26
|
Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, Mishra GC, Srivastava RK. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int Rev Immunol 2021; 41:171-206. [PMID: 33641587 PMCID: PMC7919479 DOI: 10.1080/08830185.2021.1883600] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] [Imported: 09/03/2023]
Abstract
The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.
Collapse
|
Review |
4 |
37 |
27
|
Bhargava A, Khan S, Panwar H, Pathak N, Punde RP, Varshney S, Mishra PK. Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res 2010; 153:143-150. [PMID: 20667493 DOI: 10.1016/j.virusres.2010.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/17/2010] [Accepted: 07/19/2010] [Indexed: 12/23/2022] [Imported: 09/11/2023]
Abstract
Occult HBV infections (OHBI) are often associated with poor therapeutic response and increased risk of developing hepatocellular carcinoma. Despite a decade of research, OHBI still remains an intricate issue and much is yet to be defined about their possible immune implications. As HBV is known to infect peripheral blood lymphocytes, the present study aimed to explore the molecular mechanisms underlying DNA damage response triggered due to OHBI in host cells. The study was divided into three groups i.e. group A (OHBI patients n=30, viral load
Collapse
|
|
15 |
37 |
28
|
Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2010; 13:495-509. [PMID: 21486527 DOI: 10.18433/j3xk53] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 09/11/2023]
Abstract
PURPOSE Solid lipid nanoparticles (SLN) have emerged as carriers for therapeutic peptides, proteins, antigens and bioactive molecules. We have explored the potential of SLN as carrier for Hepatitis B surface antigen (HBsAg) by surface modifications to enhance their loading efficiency and the cellular uptake, using subcutaneous route. METHODS Four different formulations of SLN were prepared by solvent injection method and characterized for various physical properties: particle size, surface morphology, shape, zeta potential, polydispersity, X-ray diffraction analysis, release profile and entrapment efficiency. HBsAg loaded SLN were studied for their functional characteristics, in vitro cellular uptake and internalization studies by human dendritic cells, macrophages and fibroblasts, T cell proliferation and TH1/TH2 response. Humoral immune response elicited by subcutaneously administered HBsAg containing SLN formulations were studied in vivo in mice. RESULTS Compared to soluble HBsAg; SLN, particularly the mannosylated formulation, showed better cellular uptake, lesser cytotoxicity and induction of greater TH1 type of immune response. They also showed better immunological potential by producing sustained antibody titer. CONCLUSION Mannosylated SLN appears to be promising as carrier for vaccine delivery against hepatitis B as ascertained by in vitro and in vivo studies, however further investigations on humans are required to establish their potential as vaccines against hepatitis B infection.
Collapse
|
Comparative Study |
15 |
37 |
29
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023] [Imported: 09/03/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
|
Review |
4 |
36 |
30
|
Mishra PK, Raghuram GV, Panwar H, Jain D, Pandey H, Maudar KK. Mitochondrial oxidative stress elicits chromosomal instability after exposure to isocyanates in human kidney epithelial cells. Free Radic Res 2009; 43:718-728. [PMID: 19513903 DOI: 10.1080/10715760903037699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] [Imported: 08/30/2023]
Abstract
The role of oxidative stress is often attributed in environmental renal diseases. Isocyanates, a ubiquitous chemical group with diverse industrial applications, are known to undergo bio-transformation reactions upon accidental and occupational exposure. This study delineates the role of isocyanate-mediated mitochondrial oxidative stress in eliciting chromosomal instability in cultured human kidney epithelial cells. Cells treated with 0.005 microM concentration of methyl isocyanate displayed morphological transformation and stress-induced senescence. Along the time course, an increase in DCF fluorescence indicative of oxidative stress, depletion of superoxide dismutase (SOD) and glutathione reductase (GR) and consistent accumulation of 8-oxo-dG were noticed. Thus, endogenous oxidative stress resulted in aberrant expression of p53, p21, cyclin E and CDK2 proteins, suggestive of deregulated cell cycle, chromosomal aberrations, centromeric amplification, aneuploidy and genomic instability.
Collapse
|
|
16 |
35 |
31
|
Bhargava A, Raghuram GV, Pathak N, Varshney S, Jatawa SK, Jain D, Mishra PK. Occult hepatitis C virus elicits mitochondrial oxidative stress in lymphocytes and triggers PI3-kinase-mediated DNA damage response. Free Radic Biol Med 2011; 51:1806-1814. [PMID: 21893189 DOI: 10.1016/j.freeradbiomed.2011.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/13/2022] [Imported: 08/30/2023]
Abstract
Occult hepatitis C viral infection (OHCI) is a newly reported pathological entity associated with increased risk of developing hepatocellular carcinoma and lymphoproliferative disorders. Although hepatocytes are the primary sites of viral replication, hepatitis C virus is potentially lymphotropic, invading and propagating in cells of the immune system. Lymphocytes, the extrahepatic viral reservoirs, are differentially implicated in the occult and the active forms of the disease. This study aimed to elucidate the implications of mitochondrial oxidative stress on the immune pathophysiological mechanisms of OHCI. We herein report that OHCI induces mitochondrial oxidative stress, leading to DNA double-strand breaks and elicitation of a phosphoinositol 3-kinase-mediated cellular response in peripheral blood lymphocytes. Compared to controls, OHCI subjects showed higher accumulation of pATM, pATR, γH2AX, and p-p53, along with active recruitment of repair proteins (Mre11, Rad50, and Nbs1) and altered mitochondrial DNA content. Increased mitochondrial membrane depolarization and circulating nucleosome levels along with chromatid-type aberrations and decreased T-cell proliferative index observed in the OHCI group further indicated that this damage might lead to Bax-triggered mitochondria-mediated cellular apoptosis. Together our results provide the mechanistic underpinnings of mitochondrial dysfunction in OHCI, a previously unknown paradigm, for explaining the immune pathogenesis in a redox-dependent manner.
Collapse
|
|
14 |
33 |
32
|
Mishra DK, Dhote V, Bhatnagar P, Mishra PK. Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv Transl Res 2012; 2:238-253. [DOI: 10.1007/s13346-012-0088-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] [Imported: 09/11/2023]
|
|
13 |
32 |
33
|
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells 2022; 11:3943. [PMID: 36497201 PMCID: PMC9735555 DOI: 10.3390/cells11233943] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] [Imported: 09/03/2023] Open
Abstract
Renewing interest in the study of intermediate metabolism and cellular bioenergetics is brought on by the global increase in the prevalence of metabolic illnesses. Understanding of the mechanisms that integrate energy metabolism in the entire organism has significantly improved with the application of contemporary biochemical tools for quantifying the fuel substrate metabolism with cutting-edge mouse genetic procedures. Several unexpected findings in genetically altered mice have prompted research into the direction of intermediate metabolism of skeletal cells. These findings point to the possibility of novel endocrine connections through which bone cells can convey their energy status to other metabolic control centers. Understanding the expanded function of skeleton system has in turn inspired new lines of research aimed at characterizing the energy needs and bioenergetic characteristics of these bone cells. Bone-forming osteoblast and bone-resorbing osteoclast cells require a constant and large supply of energy substrates such as glucose, fatty acids, glutamine, etc., for their differentiation and functional activity. According to latest research, important developmental signaling pathways in bone cells are connected to bioenergetic programs, which may accommodate variations in energy requirements during their life cycle. The present review article provides a unique perspective of the past and present research in the metabolic characteristics of bone cells along with mechanisms governing energy substrate utilization and bioenergetics. In addition, we discussed the therapeutic inventions which are currently being utilized for the treatment and management of bone-related diseases such as osteoporosis, rheumatoid arthritis (RA), osteogenesis imperfecta (OIM), etc., by modulating the energetics of bone cells. We further emphasized on the role of GUT-associated metabolites (GAMs) such as short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), indole derivates, bile acids, etc., in regulating the energetics of bone cells and their plausible role in maintaining bone health. Emphasis is importantly placed on highlighting knowledge gaps in this novel field of skeletal biology, i.e., "Osteometabolism" (proposed by our group) that need to be further explored to characterize the physiological importance of skeletal cell bioenergetics in the context of human health and bone related metabolic diseases.
Collapse
|
Review |
3 |
32 |
34
|
Jain D, Pathak N, Khan S, Raghuram GV, Bhargava A, Samarth R, Mishra PK. Evaluation of cytotoxicity and anticarcinogenic potential of Mentha leaf extracts. Int J Toxicol 2011; 30:225-236. [PMID: 21300767 DOI: 10.1177/1091581810390527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] [Imported: 09/11/2023]
Abstract
We examined the possible molecular mechanisms underlying the cytotoxicity and anticarcinogenic potential of Mentha leaf extracts (petroleum ether, benzene, chloroform, ethyl acetate, methanol, and water extracts) on 6 human cancer (HeLa, MCF-7, Jurkat, T24, HT-29, MIAPaCa-2) and normal (IMR-90, HEK-293) cell lines. Of all the extracts tested, chloroform and ethyl acetate extracts of M piperita showed significant dose- and time-dependent anticarcinogenic activity leading to G1 cell cycle arrest and mitochondrial-mediated apoptosis, perturbation of oxidative balance, upregulation of Bax gene, elevated expression of p53 and p21 in the treated cells, acquisition of senescence phenotype, while inducing pro-inflammatory cytokines response. Our results provide the first evidence of direct anticarcinogenic activity of Mentha leaf extracts. Further, bioassay-directed isolation of the active constituents might provide basis for mechanistic and translational studies for designing novel anticancer drugs to be used alone or as adjuvant for prevention of tumor progression and/or treatment of human malignancies.
Collapse
|
|
14 |
31 |
35
|
Lohiya NK, Pathak N, Mishra PK, Manivannan B. Reversible contraception with chloroform extract of Carica papaya Linn. seeds in male rabbits. Reprod Toxicol 1999; 13:59-66. [PMID: 10080301 DOI: 10.1016/s0890-6238(98)00055-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] [Imported: 09/03/2023]
Abstract
The contraceptive efficacy and reversibility of the chloroform extract of the seeds of Carica papaya in adult male rabbits were investigated. Eighteen adult male rabbits were divided into three groups of six animals each; Group I--control, Group II--administered chloroform extract of the seeds of Carica papaya at 20 mg/animal/d for 150 d by gavage, and Group III--administered the seed extract at 50 mg/animal/d for 150 d. Body weight and organ weight, semen analysis, sperm morphology by scanning electron microscopy, semen biochemistry, histology of the testis, haematology, serum clinical biochemistry, and the fertility status of the control and the treated animals were evaluated. Body weight and the weight of the testis, epididymis, seminal vesicles, and prostate did not show appreciable changes. Sperm concentration showed a gradual decline, reached severe oligospermia (fewer than 20 million/mL) after 75 d treatment, and attained uniform azoospermia after 120 d treatment. Sperm motility and viability were severely affected after 45 d treatment and reached less than 1% after 75 d treatment. The morphology of the spermatozoa by scanning electron microscopy revealed membrane damage in the acrosome, bent midpiece, coiled tail, and detached head and tail. The levels of fructose, glycerylphosphorylcholine, acid phosphatase, and lactate dehydrogenase in the seminal plasma were unaltered. Histology of the testis revealed arrest of spermatogenesis beyond the level of spermatocytes. No toxicity was evident from the haematology and serum biochemistry parameters. The libido of the treated animals was unaffected and the fertility rate was zero. The effects were comparable in both the dose regimens (Groups II and III) and were restored to normal 45 d after withdrawal of the treatment.
Collapse
|
|
26 |
30 |
36
|
Sapra L, Bhardwaj A, Mishra PK, Garg B, Verma B, Mishra GC, Srivastava RK. Regulatory B Cells (Bregs) Inhibit Osteoclastogenesis and Play a Potential Role in Ameliorating Ovariectomy-Induced Bone Loss. Front Immunol 2021; 12:691081. [PMID: 34276682 PMCID: PMC8278221 DOI: 10.3389/fimmu.2021.691081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] [Imported: 09/03/2023] Open
Abstract
Increasing evidence in recent years has suggested that regulatory B cells (Bregs) are one of the crucial modulators in various inflammatory disease conditions. However, no study to date has investigated the significance of Bregs in modulating osteoclastogenesis. To the best of our knowledge, in the present study, we for the first time examined the anti-osteoclastogenic potential of Bregs under in vitro conditions and observed that Bregs suppress RANKL-induced osteoclastogenesis in a dose-dependent manner. We further elucidated the mechanism behind the observed suppression of osteoclasts differentiation via Bregs. Our results clearly suggested that the observed anti-osteoclastogenic property of Bregs is mediated via the production of IL-10 cytokine. Next, we explored whether Bregs have any role in mediating inflammatory bone loss under post-menopausal osteoporotic conditions in ovx mice. Remarkably, our in vivo data clearly suggest that the frequencies of both CD19+IL-10+ Bregs and CD19+CD1dhiCD5+IL-10+ "B10" Bregs were significantly reduced in case of osteoporotic mice model. Moreover, we also found a significant reduction in serum IL-10 cytokine levels in osteoporotic mice, thereby further supporting our observations. Taken together, the present study for the first time establishes the direct role of regulatory B cells in modulating osteoclastogenesis in vitro. Further, our in vivo data suggest that modulations in the percentage of Bregs population along with its reduced potential to produce IL-10 might further exacerbate the observed bone loss in ovx mice.
Collapse
|
research-article |
4 |
30 |
37
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023] [Imported: 08/30/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
|
Review |
4 |
30 |
38
|
Sapra L, Saini C, Garg B, Gupta R, Verma B, Mishra PK, Srivastava RK. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res 2022; 71:1025-1040. [PMID: 35900380 PMCID: PMC9330992 DOI: 10.1007/s00011-022-01616-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] [Imported: 09/03/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper-Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells-DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts-OBs and osteoclasts-OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002-2004 revealed the long-term negative impact (decreased bone mineral density-BMDs) of these infections on bone health. METHODOLOGY We used the keywords "immunopathogenesis of SARS-CoV-2," "SARS-CoV-2 and bone cells," "factors influencing bone health and COVID-19," "GUT microbiota," and "COVID-19 and Bone health" to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus. CONCLUSION Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota-GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.
Collapse
|
Review |
3 |
28 |
39
|
Mishra PK, Raghuram GV, Bhargava A, Ahirwar A, Samarth R, Upadhyaya R, Jain SK, Pathak N. In vitro and in vivo evaluation of the anticarcinogenic and cancer chemopreventive potential of a flavonoid-rich fraction from a traditional Indian herb Selaginella bryopteris. Br J Nutr 2011; 106:1154-1168. [PMID: 21736819 DOI: 10.1017/s0007114511001498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 08/30/2023]
Abstract
Prevention of cancer through nutritional intervention has gained significant recognition in recent years. Evidence revealed from mechanistic investigations coupled with molecular epidemiology show an inverse association of dietary flavonoids intake with cancer risk. The chemopreventive and anticarcinogenic potential of Selaginella bryopteris, a traditional Indian herb referred to as 'Sanjeevani' in the Ayurvedic system of medicine, was examined in the present study. Comprehensive in vitro and in vivo studies were conducted on the flavonoid-rich benzene fraction of the aqueous extract that demonstrated a significant cytoprotective activity. Biomarkers of chemoprevention such as proliferative index and status of cell-cycle regulatory proteins, antioxidant property, anti-inflammatory effect, reversal of stress-induced senescence and genoprotective effect were investigated in human and murine cell cultures. Chemopreventive potential was assessed in benzopyrene-induced lung carcinogenesis and 7,12-dimethyl benz(a)anthracene-mediated skin papillomagenesis test models. Inhibition of DNA fragmentation, unperturbed cell-cycle regulation, maintenance of intracellular antioxidant defence, anti-inflammatory activity, prevention of stress-induced senescence and genoprotective effects against methyl isocyanate carcinogenicity was observed. Medium-term anticarcinogenicity and two-stage skin papillomagenesis tests strongly substantiated our in vitro observations. Results from the present study provide evidence of anticarcinogenic and chemopreventive activities of S. bryopteris hitherto unreported and reaffirm the nutritional significance of flavonoids in cancer prevention.
Collapse
|
|
14 |
28 |
40
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-718. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] [Imported: 09/11/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
|
Review |
13 |
27 |
41
|
Mishra D, Mishra PK, Dubey V, Dabadghao S, Jain NK. Evaluation of uptake and generation of immune response by murine dendritic cells pulsed with hepatitis B surface antigen-loaded elastic liposomes. Vaccine 2007; 25:6939-6944. [PMID: 17719151 DOI: 10.1016/j.vaccine.2007.06.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022] [Imported: 09/03/2023]
Abstract
Hepatitis B surface antigen (HBsAg)-loaded elastic liposomes were studied for qualitative and quantitative uptake in vitro by murine dendritic cells (DCs) generated from bone marrow mononuclear cells. Internalization of the vesicles by the DCs was documented using fluorescence microscopy. Kinetics of uptake of antigen-loaded elastic vesicles by the DCs studied through flow cytometry showed a peak uptake at 6h. The ability of the antigen pulsed DCs to stimulate autologous peripheral blood lymphocytes was demonstrated by BrdU assay. Further evaluation by multiplex cytometric bead array analysis demonstrated a predominantly TH1 type of immune response. Our results suggest that HBsAg-loaded elastic vesicles as antigen delivery module and DCs as antigen presenting cells are able to generate a protective immune response. The property of elastic liposomes to traverse and target the immunological milieu of the skin makes it an attractive vehicle for development of a transcutaneous vaccine against hepatitis B virus.
Collapse
|
|
18 |
27 |
42
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] [Imported: 09/03/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
|
Review |
8 |
27 |
43
|
Bhargava A, Bunkar N, Aglawe A, Pandey KC, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Epigenetic Biomarkers for Risk Assessment of Particulate Matter Associated Lung Cancer. Curr Drug Targets 2018; 19:1127-1147. [PMID: 28891455 DOI: 10.2174/1389450118666170911114342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 11/22/2022] [Imported: 09/03/2023]
Abstract
BACKGROUND Particulate matter directly emitted into the air by sources such as combustion processes and windblown dust, or formed in the atmosphere by transformation of emitted gases are the major contributors to air pollution that triggers a diverse array of human pathologies including lung cancer. The mortality in lung cancer is usually high as the disease is not symptomatic at its early treatable stage. Moreover, available methods for screening are costly and mainly rely on imaging techniques which lack sufficient sensitivity and specificity. Despite progress in the identification of biomarkers, gene mutation based approaches still face formidable challenges as the disease evolves from a complex interplay between environment and host. Therefore, identification of an epigenomic signature might be useful for early diagnosis with the potential to reduce the environmental-associated disease burden. OBJECTIVE The review discusses the utility of epigenomic signature in identification and management of the environmental-associated lung cancers. CONCLUSION Non-invasive 'liquid biopsy' based epigenomic screening has recently emerged as a methodology which has potential to characterize tumor heterogeneity at initial stages. Epigenetic signatures (methylated DNA, miRNA, and post transcriptionally modified histones) known to reflect the vital cellular changes, circulate at higher levels in the individuals with lung cancer. These circulating biological entities are reported to be closely associated with the clinical outcome of lung cancer patients and thus strongly stand as the probable candidate to identify disease at an early stage and monitor treatment response, thereby, benefiting patients and improving their lives. However, for effective implementation of the strategy as "point-of-care" test for screening population-at-risk will require exhaustive clinical validation.
Collapse
|
Review |
7 |
27 |
44
|
Lohiya NK, Manivannan B, Mishra PK, Pathak N, Balasubramanian SP. Intravasal contraception with styrene maleic anhydride and its noninvasive reversal in langur monkeys (Presbytis entellus entellus). Contraception 1998; 58:119-128. [PMID: 9773267 DOI: 10.1016/s0010-7824(98)00073-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 09/03/2023]
Abstract
In male langurs with azoospermia induced by vas occlusion with styrene maleic anhydride (SMA), the exploratory feasibility of azoospermia reversal by a new noninvasive reversal procedure has been assessed. Palpation, percutaneous electrical stimulation of the vas deferens, forced vibratory movement, suprapubic percussion, and per rectal digital massage of the vas deferens are the components of the multimodal noninvasive reversal procedure. The exploratory investigation reveals that a single application of the procedure leads to reversal of azoospermia. Normospermia with normal motility and viability appears after third ejaculation onwards after reversal manipulations. Ultrastructure of the spermatozoa, using scanning and transmission electron microscopy, revealed that the spermatozoa attained normalcy and sperm functional tests (i.e., hypo-osmotic swelling test, slide test for acrosome intactness, and test for sperm mitochondrial activity index) further confirmed the normalcy of the spermatozoa toward their fertilizing ability. Semen biochemistry appeared normal throughout the course of investigation. The morphology of the vas deferens, which showed exfoliation of the epithelium, was in the process of regaining normalcy after 90 days of reversal manipulations. The results suggest that noninvasive reversal technique offers the possibility of the functional azoospermia reversal within a short period of time.
Collapse
|
|
27 |
26 |
45
|
Mishra PK, Khan S, Bhargava A, Panwar H, Banerjee S, Jain SK, Maudar KK. Regulation of isocyanate-induced apoptosis, oxidative stress, and inflammation in cultured human neutrophils: isocyanate-induced neutrophils apoptosis. Cell Biol Toxicol 2010; 26:279-291. [PMID: 19455394 DOI: 10.1007/s10565-009-9127-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 05/05/2009] [Indexed: 10/20/2022] [Imported: 09/11/2023]
Abstract
Implications of environmental toxins on the regulation of neutrophil function are being significantly appraised. Such effects can be varied and markedly different depending on the type and extent of chemical exposure, which results in direct damage to the immune system. Isocyanates with functional group (-NCO), are considered as highly reactive molecules with diverse industrial applications. However, patho-physiological implications resulting from their occupational and accidental exposures have not been well delineated. The present study was carried out to assess the immunotoxic response of isocyanates and their mode of action at a molecular level on cultured human neutrophils isolated from healthy human volunteers. Studies were conducted to evaluate both dose- and time-dependent (n = 3) response using N-succinimidyl N-methylcarbamate, a chemical entity that mimics the effects of methyl isocyanate in vitro. Measure of apoptosis through annexin-V-FITC/PI assay, active caspase-3, apoptotic DNA ladder assay and mitochondrial depolarization; induction of oxidative stress by CM-H(2)DCFDA and formation of 8'-hydroxy-2'-deoxyguanosine; and levels of antioxidant defense system enzyme glutathione reductase, multiplex cytometric bead array analysis to quantify the secreted cytokine levels (interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, interferon-gamma, tumor necrosis factor, and interleukin-12p70) parameters were evaluated. Our results demonstrate that isocyanates induce neutrophil apoptosis via activation of mitochondrial-mediated pathway along with reactive oxygen species production; depletion in antioxidant defense states; and elevated pro-inflammatory cytokine response.
Collapse
|
|
15 |
25 |
46
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] [Imported: 09/03/2023] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
|
Review |
9 |
25 |
47
|
Mishra PK, Raghuram GV, Jain D, Jain SK, Khare NK, Pathak N. Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int J Toxicol 2014; 33:116-129. [PMID: 24563415 DOI: 10.1177/1091581814524064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] [Imported: 08/30/2023]
Abstract
Emerging studies have linked prooxidative carbamate compound exposures with various human pathologies including pancreatic cancer. In these studies, our aim was to examine mitochondrial oxidative stress-mediated aberrant chromatin responses in human pancreatic ductal epithelial cells. Posttranslational histone modifications, promoter DNA methylation, and micro-RNA (miRNA) expression patterns were evaluated following induction of mitochondrial oxidative stress by N-succinimidyl N-methylcarbamate exposure. In treated cells, perturbation in mitochondrial machinery led to hypermethylation of p16 and smad4 gene promoters and downregulation of respective gene products. Posttranslational histone modifications that include hypoacetylation of acetylated histone (AcH) 3 and AcH4, hypermethylation of monomethylated histone 3 at lysine 9 and trimethylated histone 4 at lysine 20 ubiquitinated histone (uH) 2A/uH2B, and increased phosphorylation of H2AX and H3 were observed in the treated cells. Altered expression of miRNAs denoted possible location of corresponding genes at oxidatively damaged fragile sites. Collectively, our results provide a direct role of mitochondrial oxidative stress-mediated epigenetic imbalance to perturbed genomic integrity in oxygen radical-induced pancreatic injury. Further, identification and characterization of molecular switches that affect these epigenomic signatures and targets thereof will be imperative to understand the complex role of redox-regulatory network in pancreatic milieu.
Collapse
|
|
11 |
25 |
48
|
Pathak N, Khan S, Bhargava A, Raghuram GV, Jain D, Panwar H, Samarth RM, Jain SK, Maudar KK, Mishra DK, Mishra PK. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr Cancer 2014; 66:857-871. [PMID: 24820939 DOI: 10.1080/01635581.2014.904912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 09/11/2023]
Abstract
Intervention to decelerate, arrest, or reverse the process of carcinogenesis by the use of either natural or synthetic agents individually or in combination has emerged as a promising and pragmatic medical approach to reduce cancer risk. In the present study, we examined the cancer chemopreventive potential of a flavonoid-rich fraction isolated from the seeds of Carica papaya, a plant traditionally referred to as papaw. The flavonoid-enriched benzene fraction of the aqueous extract exerted its anticancer properties in vitro through cytoprotection, antioxidative and antiinflammatory mechanisms and genoprotection in response to isocyanate-induced carcinogenicity. Medium-term anticarcinogenicity and 2-stage skin papillomagenesis studies conducted in benzopyrene-induced lung carcinogenesis and 7,12-dimethyl benz(a)anthracene-mediated skin papillomagenesis mouse models further validated our in vitro observations. This is the first demonstration of chemopreventive activities of papaya seed products, however, further studies to understand the subtle targets of intracellular signaling pathways, pharmacological profile and toxicological safety of this bioactive fraction are essential to pave the way for successful clinical translation. Our study supports the inverse association between dietary flavonoid intake and cancer risk.
Collapse
|
|
11 |
24 |
49
|
Lohiya NK, Manivannan B, Mishra PK. Repeated vas occlusion and non-invasive reversal with styrene maleic anhydride for male contraception in langur monkeys. INTERNATIONAL JOURNAL OF ANDROLOGY 2000; 23:36-42. [PMID: 10632760 DOI: 10.1046/j.1365-2605.2000.00203.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] [Imported: 09/03/2023]
Abstract
The feasibility of a spacing method for contraception, using Styrene Maleic Anhydride (SMA) as a vas occlusive agent, has been assessed in male langur monkeys. The vas deferens of 6 animals were occluded with 60 mg SMA in 120 microL DMSO. After 150 days, the occlusion was reversed by a technique which involved palpation, percutaneous electrical stimulation, forced vibratory movement, suprapubic percussion and per-rectal digital massage of the vas segments. The vas deferens were then re-occluded with SMA and reversed by the non-invasive method after three consecutive azoospermic samples. The second vas occlusion resulted in uniform azoospermia after the third ejaculation and reversal caused the reappearance of spermatozoa in the semen to severe oligozoospermic levels in the first two ejaculations and rising to normospermia in the subsequent ejaculations. Ultrastructure of the spermatozoa by SEM and TEM and sperm function tests revealed that the spermatozoa had recovered normal morphology. Vas morphology also regained a normal pseudostratified columnar epithelium containing basal and principal cells. The results suggest that the SMA-based spacing technique for male contraception could be extrapolated to the human by use of no-scalpel injection and non-invasive reversal.
Collapse
|
|
25 |
23 |
50
|
Pathak N, Mishra PK, Manivannan B, Lohiya NK. Sterility due to inhibition of sperm motility by oral administration of benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2000; 7:325-333. [PMID: 10969727 DOI: 10.1016/s0944-7113(00)80051-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] [Imported: 09/03/2023]
Abstract
The contraceptive effects of benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya have been reported in male albino rats at the dose regimens 5 and 10 mg/animal/day; oral for 150 days. The body weight, weight of testis, epididymis, seminal vesicle and ventral prostate remained unaltered during the entire course of the investigation. Total suppression of cauda epididymal sperm motility coincided with a decrease in sperm count, viability and an increase in per cent abnormal spermatozoa during 60-150 days observation period. Minor changes in the germ cell proliferations in the testis and vacuolization and pyknotic nuclei in the few epithelial cells of the cauda epididymis were observed. Histology and biochemical composition of testis and accessory sex organs, haematology and serum clinical biochemistry and serum testosterone levels remained unchanged throughout the course of the investigation. Test for estrogenicity indicated mild estrogenicity. Monthly fertility test showed negative fertility. All the altered parameters returned to normal level following 60 days withdrawal of the treatment. The results suggest that the benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya exerts antifertility effects in rats without adverse toxicity and that the effects may be directly rendered on the spermatozoa.
Collapse
|
|
25 |
23 |