Dubey V, Nahar M, Dabadghao S, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci 2008; 33:424-433. [PMID: 18359615 DOI: 10.1016/j.ejps.2008.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/14/2007] [Accepted: 01/27/2008] [Indexed: 10/22/2022] [Imported: 09/03/2023]
Abstract
We have evaluated the efficiency of novel modified liposomes (ethosomes) for transcutaneous immunization (TCI) against Hepatitis B. Antigen-loaded ethosomes were prepared and characterized for shape, lamellarity, fluidity, size distribution, and entrapment efficiency. Spectral bio-imaging and flow cytometric studies showed efficient uptake of Hepatitis B surface antigen (HBsAg)-loaded ethosomes by murine dendritic cells (DCs) in vitro, reaching a peak by 180 min. Transcutaneous delivery potential of the antigen-loaded system using human cadaver skin demonstrated a much higher skin permeation of the antigen in comparison to conventional liposomes and soluble antigen preparation. Topically applied HBsAg-loaded ethosomes in experimental mice showed a robust systemic and mucosal humoral immune response compared to intramuscularly administered alum-adsorbed HBsAg suspension, topically applied plain HBsAg solution and hydroethanolic (25%) HBsAg solution. The ability of the antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes was demonstrated by BrdU assay and a predominantly TH1 type of immune response was observed by multiplex cytometric bead array analysis. HBsAg-loaded ethosomes are able to generate a protective immune response and their ability to traverse and target the immunological milieu of the skin may find a potential application in the development of a transcutaneous vaccine against Hepatitis B virus (HBV).
Collapse
|
|
17 |
51 |
18
|
Dar HY, Singh A, Shukla P, Anupam R, Mondal RK, Mishra PK, Srivastava RK. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci Rep 2018; 8:2503. [PMID: 29410520 PMCID: PMC5802842 DOI: 10.1038/s41598-018-20896-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] [Imported: 09/03/2023] Open
Abstract
Osteoporosis is associated with reduced density and quality of bone leading to weakened skeleton thereby increasing the risk of fractures responsible for increased morbidity and mortality. Due to preference for western food style the consumption of salt intake in our diets has increased many folds. High dietary salt intake has recently been linked with induction of Th17 cells along with impairment of Treg cells. Also, Th17 cells have been one of major players in the pathophysiology of various bone pathologies including osteoporosis. We thus hypothesized that high salt diet (HSD) intake would lead to enhanced bone loss by modulating Th17-Treg cell balance. In the present study, we report for the first time that HSD intake in male mice impairs both trabecular and cortical bone microarchitecture along with decreasing the mineral density and heterogeneity of bones. The HSD modulates host immune system and skews Treg-Th17 balance by promoting osteoclastogenic Th17 cells and inhibiting development of anti-osteoclastogenic Treg cells in mice. HSD also enhanced expression of proinflammatory cytokines (IL-6, TNF-α, RANKL and IL-17) and decreased the expression of anti-inflammatory cytokines (IL-10, IFN-γ). Taken together the present study for the first time establishes a strong correlation between high dietary salt intake and bone health via interplay between Th17-Treg cells.
Collapse
|
research-article |
7 |
49 |
19
|
Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug Deliv Transl Res 2015; 5:552-565. [PMID: 26306524 DOI: 10.1007/s13346-015-0256-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 09/03/2023]
Abstract
Solid dispersion has emerged as a method of choice and has been extensively investigated to ascertain the in vivo improved performance of many drug formulations. It generally involves dispersion of drug in amorphous particles (clusters) or in crystalline particles. Comparatively, in the last decade, amorphous drug-polymer solid dispersion has evolved into a platform technology for delivering poorly water-soluble small molecules. However, the success of this technique in the pharmaceutical industry mainly relies on different drug-polymer attributes like physico-chemical stability, bioavailability and manufacturability. The present review showcases the efficacy of amorphous solid dispersion technique in the research and evolution of different drug formulations particularly for those with poor water soluble properties. Apart from the numerous mechanisms of action involved, a comprehensive summary of different key parameters required for the solubility enhancement and their translational efficacy to clinics is also emphasized.
Collapse
|
Review |
10 |
46 |
20
|
Mishra D, Mishra PK, Dabadghao S, Dubey V, Nahar M, Jain NK. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2010; 6:110-118. [PMID: 19446655 DOI: 10.1016/j.nano.2009.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 03/24/2009] [Accepted: 04/17/2009] [Indexed: 12/26/2022] [Imported: 09/11/2023]
Abstract
UNLABELLED The aim of the present study was to evaluate two vesicular carrier systems, ethosomes and elastic liposomes loaded with hepatitis B surface antigen, for in vitro qualitative and quantitative uptake by human dendritic cells (DCs) and ability to stimulate T lymphocytes. Quantitative uptake of antigen-loaded carriers was documented by flow cytometry, and internalization of the systems by the DCs was studied using spectral bioimaging. Ability of antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes and levels of TH1/TH2 cytokines were also examined using flow cytometry. Both vesicular carrier systems as antigen delivery modules and DCs as antigen-presenting cells were able to generate a protective immune response. However, ethosomes were found to have higher internalizing ability and immunogenicity in comparison with elastic liposomes. These properties of ethosomes coupled with their skin-navigating potential, make it an attractive vehicle for development of a transcutaneous vaccine against hepatitis B in preference to elastic liposomes. FROM THE CLINICAL EDITOR Two carrier systems for more potent vaccine administration - ethosomes and elastic liposomes loaded with hepatitis B surface antigen - are compared. Ethosomes demonstrated higher internalizing ability and immunogenicity. Due to their known skin-navigating potential, ethosomes may represent an attractive vehicle for development of a transcutaneous vaccine against hepatitis B.
Collapse
|
Comparative Study |
15 |
46 |
21
|
Nahar M, Dubey V, Mishra D, Mishra PK, Dube A, Jain NK. In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target 2010; 18:93-105. [PMID: 19640212 DOI: 10.3109/10611860903115290] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 09/11/2023]
Abstract
The present study evaluates the potential of surface functionalized gelatin nanoparticles (f-GNPs) for efficient macrophage-specific delivery of amphotericin B (AmB) in the treatment of visceral leishmaniasis (VL). Further, the effect of spacer for macrophage targeting was also evaluated. Gelatin was functionalized either through conjugation to mannose via direct coupling (mGelatin) or via PEG spacer (m-Gelatin), and the synthesis was confirmed by FTIR. AmB-loaded f-GNPs, that is, mGNPs and m-GNPs prepared from mGelatin and m-Gelatin conjugates, respectively, were characterized. In vitro concanavalin A (Con-A) agglutination assay confirmed the availability of mannose on the surface of these f-GNPs. Kinetics of cellular uptake of AmB-loaded f-GNPs by J774A.1 macrophage cells assessed through flow cytometry demonstrated a steady increase and maximum cell-associated fluorescence was observed at 4h for m-GNPs and 6 h for m-GNPs. Measurement of cytotoxicity using Annexin-V-FITC/PI apoptosis assay delineated marginal changes (7-9%) in treated macrophages following 48 h incubation, establishing the safety of f-GNPs. m-GNPs showed a 5.4-fold reduction in IC(50) in comparison with plain AmB suggesting significant enhancement of antileishmanial activity. Our results indicate that f-GNPs could be a promising carrier for specific delivery of AmB to macrophages for effective treatment of VL. Furthermore, spacer contributed significantly in reducing the cytotoxicity as well as increasing the uptake and activity of f-GNPs.
Collapse
|
|
15 |
44 |
22
|
Mishra PK, Panwar H, Bhargava A, Gorantla VR, Jain SK, Banerjee S, Maudar KK. Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes. J Biochem Mol Toxicol 2008; 22:429-440. [PMID: 19111005 DOI: 10.1002/jbt.20260] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] [Imported: 09/03/2023]
Abstract
Isocyanates, a group of low molecular weight aromatic and aliphatic compounds containing the isocyanate group (-NCO), are important raw materials with diverse industrial applications; however, pathophysiological implications resulting from occupational and accidental exposures of these compounds are hitherto unknown. Although preliminary evidence available in the literature suggests that isocyanates and their derivatives may have deleterious health effects including immunotoxicity, but molecular mechanisms underlying such an effect have never been addressed. The present study was carried out to assess the immunotoxic response of methyl isocyanate (MIC) on cultured human lymphocytes isolated from healthy human volunteers. Studies were conducted to evaluate both dose-dependent and time-course response (n = 3), using N-succinimidyl N-methylcarbamate, a surrogate chemical substitute to MIC. Evaluation of DNA damage by ataxia telangiectasia mutated (ATM) and gamma H2AX protein phosphorylation states; measure of apoptotic index through annexin-V/PI assay, apoptotic DNA ladder assay, and mitochondrial depolarization; induction of oxidative stress by CM-H2DCFDA and formation of 8-hydroxy-2' deoxy guanosine; levels of antioxidant defense system enzyme glutathione reductase; and multiplex cytometric bead array analysis to quantify the secreted levels of inflammatory cytokines, interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, tumor necrosis factor, and interleukin-12p70 parameters were carried out. The results of the study showed a dose- and time-dependent response, providing evidence to hitherto unknown molecular mechanisms of immunotoxic consequences of isocyanate exposure at a genomic level. We anticipate these data along with other studies reported in the literature would help to design better approaches in risk assessment of occupational and accidental exposure to isocyanates.
Collapse
|
|
17 |
44 |
23
|
Mittra I, Samant U, Sharma S, Raghuram GV, Saha T, Tidke P, Pancholi N, Gupta D, Prasannan P, Gaikwad A, Gardi N, Chaubal R, Upadhyay P, Pal K, Rane B, Shaikh A, Salunkhe S, Dutt S, Mishra PK, Khare NK, Nair NK, Dutt A. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation. Cell Death Discov 2017; 3:17015. [PMID: 28580170 PMCID: PMC5447133 DOI: 10.1038/cddiscovery.2017.15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 02/05/2017] [Indexed: 02/08/2023] [Imported: 09/03/2023] Open
Abstract
Bystander cells of the tumor microenvironment show evidence of DNA damage and inflammation that can lead to their oncogenic transformation. Mediator(s) of cell-cell communication that brings about these pro-oncogenic pathologies has not been identified. We show here that cell-free chromatin (cfCh) released from dying cancer cells are the key mediators that trigger both DNA damage and inflammation in the surrounding healthy cells. When dying human cancer cells were cultured along with NIH3T3 mouse fibroblast cells, numerous cfCh emerged from them and rapidly entered into nuclei of bystander NIH3T3 cells to integrate into their genomes. This led to activation of H2AX and inflammatory cytokines NFκB, IL-6, TNFα and IFNγ. Genomic integration of cfCh triggered global deregulation of transcription and upregulation of pathways related to phagocytosis, DNA damage and inflammation. None of these activities were observed when living cancer cells were co-cultivated with NIH3T3 cells. However, upon intravenous injection into mice, both dead and live cells were found to be active. Living cancer cells are known to undergo extensive cell death when injected intravenously, and we observed that cfCh emerging from both types of cells integrated into genomes of cells of distant organs and induced DNA damage and inflammation. γH2AX and NFκB were frequently co-expressed in the same cells suggesting that DNA damage and inflammation are closely linked pathologies. As concurrent DNA damage and inflammation is a potent stimulus for oncogenic transformation, our results suggest that cfCh from dying cancer cells can transform cells of the microenvironment both locally and in distant organs providing a novel mechanism of tumor invasion and metastasis. The afore-described pro-oncogenic pathologies could be abrogated by concurrent treatment with chromatin neutralizing/degrading agents suggesting therapeutic possibilities.
Collapse
|
research-article |
8 |
42 |
24
|
Khan S, Raghuram GV, Bhargava A, Pathak N, Chandra DH, Jain SK, Mishra PK. Role and clinical significance of lymphocyte mitochondrial dysfunction in type 2 diabetes mellitus. Transl Res 2011; 158:344-359. [PMID: 22061042 DOI: 10.1016/j.trsl.2011.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 12/17/2022] [Imported: 08/30/2023]
Abstract
Lymphocyte homeostasis in type 2 diabetes mellitus (T2DM) is associated with increased susceptibility to infections. Mitochondrial oxidative stress is implicated primarily in the immune pathophysiology of diabetes; however, the molecular underpinnings of lymphocyte mitochondrial dysfunction and ensuing downstream cellular effects are hitherto unreported. Both in early diagnosed patients and patients with late complications, we observed an inverse correlation between mitochondrial DNA content in lymphocytes and hemoglobin A1 (HbA1c) levels. This relation established for the first time might serve as a general, yet direct, predictor or indicator for mitochondrial dysfunction in T2DM. Compared with controls, nuclear DNA damage response was higher (P ≤ 0.001) in diabetic subjects with increased accumulation of phospho-ataxia-telangiectasia (ATM), γ-H2AX, along with active recruitment of repair proteins (Mre11, Rad50, and Nbs1). A higher frequency (>2%) of stable chromosomal anomalies with loss of telomere integrity was observed in cases with late complications. A significant decrease (P ≤ 0.001) in enzyme activity of complex II, III, and IV of mitochondrial respiratory chain was evident in both diabetic groups in comparison with healthy controls. Activation in the cascade of nuclear factor kappa-beta (NF-κβ)-mediated feed-forward proinflammatory cytokine response was noted among T2DM subjects. Increased oxidative stress, mitochondrial membrane depolarization, activation of caspase-3, and PARP observed in diabetic groups indicated bax triggered mitochondrial mediated cellular apoptosis. Our results provide the first insights of lymphocyte mitochondrial dysfunction that might be helpful in explaining the clinical significance of immunologic perturbation observed in type 2 diabetic conditions. Our data also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in T2DM.
Collapse
|
|
14 |
40 |
25
|
Goryacheva OA, Mishra PK, Goryacheva IY. Luminescent quantum dots for miRNA detection. Talanta 2018; 179:456-465. [PMID: 29310260 DOI: 10.1016/j.talanta.2017.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023] [Imported: 09/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in nearly all developmental processes and human pathologies. MiRNAs are considered to be promising biomarkers, since their dysregulation correlates with the development and progress of many diseases. Short length, sequence homology among family members, susceptibility to degradation, and low abundance in total RNA samples make miRNA analysis a challenging task. Photoluminescent semiconductor nanoparticles (quantum dots, QDs) possess unique properties such as bright photoluminescence, photostability and narrow emission peaks, wide possibilities for surface modification and bioconjugation, which serve as the basis for the development of different analytical methods for variety of analytes. Relatively small size of QDs' and their narrow distribution are especially important for miRNA assay. The combination of QD-based biosensors with amplification techniques makes it possible to identify the target miRNA at a single-particle level with the detection limit at the attomolar scale. This review describes the principles of signal generation: direct intensity measurements, different "signal on" and "signal off" mechanisms as well as electro-chemiluminescence. Special attention is paid to the FRET-based techniques. According to our knowledge this is the first review related to QDs application for miRNA detection.
Collapse
|
Review |
7 |
38 |