1
|
Du X, Xu Y, Chen S, Fang M. Inhibited CSF1R Alleviates Ischemia Injury via Inhibition of Microglia M1 Polarization and NLRP3 Pathway. Neural Plast 2020; 2020:8825954. [PMID: 32908485 PMCID: PMC7474788 DOI: 10.1155/2020/8825954] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] [Imported: 07/15/2024] Open
Abstract
Ischemia cerebral stroke is one of the common neurological diseases with severe inflammatory response and neuron death. The inhibition of colony-stimulating factor 1 receptor (CSF1R) which especially expressed in microglia/macrophage exerted neuroprotection in stroke. However, the underlying neuroinflammatory regulation effects of CSF1R in ischemia stroke are not clear. In this study, cerebral ischemia stroke mice model was established. The C57/B6J mice were administered with Ki20227, a CSF1R inhibitor, by gavage for 7 consecutive days (0.002 mg/kg/day) before modeling. The Rota-Rod test and neurobehavioral score test were investigated to assess neurobehavioral functions. The area of infarction was assessed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The mRNA expressions of M1/M2 microglia markers were evaluated by real-time PCR. Immunofluorescence and Western blot were utilized to detect the changes of Iba1 and NLRP3 pathway proteins. Results showed that neurobehavioral function improvement was demonstrated by an increased stay time on the Rota-Rod test and a decreased neurobehavioral score in the Ki20227 treatment group. The area of infarction reduced in Ki20227 group when compared to the stroke group. Moreover, the mRNA expression of M1 microglia markers (TNF-α and iNOS) decreased while M2 microglia markers (IL-10 and Arg-1) increased. Meanwhile, compared to the stroke and stroke+PBS group, Ki20227 administration downregulated the expression of NLRP3, active caspase 1, and NF-κB protein in the ischemia penumbra of Ki20227 treatment group mice. In short, the CSF1R inhibitor, Ki20227, played vital neuroprotective roles in ischemia cerebral stroke mice, and the mechanisms may be via inhibiting microglia M1 polarization and NLRP3 inflammasome pathway activation. Our study provides a potential new target for the treatment of ischemic stroke injury.
Collapse
|
research-article |
5 |
49 |
2
|
Luo Z, Sun Y, Qi B, Lin J, Chen Y, Xu Y, Chen J. Human bone marrow mesenchymal stem cell-derived extracellular vesicles inhibit shoulder stiffness via let-7a/Tgfbr1 axis. Bioact Mater 2022; 17:344-359. [PMID: 35386460 PMCID: PMC8965035 DOI: 10.1016/j.bioactmat.2022.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023] [Imported: 07/15/2024] Open
Abstract
Shoulder stiffness (SS) is a common shoulder disease characterized by increasing pain and limited range of motion. SS is considered to be an inflammatory and fibrotic disorder pathologically. However, there is no consensus on the most effective conservative treatment for fibrosis. Given that human Bone Marrow Mesenchymal Stem Cell-derived extracellular vesicles (BMSC-EVs) displayed promising therapeutic effects for various tissues, we investigated the therapeutic effect of BMSC-EVs on fibrosis in a mice immobilization model and two cell models. By conducting a series of experiments, we found that BMSC-EVs can significantly inhibit the fibrogenic process both in vitro and in vivo. In detail, BMSC-EVs suppressed the aberrant proliferation, high collagen production capacity, and activation of fibrotic pathways in TGF-β-stimulated fibroblasts in vitro. Besides, in vivo, BMSC-EVs reduced cell infiltration, reduced fibrotic tissue in the shoulder capsule, and improved shoulder mobility. In addition, via exosomal small RNA sequencing and qPCR analysis, let-7a-5p was verified to be the highest expressed miRNA with predicted antifibrotic capability in BMSC-EVs. The antifibrotic capacity of BMSC-EVs was significantly impaired after the knockdown of let-7a-5p. Moreover, we discovered that the mRNA of TGFBR1 (the membrane receptor of transforming growth factor β) was the target of let-7a-5p. Together, these findings elucidated the antifibrotic role of BMSC-EVs in shoulder capsular fibrosis. This study clarifies a new approach using stem cell-derived EVs therapy as an alternative to cell therapy, which may clinically benefit patients with SS in the future.
Collapse
|
research-article |
3 |
47 |
3
|
Xu Z, Xu Y, Zhang K, Liu Y, Liang Q, Thakur A, Liu W, Yan Y. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology 2023; 21:114. [PMID: 36978093 PMCID: PMC10049910 DOI: 10.1186/s12951-023-01858-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] [Imported: 07/15/2024] Open
Abstract
BACKGROUND The past few years have witnessed a significant increase in research related to plant-derived extracellular vesicles (PDEVs) in biological and medical applications. Using biochemical technologies, multiple independent groups have demonstrated the important roles of PDEVs as potential mediators involved in cell-cell communication and the exchange of bio-information between species. Recently, several contents have been well identified in PDEVs, including nucleic acids, proteins, lipids, and other active substances. These cargoes carried by PDEVs could be transferred into recipient cells and remarkably influence their biological behaviors associated with human diseases, such as cancers and inflammatory diseases. This review summarizes the latest updates regarding PDEVs and focuses on its important role in nanomedicine applications, as well as the potential of PDEVs as drug delivery strategies to develop diagnostic and therapeutic agents for the clinical management of diseases, especially like cancers. CONCLUSION Considering its unique advantages, especially high stability, intrinsic bioactivity and easy absorption, further elaboration on molecular mechanisms and biological factors driving the function of PDEVs will provide new horizons for the treatment of human disease.
Collapse
|
Review |
2 |
41 |
4
|
Wang Q, Yang W, Zhang J, Zhao Y, Xu Y. TREM2 Overexpression Attenuates Cognitive Deficits in Experimental Models of Vascular Dementia. Neural Plast 2020; 2020:8834275. [PMID: 32617097 PMCID: PMC7306072 DOI: 10.1155/2020/8834275] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] [Imported: 07/15/2024] Open
Abstract
Neuroinflammation plays a prominent role in the pathogenesis of vascular dementia (VD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor mainly expressed on microglia and has been known for its anti-inflammatory properties during immune response. However, data evaluating the effects of TREM2 in VD are lacking. Therefore, the present study is aimed at investigating the role of TREM2 in VD. In this study, the mouse model of VD was induced by transient bilateral common carotid artery occlusion (BCCAO). We compared the hippocampal gene and protein expressions of TREM2 between the VD mice and sham-operated mice at different time points. The TREM2 mRNA and protein expression levels in the VD mice were higher than those in the sham-operated mice. The cognitive deficits of VD mice were observed in the Morris water maze test. Interestingly, overexpression of TREM2 by intracerebroventricular injection of a lentiviral vector that encoded TREM2 (LV-TREM2) significantly improved the spatial learning and memory and attenuated the hippocampal neural loss in VD mice. Further mechanistic study revealed that overexpression of TREM2 significantly inhibited microglia M1 polarization by decreasing inducible nitric oxide synthase (iNOS) and proinflammatory cytokines expression levels and conversely enhanced microglia M2 polarization by increasing Arginase-1 (Arg-1) and anti-inflammatory cytokine expression levels. These results strongly suggest that TREM2 provides a protective effect in VD via modulating the phenotype of activated microglia and may serve as a novel potential therapeutic target for VD.
Collapse
|
research-article |
5 |
40 |
5
|
Xu Y, Wang Q, Liu Y, Cui R, Lu K, Zhao Y. Association between Helicobacter pylori infection and carotid atherosclerosis in patients with vascular dementia. J Neurol Sci 2016; 362:73-77. [PMID: 26944122 DOI: 10.1016/j.jns.2016.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/03/2016] [Accepted: 01/14/2016] [Indexed: 02/07/2023] [Imported: 07/15/2024]
Abstract
BACKGROUND AND PURPOSE Accumulating evidence indicates that various infections contribute to the pathogenesis of atherosclerosis. Helicobacter pylori (Hp) has been implicated as a risk factor of atherosclerosis for stroke and other cardiovascular disease, but limited data exist regarding vascular dementia (VD). This study aimed to investigate the relationship between Hp infection and carotid atherosclerosis in patients with VD. METHODS A total of 354 patients who were diagnosed with VD were enrolled. Patients were divided into Hp positive VD group (n=208) and Hp negative VD group (n=156) using the (13)C-urea breath test ((13)C-UBT). Serum YKL-40, a marker for inflammation, were analyzed by ELISA. Traditional atherosclerotic risk factors including age, gender, body mass index (BMI), total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and fasting blood glucose (FBG) were collected or detected. Carotid intima-media thickness (CIMT) was determined by color Doppler ultrasound. RESULTS CIMT values and serum YKL-40 significantly increased in Hp positive VD group in comparison with Hp negative VD group (p<0.05). In Hp positive VD group, serum YKL-40 was positively correlated with CIMT (r=0.412, p<0.05), and the association was independent of traditional atherosclerotic risk factors (β=0.381, p<0.001). CONCLUSIONS CIMT and serum YKL-4 were significantly higher in Hp positive patients than Hp negative patients. Hp-induced inflammation may be a risk factor for atherosclerosis in patients with VD.
Collapse
|
|
9 |
40 |
6
|
Xu Y, Wang Q, Qu Z, Yang J, Zhang X, Zhao Y. Protective Effect of Hyperbaric Oxygen Therapy on Cognitive Function in Patients with Vascular Dementia. Cell Transplant 2019; 28:1071-1075. [PMID: 31134827 PMCID: PMC6728711 DOI: 10.1177/0963689719853540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] [Imported: 07/15/2024] Open
Abstract
Recent studies have shown that hyperbaric oxygen (HBO) has a therapeutic effect on vascular dementia (VD); however, the exact mechanism remains unclear. This article aims to reveal the protective effects and underlying mechanisms of HBO on VD. A total of 158 patients with VD were prospectively included in the study and were randomly divided into control group and HBO group. The control group was given conventional treatment and the HBO group was treated with HBO in addition to conventional treatment. The following HBO protocol was practiced: 5 days per week, 60 min each, 100% oxygen at 2 standard atmospheric pressures for 12 weeks. The Mini-Mental State Examination (MMSE) scores and serum Humanin levels were detected before and after treatments in both groups. The baseline characteristics were not different dramatically between groups (p > 0.05). There was no significant difference in MMSE scores and serum Humanin levels between the two groups before treatment (p > 0.05). After treatment, compared with the control group, the MMSE scores and serum Humanin levels in the HBO group were significantly increased (p < 0.05). Spearman correlation analysis showed that the serum Humanin levels were positively correlated with MMSE scores (r = 0.409, p < 0.05) and this correlation was independent of baseline characteristics (β = 0.312, p < 0.05). HBO therapy can improve cognitive function in patients with VD, and its mechanism may be related to elevated serum Humanin levels.
Collapse
|
Clinical Trial |
6 |
37 |
7
|
Chen Y, Sun Y, Xu Y, Lin WW, Luo Z, Han Z, Liu S, Qi B, Sun C, Go K, Kang XR, Chen J. Single-Cell Integration Analysis of Heterotopic Ossification and Fibrocartilage Developmental Lineage: Endoplasmic Reticulum Stress Effector Xbp1 Transcriptionally Regulates the Notch Signaling Pathway to Mediate Fibrocartilage Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7663366. [PMID: 34737845 PMCID: PMC8563124 DOI: 10.1155/2021/7663366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] [Imported: 07/15/2024]
Abstract
INTRODUCTION Regeneration of fibrochondrocytes is essential for the healing of the tendon-bone interface (TBI), which is similar to the formation of neurogenic heterotopic ossification (HO). Through single-cell integrative analysis, this study explored the homogeneity of HO cells and fibrochondrocytes. METHODS This study integrated six datasets, namely, GSE94683, GSE144306, GSE168153, GSE138515, GSE102929, and GSE110993. The differentiation trajectory and key transcription factors (TFs) for HO occurrence were systematically analyzed by integrating single-cell RNA (scRNA) sequencing, bulk RNA sequencing, and assay of transposase accessible chromatin seq. The differential expression and enrichment pathways of TFs in heterotopically ossified tissues were identified. RESULTS HO that mimicked pathological cells was classified into HO1 and HO2 cell subsets. Results of the pseudo-temporal sequence analysis suggested that HO2 is a differentiated precursor cell of HO1. The analysis of integrated scRNA data revealed that ectopically ossified cells have similar transcriptional characteristics to cells in the fibrocartilaginous zone of tendons. The modified SCENIC method was used to identify specific transcriptional regulators associated with ectopic ossification. Xbp1 was defined as a common key transcriptional regulator of ectopically ossified tissues and the fibrocartilaginous zone of tendons. Subsequently, the CellPhoneDB database was completed for the cellular ligand-receptor analysis. With further pathway screening, this study is the first to propose that Xbp1 may upregulate the Notch signaling pathway through Jag1 transcription. Twenty-four microRNAs were screened and were found to be potentially associated with upregulation of XBP1 expression after acute ischemic stroke. CONCLUSION A systematic analysis of the differentiation landscape and cellular homogeneity facilitated a molecular understanding of the phenotypic similarities between cells in the fibrocartilaginous region of tendon and HO cells. Furthermore, by identifying Xbp1 as a hub regulator and by conducting a ligand-receptor analysis, we propose a potential Xbp1/Jag1/Notch signaling pathway.
Collapse
|
research-article |
4 |
28 |
8
|
Xu Y, Wang Q, Liu Y, Cui R, Zhao Y. Is Helicobacter pylori infection a critical risk factor for vascular dementia? Int J Neurosci 2016; 126:899-903. [PMID: 26269142 DOI: 10.3109/00207454.2015.1081387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022] [Imported: 07/15/2024]
Abstract
PURPOSE The association of Helicobacter pylori (Hp) infection and Alzheimer's disease has widely been addressed, but no relative data exist regarding vascular dementia (VD). The purpose of this study was to evaluate the relationship between Hp infection and VD. MATERIAL AND METHOD From January 2014 to March 2015, patients at Tai'an City Central Hospital who were diagnosed with VD were included. Patients were divided into Hp positive and Hp negative group using the (13)C-urea breath test ((13)C-UBT). Three inflammatory cytokines including interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) were detected. RESULTS A total of 173 VD patients were included in the study. According to (13)C-UBT, 104 patients (60.1%) were Hp positive VD patients and 69 patients (39.9%) were Hp negative patients. No differences were found between Hp positive and Hp negative patients as regard to age, gender, body mass index, education level, hypertension, diabetes mellitus and hyperlipidemia (p > 0.05). Hp positive patients demonstrated significantly lower mean mini-mental state examination and Montreal cognitive assessment scores (p < 0.05) and higher plasma levels of IL-1β, IL-6 and TNF-α than Hp negative patients (p < 0.05). CONCLUSIONS Hp infection might contribute, at least in part, to the cognitive decline in patients with VD, and play a critical role possibly through increasing expression of IL-1β, IL-6 and TNF-α.
Collapse
|
|
9 |
28 |
9
|
Zhang J, Tang L, Hu J, Wang Y, Xu Y. Uric acid is associated with cognitive impairment in the elderly patients receiving maintenance hemodialysis-A two-center study. Brain Behav 2020; 10:e01542. [PMID: 31985179 PMCID: PMC7066348 DOI: 10.1002/brb3.1542] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 02/03/2023] [Imported: 07/15/2024] Open
Abstract
BACKGROUND Elevated serum uric acid (SUA) has been associated with vascular cognitive impairment (CI) in the elderly. However, its relationship with cognitive function in the elderly patients receiving maintenance hemodialysis (MHD) has not yet been elucidated. OBJECTIVE The cognitive impairment is prevalent in MHD patients. Various insults may contribute to cognitive impairment in patients with MHD. The aim of this study was to investigate the relationship between SUA and CI in the elderly patients receiving MHD. METHODS A total of 180 elderly MHD subjects from two hospitals were enrolled in our study. Cognitive function domains were evaluated by MMSE at the beginning of the trial. Demographic and clinical characteristics were collected and recorded. RESULTS The subjects were stratified into quartiles according to SUA level. Demographic and clinical characteristics such as age, gender, smoking habit, education year, blood pressure (BP), hemoglobin, albumin, blood glucose (BG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), blood urea nitrogen (BUN), and serum creatinine (Scr) did not differ dramatically among groups (p > .05). The Q1 group showed the highest MMSE scores, and the Q4 group showed the lowest MMSE sores (p < .05). There was a negative correlation between SUA and MMSE scores (r = -.307, p = .014), and this correlation was independent of demographic and clinical characteristics. CONCLUSIONS Elevated SUA maybe contributes to CI in the elderly MHD patients. SUA level is independent risk for the CI in the elderly MHD patients.
Collapse
|
Multicenter Study |
5 |
23 |
10
|
Wang Q, Wang K, Ma Y, Li S, Xu Y. Serum Galectin-3 as a Potential Predictive Biomarker Is Associated with Poststroke Cognitive Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5827812. [PMID: 34900086 PMCID: PMC8660241 DOI: 10.1155/2021/5827812] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] [Imported: 07/15/2024]
Abstract
OBJECTIVE Galectin-3, an inflammatory mediator derived from microglia, participates in the pathophysiological process of various neurological diseases. However, the relationship between galectin-3 and poststroke cognitive impairment (PSCI) remains ambiguous. This research purposed to prove whether serum galectin-3 can predict PSCI. METHODS In the end, an aggregate of 416 patients with the first acute ischemic stroke (AIS) were continuously and prospectively enrolled in the study. Upon admission, the baseline data of AIS patients were collected, and their serum galectin-3 levels were measured. Three months after the stroke, the Montreal Cognitive Scale (MoCA) was utilized to measure the cognitive function of AIS patients, and PSCI was defined as a MoCA score less than 26 points. RESULTS Premised on the MoCA scores, patients were categorized into PSCI cohort and non-PSCI cohort. The two AIS patient cohorts did not exhibit any statistical difference in their baseline characteristics (p > 0.05). However, the serum galectin-3 level of AIS patients in the PSCI cohort was considerably elevated (p < 0.001). Pearson correlation analysis illustrated that serum galectin-3 level was negatively linked to MoCA score (r = -0.396, p < 0.05). The findings from the receiver-operating curve (ROC) illustrated that the sensitivity of serum galectin-3 as a possible biomarker for diagnosing PSCI was 66%, and the specificity was 94%. The cut-off value of serum galectin-3 to diagnose PSCI is 6.3 ng/mL (OR = 5.49, p < 0.001). Upon controlling for different variables, serum galectin-3 level remained to be an independent predictor of PSCI (p < 0.001). CONCLUSIONS Elevated serum galectin-3 levels are linked to a higher risk of PSCI. Serum galectin-3 could be a prospective biomarker for predicting PSCI.
Collapse
|
research-article |
4 |
22 |
11
|
Xu Y, Wang Q, Cui R, Lu K, Liu Y, Zhao Y. Uric acid is associated with vascular dementia in Chinese population. Brain Behav 2017; 7:e00617. [PMID: 28239527 PMCID: PMC5318370 DOI: 10.1002/brb3.617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/26/2016] [Accepted: 11/06/2016] [Indexed: 01/12/2023] [Imported: 07/15/2024] Open
Abstract
OBJECTIVE Mounting evidence suggests that oxidative stress is involved in the pathogenesis of vascular dementia (VD). Uric acid (UA) has long been implicated as a critical cause of cardiovascular disease. Nevertheless, UA was also expected to play an important role in antioxidant and neuroprotection recently. We hypothesized that UA may have a protective role against VD. The aim of this study was to investigate the link between serum UA and cognitive dysfunction in VD. MATERIALS AND METHODS There were altogether 127 VD subjects and 81 nondemented controls enrolled in our study. Serum UA, demographic, and clinical characteristics were recorded at baseline, and all participants underwent Mini-Mental State Examination (MMSE) at the beginning of the trial. RESULTS The VD group showed lower MMSE scores and serum UA levels than nondemented controls and there was significant statistical difference between the two groups (p < .05). Demographic and clinical characteristics such as age, gender, education, body mass index (BMI), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), blood urea nitrogen (BUN), and serum creatinine (Scr) did not differ dramatically between groups (p > .05). In VD subjects, there was a positive correlation between serum UA and MMSE scores (r = .32, p < .05), and this correlation was independent of demographic and clinical characteristics (β = .272, p < .05). CONCLUSIONS VD subjects have dramatically lower serum UA levels in comparison to nondemented controls. Lower serum UA levels are linked to cognitive dysfunction and could serve as a potential predictor for VD.
Collapse
|
research-article |
8 |
21 |
12
|
Chen Y, Sun Y, Luo Z, Chen X, Wang Y, Qi B, Lin J, Lin WW, Sun C, Zhou Y, Huang J, Xu Y, Chen J, Chen S. Exercise Modifies the Transcriptional Regulatory Features of Monocytes in Alzheimer's Patients: A Multi-Omics Integration Analysis Based on Single Cell Technology. Front Aging Neurosci 2022; 14:881488. [PMID: 35592698 PMCID: PMC9110789 DOI: 10.3389/fnagi.2022.881488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] [Imported: 07/15/2024] Open
Abstract
Monocytes have been reported to be important mediators of the protective effect of exercise against the development of Alzheimer's disease (AD). This study aims explored the mechanism by which monocytes achieve this. Using single cell transcriptome analysis, results showed that CD14 + and CD16 + monocytes interacted with other cells in the circulating blood. TNF, CCR1, APP, and AREG, the key ligand-receptor-related genes, were found to be differentially expressed between exercise-treated and AD patients. The SCENIC analysis was performed to identify individual clusters of the key transcription factors (TFs). Nine clusters (M1-M9) were obtained from the co-expression network. Among the identified TFs, MAFB, HES4, and FOSL1 were found to be differentially expressed in AD. Moreover, the M4 cluster to which MAFB, HES4, and FOSL1 belonged was defined as the signature cluster for AD phenotype. Differential analysis by bulkRNA-seq revealed that the expression of TNF, CCR1, and APP were all upregulated after exercise (p < 0.05). And ATF3, MAFB, HES4, and KLF4 that were identified in M4 clusters may be the TFs that regulate TNF, CCR1, and APP in exercise prescription. After that, APP, CCR1, TNF, ATF3, KLF4, HES4, and MAFB formed a regulatory network in the ERADMT gene set, and all of them were mechanistically linked. The ERADMT gene set has been found to be a potential risk marker for the development of AD and can be used as an indicator of compliance to exercise therapy in AD patients. Using single-cell integration analysis, a network of exercise-regulating TFs in monocytes was constructed for AD disease. The constructed network reveals the mechanism by which exercise regulated monocytes to confer therapeutic benefits against AD and its complications. However, this study, as a bioinformatic research, requires further experimental validation.
Collapse
|
research-article |
3 |
21 |
13
|
Xu Y, Wang Q, Li D, Wu Z, Li D, Lu K, Zhao Y, Sun Y. Protective effect of lithium chloride against hypoglycemia-induced apoptosis in neuronal PC12 cell. Neuroscience 2016; 330:100-108. [PMID: 27241942 DOI: 10.1016/j.neuroscience.2016.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022] [Imported: 07/15/2024]
Abstract
Hypoglycemia is defined by an arbitrary plasma glucose level lower than 3.9mmol/L and is a most common and feared adverse effect of treatment of diabetes mellitus. Emerging evidences demonstrated that hypoglycemia could induce enhanced apoptosis. Lithium chloride (LiCl), a FDA approved drug clinically used for treatment of bipolar disorders, is recently proven having neuroprotection against various stresses in the cellular and animal models of neural disorders. Here, we have established a hypoglycemia model in vitro and assessed the neuroprotective efficacy of LiCl against hypoglycemia-induced apoptosis and the underlying cellular and molecular mechanisms. Our studies showed that LiCl protects against hypoglycemia-induced neurotoxicity in vitro. Exposure to hypoglycemia results in enhanced apoptosis and the underlying cellular and molecular mechanisms involved inhibition of the canonical Wnt signaling pathway by decreasing wnt3a levels, β-catenin levels and increasing GSK-3β levels, which was confirmed by the use of Wnt-specific activator LiCl. Hypoglycemia-induced apoptosis were significantly reversed by LiCl, leading to increased cell survival. LiCl also alters the expression/levels of the Wnt pathway genes/proteins, which were reduced due to exposed to hypoglycemia. Overall, our results conclude that LiCl provides neuroprotection against hypoglycemia-induced apoptosis via activation of the canonical Wnt signaling pathway.
Collapse
|
|
9 |
20 |
14
|
Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, Lin J, Lin WW, Yao M, Kang X, Huang J, Sun C, Ying C, Guo C, Xu Y, Chen J, Chen S. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front Pharmacol 2022; 13:1010785. [PMID: 36188600 PMCID: PMC9523215 DOI: 10.3389/fphar.2022.1010785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] [Imported: 07/15/2024] Open
Abstract
Recent studies have shown that physical activities can prevent aging-related neurodegeneration. Exercise improves the metabolic landscape of the body. However, the role of these differential metabolites in preventing neurovascular unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis of brain tissue from young and old mice. Normalized mutual information (NMI) was used to measure heterogeneity between each pair of cells using the non-negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus epithelial cells (CPC), two types of CNS glial cells, differed significantly in heterogeneity depending on their aging status and intercellular interactions. The MetaboAnalyst 5.0 database and the scMetabolism package were used to analyze and calculate the differential metabolic pathways associated with aging in the CPC. These mRNAs and corresponding proteins were involved in the metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized glutathione pathways in CPC. Our results showed that CPC age heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and LDHB) might be directly targeted by the metabolite of oxidized glutathione (GSSG). Further molecular dynamics and free-energy simulations confirmed the insight into GSSG's targeting function and free-energy barrier on these CPC age heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG inhibits brain energy metabolism, whereas exercise improves the metabolic pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to develop drugs targeting neurodegenerative diseases, further studies are needed to understand how physical exercise enhances NVU function and metabolism by modulating CPC-glial cell interactions.
Collapse
|
research-article |
3 |
19 |
15
|
Li L, Du Z, Rong B, Zhao D, Wang A, Xu Y, Zhang H, Bai X, Zhong J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci Rep 2020; 40:BSR20193267. [PMID: 31894855 PMCID: PMC6970083 DOI: 10.1042/bsr20193267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] [Imported: 07/15/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic inflammatory disease that contributes to multiple cardiovascular diseases (CVDs), and foam cell formation plays important roles in the progression of AS. There is an urgent need to identify new molecular targets for treating AS, and thereby improve the quality of life and reduce the financial burden of individuals with CVD. METHODS An in vitro model of AS was generated by treating THP-1 cells and human aortic vascular smooth muscle cells (HA-VSMCs) with oxidized low-density lipoproteins (ox-LDLs). HA-VSMC proliferation and foam cell formation were detected by the MTT assay and Oil Red O staining. C-X-C motif chemokine 12 (CXCL12) expression was suppressed by siRNA. An AS rat model was established by feeding rats a high-fat diet and vitamin D2 for 3 weeks. Histopathology examinations were conducted by Hematoxylin and Eosin (H&E) staining and the levels ionized calcium-binding adapter molecule 1 (IBA1) and α smooth muscle actin (α-SMA) expression were determined by ELISA assays and immunohistochemistry. RESULTS An in vitro model of AS was established with THP-1 cells. CXCL12 expression in the model THP-1 cells was significantly increased when compared with its expression in control cells. Suppression of CXCL12 expression reduced the progression of AS in the cell model. Moreover, CXCL12 promoted AS in the in vivo rat model. CONCLUSION Our results suggest that CXCL12 plays an important role in promoting the progression of AS. Furthermore, inhibition of CXCL12 might suppress the development of AS by inhibiting HA-VSMC proliferation and their transformation to foam cells.
Collapse
|
research-article |
5 |
19 |
16
|
Wang Q, Xu Y, Qi C, Liu A, Zhao Y. Association study of serum soluble TREM2 with vascular dementia in Chinese Han population. Int J Neurosci 2020; 130:708-712. [PMID: 31847649 DOI: 10.1080/00207454.2019.1702548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023] [Imported: 07/15/2024]
Abstract
Objective: Recent extensive evidence suggests that the triggering receptor expressed on myeloid cells 2 (TREM2) is closely implicated in the pathogenesis of Alzheimer's disease (AD). However, no relative data exist regarding vascular dementia (VD). This study aimed to investigate the association between serum soluble TREM2 (sTREM2) and vascular dementia in Chinese Han population.Methods: A total of 120 VD patients and 120 cognitively normal controls matched for age and gender were enrolled for this study. Demographic and clinical characteristics were recorded at admission. Cognitive functions were assessed by the Mini-Mental State Examination (MMSE) and serum sTREM2 levels were detected using sandwich ELISA method.Results: Demographic and clinical characteristics did not differ dramatically between groups. Serum sTREM2 levels in VD patients are significantly decreased compared with normal controls. In VD patients, the serum sTREM2 levels were positively correlated with MMSE scores (r = 0.387, p = 0.008), and the association was independent of demographic and clinical characteristics (β = 0.396, p < 0.001).Conclusion: VD patients have significantly lower serum sTREM2 levels in comparison to normal controls. Serum sTREM2 levels may be used as a potential predictive biomarker of cognitive decline in VD.
Collapse
|
|
5 |
19 |
17
|
Xu Y, Wang K, Wang Q, Ma Y, Liu X. The Antioxidant Enzyme PON1: A Potential Prognostic Predictor of Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6677111. [PMID: 33628379 PMCID: PMC7884154 DOI: 10.1155/2021/6677111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] [Imported: 07/15/2024]
Abstract
OBJECTIVE Paraoxonase 1 (PON1) is an antioxidant enzyme, which has been proved to be involved in the pathophysiological process of oxidative stress and various neurological diseases in recent years. Although reduced PON1 activity has been reported in patients with acute ischemic stroke (AIS), the prognostic value of PON1 in AIS has not been clearly established. The purpose of this study was to determine whether the baseline serum PON1 activity level is related to the functional outcome of AIS patients. METHODS From July 2017 to June 2020, AIS patients within 3 days of symptom onset were continuously prospectively included in the study. On admission, clinical and laboratory data were recorded, and serum PON1 activity was tested. The National Institute of Health Stroke Scale (NIHSS) score was used to evaluate the initial neurologic deficit at admission, and the modified Rankin scale (mRS) was used to evaluate the functional outcome at 3 months. A multiple logistic regression model was used to analyze the relationship between the baseline PON1 activity level and the prognosis of AIS. RESULTS A total of 336 AIS patients were finally included in this study. The serum PON1 activity of AIS patients with good outcomes was significantly higher than that of patients with poor outcomes (193.4 ± 16.3 U/mL vs. 127.2 ± 14.9 U/mL, p < 0.001). However, the comparison of other clinical and laboratory data between AIS patients with good and poor outcomes was not significant (p > 0.05). There was a significant decrease in the mRS score in patients with AIS across serum PON1 quartiles (3.0 ± 1.6, 2.6 ± 1.5, 2.4 ± 1.4, and 2.4 ± 1.3, p = 0.007). Multivariate logistic regression analysis showed that the 3-month functional outcome of AIS patients was significantly correlated with the quartile of serum PON1 activity. CONCLUSIONS This study suggests that the serum PON1 activity may be an independent predictor of the functional outcome of AIS patients.
Collapse
|
research-article |
4 |
18 |
18
|
Wang X, Wang Q, Wang K, Ni Q, Li H, Su Z, Xu Y. Is Immune Suppression Involved in the Ischemic Stroke? A Study Based on Computational Biology. Front Aging Neurosci 2022; 14:830494. [PMID: 35250546 PMCID: PMC8896355 DOI: 10.3389/fnagi.2022.830494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] [Imported: 07/15/2024] Open
Abstract
OBJECTIVE To identify the genetic mechanisms of immunosuppression-related genes implicated in ischemic stroke. BACKGROUND A better understanding of immune-related genes (IGs) involved in the pathophysiology of ischemic stroke may help identify drug targets beneficial for immunomodulatory approaches and reducing stroke-induced immunosuppression complications. METHODS Two datasets related to ischemic stroke were downloaded from the GEO database. Immunosuppression-associated genes were obtained from three databases (i.e., DisGeNET, HisgAtlas, and Drugbank). The CIBERSORT algorithm was used to calculate the mean proportions of 22 immune-infiltrating cells in the stroke samples. Differential gene expression analysis was performed to identify the differentially expressed genes (DEGs) involved in stroke. Immunosuppression-related crosstalk genes were identified as the overlapping genes between ischemic stroke-DEGs and IGs. Feature selection was performed using the Boruta algorithm and a classifier model was constructed to evaluate the prediction accuracy of the obtained immunosuppression-related crosstalk genes. Functional enrichment analysis, gene-transcriptional factor and gene-drug interaction networks were constructed. RESULTS Twenty two immune cell subsets were identified in stroke, where resting CD4 T memory cells were significantly downregulated while M0 macrophages were significantly upregulated. By overlapping the 54 crosstalk genes obtained by feature selection with ischemic stroke-related genes obtained from the DisGenet database, 17 potentially most valuable immunosuppression-related crosstalk genes were obtained, ARG1, CD36, FCN1, GRN, IL7R, JAK2, MAFB, MMP9, PTEN, STAT3, STAT5A, THBS1, TLR2, TLR4, TLR7, TNFSF10, and VASP. Regulatory transcriptional factors targeting key immunosuppression-related crosstalk genes in stroke included STAT3, SPI1, CEPBD, SP1, TP53, NFIL3, STAT1, HIF1A, and JUN. In addition, signaling pathways enriched by the crosstalk genes, including PD-L1 expression and PD-1 checkpoint pathway, NF-kappa B signaling, IL-17 signaling, TNF signaling, and NOD-like receptor signaling, were also identified. CONCLUSION Putative crosstalk genes that link immunosuppression and ischemic stroke were identified using bioinformatics analysis and machine learning approaches. These may be regarded as potential therapeutic targets for ischemic stroke.
Collapse
|
research-article |
3 |
18 |
19
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] [Imported: 07/15/2024] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
|
Review |
3 |
16 |
20
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] [Imported: 07/15/2024]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
|
Review |
5 |
15 |
21
|
Xu Y, Wang Q, Wu Z, Lu K, Cheng X, Jin W, Zhao Y. The effect of lithium chloride on the attenuation of cognitive impairment in experimental hypoglycemic rats. Brain Res Bull 2019; 149:168-174. [PMID: 31029599 DOI: 10.1016/j.brainresbull.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022] [Imported: 07/15/2024]
Abstract
BACKGROUND Hypoglycemia is the most common complication in the treatment of diabetes mellitus. Accumulating evidence indicated that severe hypoglycemia could induce cognitive impairment. However, the molecular mechanism of regulating this progress is largely unknown. METHODS We established a model of insulin-induced recurrent hypoglycemia in adult male Wistar rats (n = 40). Lithium chloride was injected after hypoglycemia once a day for consecutive 30 days. The loss of cognition function was evaluated by water maze test in these hypoglycemic rats. Glial cells activation and Wnt and inflammatory cytokines IL-1β, IL-6, IL-4, IL-10, TGFβ and TNFα expression were further examined to determine the mechanism of cognitive function impairment. RESULTS Hypoglycemia could induce impairment of cognitive function in rats and administration of lithium chloride could partly attenuate cognitive impairment compared to the control (p < 0.05). Lithium chloride could significantly up-regulate Wnt signaling and reduce hypoglycemia-induced neuronal death, glial cells activation and inflammatory response in the hippocampus of rats compared to the control (p < 0.05). The efficacy of lithium chloride could be reversed by injecting canonical Wnt signaling antagonist the dickkopf homolog 1. CONCLUSION Lithium chloride attenuated hypoglycemia-induced cognitive function impairment in rats; and it was associated with Wnt signaling up-regulation and reduction of inflammatory response. Our results suggested that activating Wnt signaling pathways and inhibiting inflammatory response were the therapeutic potential to prevent hypoglycemia-induced neurological damage.
Collapse
|
|
6 |
15 |
22
|
Ji J, Tao P, Wang Q, Li L, Xu Y. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 21:835-842. [PMID: 33121427 DOI: 10.2174/1871530320666201029143606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022] [Imported: 07/15/2024]
Abstract
Diabetic nephropathy (DN) is referred to as the microvascular complication of the kidneys induced by insufficient production of insulin or an ineffective cellular response to insulin, and is the main cause of end-stage renal disease. Currently, available therapies provide only symptomatic relief and fail to improve the outcome of diabetic nephropathy. Studies on diabetic animals had shown overexpression of SIRT1 in both podocytes and renal tubular cells attenuated proteinuria and kidney injury in the animal model of DN. Sirt1 exerts renoprotective effects in DKD in part through the deacetylation of transcription factors involved in the disease pathogenesis, such as NF-кB, Smad3, FOXO and p53. The purpose of this review is to highlight the protective mechanism of SIRT1 involved in the pathogenesis of diabetic nephropathy.
Collapse
|
Review |
4 |
14 |
23
|
Huang J, Lin W, Sun Y, Wang Q, He S, Han Z, Lu L, Kang X, Chen Y, Guo H, Cui Z, Sun C, Go K, Wu J, Yao M, Cao M, Xu Y. Quercetin targets VCAM1 to prevent diabetic cerebrovascular endothelial cell injury. Front Aging Neurosci 2022; 14:944195. [PMID: 36118693 PMCID: PMC9475220 DOI: 10.3389/fnagi.2022.944195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 12/06/2022] [Imported: 07/15/2024] Open
Abstract
INTRODUCTION Endothelial cells play important roles in neurodegenerative diseases caused by diabetes, therefore, we aimed at investigating the mechanisms through which endothelial cells are involved in diabetes development. METHODS Single cell analysis was performed to identify the major endothelial cell subtypes in cardiovascular tissues that are involved in diabetes development. A cell-cell communication approach was then used to identify ligand-receptor interaction pairs between these cell types. Differential expression analysis between the two experimental groups [standard chow diet group and diabetogenic diet with cholesterol (DDC) group] was used to identify diabetes-related differentially expressed genes (DEGs). The upregulated genes were used to identify candidate ligands or receptors, as well as the corresponding cell types. Cell trajectory inference was performed to identify the stage of cell development and changes in expression of candidate ligands or receptors during cell development. Gene set enrichment analysis (GSEA) was conducted to investigate the biological functions of genes of purpose. Finally, molecular dynamics simulations (MDSs) were used to predict potential drugs with the ability to target the proteins of purpose. RESULTS Seven cell types, including five endothelial cell subtypes (EC_1, EC_2, EC_3, EC_4, and EC_EndMT), were identified from endothelial cell-enriched single cell samples from the heart and aorta of mice. Cell-cell communication analysis revealed the potential ligand-receptor interactions between these cell types while five important ligand-receptor-associated genes, including Fn1, Vcam1, Fbn1, Col4a1, and Col4a2, were established by differential expression analysis. Among them, Vcam1 is mainly expressed in EC_EndMT and is involved in interactions between EC_EndMT and other cells. Cell trajectory extrapolation analysis revealed a shift from EC_2/EC_4 to EC_EndMT and a shift from EC_EndMT to EC_3/EC_1 during the progression of diabetes. GSEA analysis revealed that upregulation of VCAM1 may have inhibitory effects on cell growth and energy metabolism. CONCLUSION EC_EndMT subtypes have a complex role in neurodegenerative diseases caused by diabetes. Through mechanisms involved in cell-cell communication, Vcam1 may play an important role in dysregulation of biological functions of EC_ EndMT. Molecular docking results of the quercetin-VCAM1 complex suggest that quercetin may be an effective drug for targeting this protein.
Collapse
|
research-article |
3 |
14 |
24
|
Tao P, Ji J, Gu S, Wang Q, Xu Y. Progress in the Mechanism of Autophagy and Traditional Chinese Medicine Herb Involved in Dementia. Front Pharmacol 2022; 12:825330. [PMID: 35242028 PMCID: PMC8886436 DOI: 10.3389/fphar.2021.825330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] [Imported: 07/15/2024] Open
Abstract
Dementias is a kind of neurodegenerative disease, which occurs among the aging population. Current therapeutic outcome for dementia is limited. The medical use of herbal plant has a rich history in traditional Chinese medicine practice for thousands of years. Herbal medicine (HM) may provide a positive effect for prevention and treatment in dementia. As an alternative treatment to dementia, there has been a growing interest in HM extracts in scientific community as a result of its promising study results, mainly in animal experiment. At the molecular level, HM extracts trigger autophagy and reduce generation of reactive oxygen species (ROS) while inhibiting inflammation and reduce neurotoxicity. Experiments both in vivo and in vitro have identified certain potential of HM extracts and natural products as an important regulator factor in mediating autophagy, which might contribute to the improvement of dementia. This brief review not only summarizes the mechanism of autophagy in dementia but also offers a general understanding of the therapeutic mechanism of HM extracts in treating dementia and evaluates the potential clinical practice of HM in general.
Collapse
|
Review |
3 |
10 |
25
|
Tao P, Xu W, Gu S, Shi H, Wang Q, Xu Y. Traditional Chinese medicine promotes the control and treatment of dementia. Front Pharmacol 2022; 13:1015966. [PMID: 36304171 PMCID: PMC9592982 DOI: 10.3389/fphar.2022.1015966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] [Imported: 07/15/2024] Open
Abstract
Dementia is a syndrome that impairs learning and memory. To date, there is no effective therapy for dementia. Current prescription drugs, such as cholinesterase inhibitors, fail to improve the condition of dementia and are often accompanied by severe adverse effects. In recent years, the number of studies into the use of traditional Chinese medicine (TCM) for dementia treatment has increased, revealing a formula that could significantly improve memory and cognitive dysfunctions in animal models. TCM showed fewer adverse effects, lower costs, and improved suitability for long-term use compared with currently prescribed drugs. Due to the complexity of ingredients and variations in bioactivity of herbal medicines, the multi-target nature of the traditional Chinese formula affected the outcome of dementia therapy. Innovations in TCM will create a platform for the development of new drugs for the prevention and treatment of dementia, further strengthening and enhancing the current influence of TCM.
Collapse
|
Review |
3 |
8 |