1
|
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, Zhou J, Sun B, Zou X, Wang S. METTL3-mediated m 6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69:1193-1205. [PMID: 31582403 DOI: 10.1136/gutjnl-2019-319639] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] [Imported: 08/28/2024]
Abstract
OBJECTIVE N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase METTL3 are involved in tumour initiation and progression via the regulation of RNA function. This study explored the biological function and clinical significance of METTL3 in gastric cancer (GC). DESIGN The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human GC cohort. The biological role and mechanism of METTL3 in GC tumour growth and liver metastasis were determined in vitro and in vivo. RESULTS The level of m6A RNA was significantly increased in GC, and METTL3 was the main regulator involved in the abundant m6A RNA modification. METTL3 expression was significantly elevated in GC tissues and associated with poor prognosis. Multivariate Cox regression analysis revealed that METTL3 expression was an independent prognostic factor and effective predictor in human patients with GC. Moreover, METTL3 overexpression promoted GC proliferation and liver metastasis in vitro and in vivo. Mechanistically, P300-mediated H3K27 acetylation activation in the promoter of METTL3 induced METTL3 transcription, which stimulated m6A modification of HDGF mRNA, and the m6A reader IGF2BP3 then directly recognised and bound to the m6A site on HDGF mRNA and enhanced HDGF mRNA stability. Secreted HDGF promoted tumour angiogenesis, while nuclear HDGF activated GLUT4 and ENO2 expression, followed by an increase in glycolysis in GC cells, which was correlated with subsequent tumour growth and liver metastasis. CONCLUSIONS Elevated METTL3 expression promotes tumour angiogenesis and glycolysis in GC, indicating that METTL3 expression is a potential prognostic biomarker and therapeutic target for human GC.
Collapse
|
|
5 |
578 |
2
|
Guo H, Wang B, Xu K, Nie L, Fu Y, Wang Z, Wang Q, Wang S, Zou X. m 6A Reader HNRNPA2B1 Promotes Esophageal Cancer Progression via Up-Regulation of ACLY and ACC1. Front Oncol 2020; 10:553045. [PMID: 33134163 PMCID: PMC7550530 DOI: 10.3389/fonc.2020.553045] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] [Imported: 08/28/2024] Open
Abstract
N6-methyladenosine (m6A) modification is the most abundant modification on eukaryotic RNA. In recent years, lots of studies have reported that m6A modification and m6A RNA methylation regulators were involved in cancer progression. However, the m6A level and its regulators in esophageal cancer (ESCA) remain poorly understood. In this study, we analyzed the expression of m6A regulators using The Cancer Genome Atlas data and found 14 of 19 m6A regulators are significantly increased in ESCA samples. Then we performed a univariate Cox regression analysis and LASSO (least absolute shrinkage and selection operator) Cox regression model to investigate the prognostic role of m6A regulators in ESCA, and the results indicated that a two-gene prognostic signature including ALKBH5 and HNRNPA2B1 could predict overall survival of ESCA patients. Moreover, HNRNPA2B1 is higher expressed in high-risk scores subtype of ESCA, indicating that HNRNPA2B1 may be involved in ESCA development. Subsequently, we confirmed that the level of m6A and HNRNPA2B1 was significantly increased in ESCA. We also found that HNRNPA2B1 expression positively correlated with tumor diameter and lymphatic metastasis of ESCA. Moreover, functional study showed that knockdown of HNRNPA2B1 inhibited the proliferation, migration, and invasion of ESCA. Mechanistically, we found that knockdown of HNRNPA2B1 inhibited the expression of de novo fatty acid synthetic enzymes, ACLY and ACC1, and subsequently suppressed cellular lipid accumulation. In conclusion, our study provides critical clues to understand the role of m6A and its regulators in ESCA. Moreover, HNRNPA2B1 functions as an oncogenic factor in promoting ESCA progression via up-regulation of fatty acid synthesis enzymes ACLY and ACC1, and it may be a promising prognostic biomarker and therapeutic target for human ESCA.
Collapse
|
research-article |
5 |
86 |
3
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C, Wang S. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol 2020; 13:57. [PMID: 32429972 PMCID: PMC7238608 DOI: 10.1186/s13045-020-00895-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] [Imported: 08/28/2024] Open
Abstract
Gastrointestinal cancer, the most common solid tumor, has a poor prognosis. With the development of high-throughput sequencing and detection technology, recent studies have suggested that many chemical modifications of human RNA are involved in the development of human diseases, including cancer. m6A, the most abundant modification, was revealed to participate in a series of aspects of cancer progression. Recent evidence has shown that methyltransferase-like 3 (METTL3), the first identified and a critical methyltransferase, catalyzes m6A methylation on mRNA or non-coding RNA in mammals, affecting RNA metabolism. Abnormal m6A levels caused by METTL3 have been reported to be involved in different aspects of cancer development, including proliferation, apoptosis, and metastasis. In this review, we will shed light on recent findings regarding the biological function of METTL3 in gastrointestinal cancer and discuss future research directions and potential clinical applications of METTL3 for gastrointestinal cancer.
Collapse
|
Review |
5 |
81 |
4
|
Xia A, Yuan W, Wang Q, Xu J, Gu Y, Zhang L, Chen C, Wang Z, Wu D, He Q, Yu W, Wang F, Xue C, Zhang Y, Bao G, Tao X, Liu S, Wang S, Hu Z, Sun B. The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription. NATURE CANCER 2022; 3:203-218. [PMID: 35122073 DOI: 10.1038/s43018-021-00315-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/23/2021] [Indexed: 12/24/2022] [Imported: 08/28/2024]
Abstract
Cancer-testis (CT) genes participate in the initiation and progression of cancer, but the role of CT-associated long non-coding RNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) is still elusive. Here, we discovered a conserved CT-lncRNA, named lnc-CTHCC, which was highly expressed in the testes and HCC. A lnc-CTHCC-knockout (KO) mouse model further confirmed that the global loss of lnc-CTHCC inhibited the occurrence and development of HCC. In vitro and in vivo assays also showed that lnc-CTHCC promoted HCC growth and metastasis. Mechanistically, lnc-CTHCC bound to heterogeneous nuclear ribonucleoprotein K (hnRNP K), which was recruited to the YAP1 promoter for its activation. Additionally, the N6-methyladenosine (m6A) modification was mediated by N6-adenosine-methyltransferase 70-kDa subunit (METTL3) and recognized by insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1)/IGF2BP3, which maintained lnc-CTHCC stability and increased its expression in HCC. Together, our results show that lnc-CTHCC directly binds to hnRNP K and promotes hepatocellular carcinogenesis and progression by activating YAP1 transcription, suggesting that lnc-CTHCC is a potential biomarker and therapeutic target of HCC.
Collapse
|
|
3 |
65 |
5
|
Wang Z, Wang Q, Xu G, Meng N, Huang X, Jiang Z, Chen C, Zhang Y, Chen J, Li A, Li N, Zou X, Zhou J, Ding Q, Wang S. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol 2020; 17:1576-1589. [PMID: 31885317 PMCID: PMC7567514 DOI: 10.1080/15476286.2019.1709296] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] [Imported: 08/28/2024] Open
Abstract
Emerging evidence has suggested that long noncoding RNAs (lncRNAs) play an essential role in the tumorigenesis of multiple types of cancer including gastric cancer (GC). However, the potential biological roles and regulatory mechanisms of lncRNA in response to cisplatin, which may be involved in cisplatin resistance, have not been fully elucidated. In this study, we identified a novel lncRNA, cisplatin resistance-associated lncRNA (CRAL), that was downregulated in cisplatin-resistant GC cells, impaired cisplatin-induced DNA damage and cell apoptosis and thus contributed to cisplatin resistance in GC cells. Furthermore, the results indicated that CRAL mainly resided in the cytoplasm and could sponge endogenous miR-505 to upregulate cylindromatosis (CYLD) expression, which further suppressed AKT activation and led to an increase in the sensitivity of gastric cancer cells to cisplatin in vitro and in preclinical models. Moreover, a specific small molecule inhibitor of AKT activation, MK2206, effectively reversed the cisplatin resistance in GC caused by CRAL deficiency. In conclusion, we provide the first evidence that a novel lncRNA, CRAL, could function as a competing endogenous RNA (ceRNA) to reverse GC cisplatin resistance via the miR-505/CYLD/AKT axis, which suggests that CRAL could be considered a potential predictive biomarker and therapeutic target for cisplatin resistance in gastric cancer.
Collapse
|
Review |
5 |
47 |
6
|
Shi J, Zhang Q, Yin X, Ye J, Gao S, Chen C, Yang Y, Wu B, Fu Y, Zhang H, Wang Z, Wang B, Zhu Y, Wu H, Yao Y, Xu G, Wang Q, Wang S, Zhang W. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci 2023; 19:449-464. [PMID: 36632454 PMCID: PMC9830507 DOI: 10.7150/ijbs.76798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] [Imported: 08/28/2024] Open
Abstract
Metastasis leads to the vast majority of breast cancer mortality. Increasing evidence has shown that N6-methyladenosine (m6A) modification and its associated regulators play a pivotal role in breast cancer metastasis. Here, we showed that overexpression of the m6A reader IGF2BP1 was clinically correlated with metastasis in breast cancer patients. Moreover, IGF2BP1 promoted distant metastasis in vitro and in vivo. Mechanistically, we first identified USP10 as the IGF2BP1 deubiquitinase. USP10 can bind to, deubiquitinate, and stabilize IGF2BP1, resulting in its higher expression level in breast cancer. Furthermore, by MeRIP-seq and experimental verification, we found that IGF2BP1 directly recognized and bound to the m6A sites on CPT1A mRNA and enhanced its stability, which ultimately mediated IGF2BP1-induced breast cancer metastasis. In clinical samples, USP10 levels correlated with IGF2BP1 and CPT1A levels, and breast cancer patients with high levels of USP10, IGF2BP1, and CPT1A had the worst outcome. Therefore, these findings suggest that the USP10/IGF2BP1/CPT1A axis facilitates breast cancer metastasis, and this axis may be a promising prognostic biomarker and therapeutic target for breast cancer.
Collapse
|
research-article |
2 |
36 |
7
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023] [Imported: 08/28/2024]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
|
research-article |
3 |
34 |
8
|
Wang Q, Chen Q, Zhu L, Chen M, Xu W, Panday S, Wang Z, Li A, Røe OD, Chen R, Wang S, Zhang R, Zhou J. JWA regulates TRAIL-induced apoptosis via MARCH8-mediated DR4 ubiquitination in cisplatin-resistant gastric cancer cells. Oncogenesis 2017; 6:e353. [PMID: 28671676 PMCID: PMC5541709 DOI: 10.1038/oncsis.2017.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] [Imported: 08/28/2024] Open
Abstract
Platinum chemotherapeutics are widely used to treat solid malignant tumors, including gastric cancer (GC). Drug resistance to platinum compounds may result in cancer relapse and decreased survival. The identification and development of novel agents to reactivate apoptosis pathways in platinum-resistant cancer cells is therefore necessary. Here we report that cisplatin-resistant human GC cells (BGC823/DDP and SGC7901/DDP) but not their parental cells (BGC823 and SGC7901) exhibit high sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a result of overexpression of death receptor 4 (DR4). Furthermore, we found that JWA, a molecule that promotes cisplatin-induced apoptosis in GC cells, suppressed TRAIL-induced apoptosis via negative regulation of DR4. Mechanistically, JWA promoted the ubiquitination of DR4 at K273 via upregulation of the ubiquitin ligase membrane-associated RING-CH-8 (MARCH8). In human GC tissues, JWA and DR4 protein levels were negatively correlated. Thus TRAIL may serve as an auxiliary treatment for cisplatin-resistant GC, and JWA may be a potential predictive marker of TRAIL sensitivity and may improve personalized therapeutics for treating human GC.
Collapse
|
research-article |
8 |
23 |
9
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] [Imported: 08/28/2024] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
|
Review |
2 |
23 |
10
|
Qiu D, Wang Q, Wang Z, Chen J, Yan D, Zhou Y, Li A, Zhang R, Wang S, Zhou J. RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1552-1561. [PMID: 29481911 DOI: 10.1016/j.bbadis.2018.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] [Imported: 08/28/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant cancers worldwide. Metastasis leads to poor prognoses in GC patients in advanced stages. Our previous studies have demonstrated that JWA functions as a tumour suppressor and that low expression of JWA in GC tissues is significantly correlated with shorter overall survival (OS) as well as with advanced clinicopathologic features in patients. However, the mechanism of dysregulation of JWA in cancers is not clear. In the present study, we found that an E3 ubiquitin ligase, RNF185, directly interacted with JWA and promoted its ubiquitination at the K158 site, resulting in subsequent degradation. Moreover, the protein level of RNF185 was negatively correlated with JWA in tumour tissues from GC patients. High RNF185 expression was significantly correlated with shorter OS. Additionally, increased RNF185 expression facilitated GC cell migration in vitro and promoted GC metastasis in vivo by downregulating JWA expression. However, this effect was reversed by replenishment of JWA. In conclusion, our findings highlight the following: (1) RNF185 promotes GC metastasis by mediating JWA degradation via a ubiquitin-proteasome pathway; (2) the K158 site of JWA is essential for its ubiquitination in GC cells. These findings suggest that RNF185 is a novel candidate prognostic marker and potential therapeutic target for GC.
Collapse
|
|
7 |
23 |
11
|
Wang Q, Xiong J, Qiu D, Zhao X, Yan D, Xu W, Wang Z, Chen Q, Panday S, Li A, Wang S, Zhou J. Inhibition of PARP1 activity enhances chemotherapeutic efficiency in cisplatin-resistant gastric cancer cells. Int J Biochem Cell Biol 2017; 92:164-172. [PMID: 28827033 DOI: 10.1016/j.biocel.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023] [Imported: 08/28/2024]
Abstract
Cisplatin (DDP) is the first line chemotherapeutic drug for several cancers, including gastric cancer (GC). Unfortunately, the rapid development of drug resistance remains a significant challenge for the clinical application of cisplatin. There is an urgent need to develop new strategies to overcome DDP resistance for cancer treatment. In this study, four types of human GC cells have been divided into naturally sensitive or naturally resistant categories according to their responses to cisplatin. PARP1 activity (poly (ADP-ribose), PAR) was found to be greatly increased in cisplatin-resistant GC cells. PARP1 inhibitors significantly enhanced cisplatin-induced DNA damage and apoptosis in the resistant GC cells via the inhibition of PAR. Mechanistically, PARP1 inhibitors suppress DNA-PKcs stability and reduce the capability of DNA double-strand break (DSB) repair via the NHEJ pathway. This was also verified in BGC823/DDP GC cells with acquired cisplatin resistance. In conclusion, we identified that PARP1 is a useful interceptive target in cisplatin-resistant GC cells. Our data provide a promising therapeutic strategy against cisplatin resistance in GC cells that has potential translational significance.
Collapse
|
|
8 |
21 |
12
|
Wang Z, Wang Q, Chen C, Zhao X, Wang H, Xu L, Fu Y, Huang G, Li M, Xu J, Zhang Q, Wang B, Xu G, Wang L, Zou X, Wang S. NNMT enriches for AQP5 + cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut 2023; 73:63-77. [PMID: 36977555 DOI: 10.1136/gutjnl-2022-328408] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] [Imported: 08/28/2024]
Abstract
OBJECTIVE Early gastric cardia adenocarcinoma (EGCA) is a highly heterogeneous cancer, and the understanding of its classification and malignant progression is limited. This study explored the cellular and molecular heterogeneity in EGCA using single-cell RNA sequencing (scRNA-seq). DESIGN scRNA-seq was conducted on 95 551 cells from endoscopic biopsies of low-grade intraepithelial neoplasia, well/moderately/poorly differentiated EGCA and their paired adjacent nonmalignant biopsy samples. Large-scale clinical samples and functional experiments were employed. RESULTS Integrative analysis of epithelial cells revealed that chief cells, parietal cells and enteroendocrine cells were rarely detected in the malignant epithelial subpopulation, whereas gland and pit mucous cells and AQP5+ stem cells were predominant during malignant progression. Pseudotime and functional enrichment analyses showed that the WNT and NF-κB signalling pathways were activated during the transition. Cluster analysis of heterogeneous malignant cells revealed that NNMT-mediated nicotinamide metabolism was enriched in gastric mucin phenotype cell population, which was associated with tumour initiation and inflammation-induced angiogenesis. Furthermore, the expression level of NNMT was gradually increased during the malignant progression and associated with poor prognosis in cardia adenocarcinoma. Mechanistically, NNMT catalysed the conversion of nicotinamide to 1-methyl nicotinamide via depleting S-adenosyl methionine, which led to a reduction in H3K27 trimethylation (H3K27me3) and then activated the WNT signalling pathway to maintain the stemness of AQP5+ stem cells during EGCA malignant progression. CONCLUSION Our study extends the understanding of the heterogeneity of EGCA and identifies a functional NNMT+/AQP5+ population that may drive malignant progression in EGCA and could be used for early diagnosis and therapy.
Collapse
|
|
2 |
19 |
13
|
Guo YQ, Wang Q, Wang JG, Gu YJ, Song PP, Wang SY, Qian XY, Gao X. METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol Oncol 2022; 11:14. [PMID: 35287752 PMCID: PMC8919647 DOI: 10.1186/s40164-022-00256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] [Imported: 08/28/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation and its methyltransferase METTL3 have been widely reported to be involved in different cancers by regulating RNA metabolism and function. Here, we aimed to explore the biological function and clinical significance of m6A modification and METTL3 in head and neck squamous cell carcinoma (HNSCC). METHODS The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human HNSCC cohort. The biological role and mechanism of METTL3 in HNSCC tumour growth, metastasis and angiogenesis were determined in vitro and in vivo. RESULTS M6A levels and METTL3 expressions in HNSCC tissues were significantly increased compared with paired adjacent tissues. Meanwhile, METTL3 was an independent risk factor for the prognosis of HNSCC patients. Moreover, METTL3 overexpression promoted HNSCC cell proliferation, migration, invasion, and angiogenesis, while knockdown of METTL3 had an opposite effect in vivo and in vitro. Mechanistically, METTL3 enhanced the m6A modification of CDC25B mRNA, which maintained its stability and upregulated its expression, thereby activating G2/M phase of cell cycle and leading to HNSCC malignant progression. CONCLUSIONS METTL3 may be a potential prognostic biomarker and therapeutic target for HNSCC.
Collapse
|
research-article |
3 |
18 |
14
|
Chen C, Shen N, Chen Y, Jiang P, Sun W, Wang Q, Wang Z, Jiang Y, Cheng W, Fu S, Wang S. LncCCLM inhibits lymphatic metastasis of cervical cancer by promoting STAU1-mediated IGF-1 mRNA degradation. Cancer Lett 2021; 518:169-179. [PMID: 34273467 DOI: 10.1016/j.canlet.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] [Imported: 08/28/2024]
Abstract
Cervical cancer (CC) patients with lymph node (LN) metastasis often have an extremely poor prognosis. However, the precise molecular mechanisms involved in LN metastasis of CC remain largely unknown. Herein, through RNA screening, we identified a novel long noncoding RNA (lncRNA), LncCCLM, that was downregulated in cervical cancer tissues and closely associated with lymphatic metastasis in cervical cancer patients. Gain-of-function and loss-of-function studies in CC cells demonstrated that LncCCLM inhibited cervical cancer-associated lymphangiogenesis, and CC cell migration and invasion in vitro and suppressed LN metastasis in vivo, but did not affect the growth of CC cells. Mechanistically, LncCCLM localized in the cytoplasm and interacted with staufen double-stranded RNA binding protein 1 (STAU1), promoting the binding of the STAU1 protein to the 3' untranslated region (3'UTR) of insulin-like growth factor 1 (IGF-1) mRNA, which accelerated the degradation of IGF-1 mRNA and decreased the IGF-1 protein level, ultimately reducing lymphangiogenesis and lymphatic metastasis in cervical cancer. Collectively, our findings suggest that LncCCLM acts as a tumor suppressor and may be used as a prognostic biomarker and therapeutic target for clinical intervention in LN-metastatic cervical cancer.
Collapse
|
|
4 |
16 |
15
|
Xia A, Yue Q, Zhu M, Xu J, Liu S, Wu Y, Wang Z, Xu Z, An H, Wang Q, Wang S, Sun B. The cancer-testis lncRNA LINC01977 promotes HCC progression by interacting with RBM39 to prevent Notch2 ubiquitination. Cell Death Discov 2023; 9:169. [PMID: 37198207 PMCID: PMC10192213 DOI: 10.1038/s41420-023-01459-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] [Imported: 08/28/2024] Open
Abstract
Cancer-testis genes are involved in the occurrence and development of cancer, but the role of cancer-testis-associated lncRNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) remains to be explored. Here, we discovered a novel CT-lncRNA, LINC01977, based on the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. LINC01977 was exclusively expressed in testes and highly expressed in HCC. High LINC01977 levels correlated with poorer overall survival (OS) in individuals with HCC. Functional assays showed that LINC01977 promoted HCC growth and metastasis in vitro and in vivo. Mechanistically, LINC01977 directly bound to RBM39 to promote the further entry of Notch2 into the nucleus, thereby preventing the ubiquitination and degradation of Notch2. Furthermore, the RNA binding protein IGF2BP2, one of the m6A modification readers, enhanced the stability of LINC01977, resulting in its high level in HCC. Therefore, the data suggest that LINC01977 interacts with RBM39 and promotes the progression of HCC by inhibiting Notch2 ubiquitination and degradation, indicating that LINC01977 may be a potential biomarker and therapeutic target for HCC patients.
Collapse
|
research-article |
2 |
8 |
16
|
Wang Z, Fu Y, Xia A, Chen C, Qu J, Xu G, Zou X, Wang Q, Wang S. Prognostic and predictive role of a metabolic rate-limiting enzyme signature in hepatocellular carcinoma. Cell Prolif 2021; 54:e13117. [PMID: 34423480 PMCID: PMC8488553 DOI: 10.1111/cpr.13117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] [Imported: 08/28/2024] Open
Abstract
OBJECTIVES Abnormal expression of metabolic rate-limiting enzymes drives the occurrence and progression of hepatocellular carcinoma (HCC). This study aimed to elucidate the comprehensive model of metabolic rate-limiting enzymes associated with the prognosis of HCC. MATERIALS AND METHODS HCC animal model and TCGA project were used to screen out differentially expressed metabolic rate-limiting enzyme. Cox regression, least absolute shrinkage and selection operation (LASSO) and experimentally verification were performed to identify metabolic rate-limiting enzyme signature. The area under the receiver operating characteristic curve (AUC) and prognostic nomogram were used to assess the efficacy of the signature in the three HCC cohorts (TCGA training cohort, internal cohort and an independent validation cohort). RESULTS A classifier based on three rate-limiting enzymes (RRM1, UCK2 and G6PD) was conducted and serves as independent prognostic factor. This effect was further confirmed in an independent cohort, which indicated that the AUC at year 5 was 0.715 (95% CI: 0.653-0.777) for clinical risk score, whereas it was significantly increased to 0.852 (95% CI: 0.798-0.906) when combination of the clinical with signature risk score. Moreover, a comprehensive nomogram including the signature and clinicopathological aspects resulted in significantly predict the individual outcomes. CONCLUSIONS Our results highlighted the prognostic value of rate-limiting enzymes in HCC, which may be useful for accurate risk assessment in guiding clinical management and treatment decisions.
Collapse
|
research-article |
4 |
8 |
17
|
Shi Q, He Y, He S, Li J, Xia J, Chen T, Huo L, Ling Y, Liu Q, Zang W, Wang Q, Tang C, Wang X. RP11-296E3.2 acts as an important molecular chaperone for YBX1 and promotes colorectal cancer proliferation and metastasis by activating STAT3. J Transl Med 2023; 21:418. [PMID: 37370092 PMCID: PMC10303830 DOI: 10.1186/s12967-023-04267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] [Imported: 08/28/2024] Open
Abstract
BACKGROUND RP11-296E3.2 is a novel long noncoding RNA (lncRNA) associated with colorectal cancer (CRC) metastasis, that was reported in our previous clinical studies. However, the mechanisms of RP11-296E3.2 in colorectal tumorigenesis remain elusive. METHODS RNA sequencing (RNA-seq), Fluorescence in situ hybridization (FISH), Transwell assays and others, were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vitro. In situ and metastatic tumor models were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vivo. RNA-pulldown, RNA-interacting protein immunoprecipitation (RIP), tissue microarray (TMA) assay, a luciferase reporter assay, chromatin immunoprecipitation (ChIP) and others were performed to explore the mechanisms by which RP11-296E3.2 regulates CRC tumorigenesis. RESULTS RP11-296E3.2 was confirmed to be associated with CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, RP11-296E3.2 directly bound to recombinant Y-Box Binding Protein 1 (YBX1) and enhanced signal transducer and activator of transcription 3 (STAT3) transcription and phosphorylation. YBX1 promoted the CRC cell proliferation and migration, while knockdown of RP11-296E3.2 attenuated the effects of YBX1 on CRC cell proliferation, and metastasis and the expression of several related downstream genes. We are the first to discover and confirm the existence of the YBX1/STAT3 pathway, a pathway dependent on RP11-296E3.2. CONCLUSION Together, these novel findings show that the RP11-296E3.2/YBX1 pathway promotes colorectal tumorigenesis and progression by activating STAT3 transcription and phosphorylation, and suggest that RP11-296E3.2 is a potential diagnostic biomarker and therapeutic target in CRC.
Collapse
|
research-article |
2 |
3 |
18
|
Wang Q, Li M, Chen C, Xu L, Fu Y, Xu J, Shu C, Wang B, Wang Z, Chen C, Song T, Wang S. Glucose homeostasis controls N-acetyltransferase 10-mediated ac4C modification of HK2 to drive gastric tumorigenesis. Theranostics 2025; 15:2428-2450. [PMID: 39990211 PMCID: PMC11840738 DOI: 10.7150/thno.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] [Imported: 05/04/2025] Open
Abstract
Rationale: Abnormal metabolic states contribute to a variety of diseases, including cancer. RNA modifications have diverse biological functions and are implicated in cancer development, including gastric cancer (GC). However, the direct relationship between glucose homeostasis and 4-acetylcytosine (ac4C) modification in GC remains unclear. Methods: The prognostic value of RNA acetyltransferase NAT10 expression was evaluated in a human GC cohort. Additionally, preoperative PET/CT data from GC patients and Micro-PET/CT imaging of mice were employed to assess the relationship between NAT10 and glucose metabolism. The biological role of NAT10 in GC was investigated through various experiments, including GC xenografts, organoids, and a conditional knockout (cKO) mouse model. The underlying mechanisms were examined using dot blotting, immunofluorescence staining, co-immunoprecipitation, and high-throughput sequencing, among other techniques. Results: Glucose deprivation activates the autophagy-lysosome pathway, leading to the degradation of NAT10 by enhancing its interaction with the sequestosome 1 (SQSTM1)/microtubule-associated protein 1 light chain 3 alpha (LC3) complex, ultimately resulting in a reduction of ac4C modification. Furthermore, the levels of ac4C and NAT10 are elevated in GC tissues and correlate with poor prognosis. A strong correlation exists between NAT10 levels and 18F-FDG uptake in GC patients. Furthermore, NAT10 drives glycolytic metabolism and gastric carcinogenesis in vitro and in vivo. Mechanistically, NAT10 stimulates ac4C modification at the intersection of the coding sequence (CDS) and 3' untranslated region (3'UTR) of hexokinase 2 (HK2) mRNA, enhancing its stability and activating the glycolytic pathway, thereby driving gastric tumorigenesis. Conclusion: Our findings highlight the critical crosstalk between glucose homeostasis and the ac4C epitranscriptome in gastric carcinogenesis. This finding offers a potential strategy of targeting NAT10/HK2 axis for the treatment of GC patients, especially those with highly active glucose metabolism.
Collapse
|
research-article |
1 |
2 |
19
|
Wu J, Chen Y, Zou H, Xu K, Hou J, Wang M, Tian S, Gao M, Ren Q, Sun C, Lu S, Wang Q, Shu Y, Wang S, Wang X. 6-Phosphogluconate dehydrogenase promotes glycolysis and fatty acid synthesis by inhibiting the AMPK pathway in lung adenocarcinoma cells. Cancer Lett 2024; 601:217177. [PMID: 39179096 DOI: 10.1016/j.canlet.2024.217177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] [Imported: 09/03/2024]
Abstract
Abnormal metabolism has emerged as a prominent hallmark of cancer and plays a pivotal role in carcinogenesis and progression of lung adenocarcinoma (LUAD). In this study, single-cell sequencing revealed that the metabolic enzyme 6-phosphogluconate dehydrogenase (PGD), which is a critical regulator of the pentose phosphate pathway (PPP), is significantly upregulated in the malignant epithelial cell subpopulation during malignant progression. However, the precise functional significance of PGD in LUAD and its underlying mechanisms remain elusive. Through the integration of TCGA database analysis and LUAD tissue microarray data, it was found that PGD expression was significantly upregulated in LUAD and closely correlated with a poor prognosis in LUAD patients. Moreover, in vitro and in vivo analyses demonstrated that PGD knockout and inhibition of its activity mitigated the proliferation, migration, and invasion of LUAD cells. Mechanistically, immunoprecipitation-mass spectrometry (IP-MS) revealed for the first time that IQGAP1 is a robust novel interacting protein of PGD. PGD decreased p-AMPK levels by competitively interacting with the IQ domain of the known AMPKα binding partner IQGAP1, which promoted glycolysis and fatty acid synthesis in LUAD cells. Furthermore, we demonstrated that the combination of Physcion (a PGD-specific inhibitor) and metformin (an AMPK agonist) could inhibit tumor growth more effectively both in vivo and in vitro. Collectively, these findings suggest that PGD is a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
|
|
1 |
|
20
|
Lao Y, Jin Y, Wu S, Fang T, Wang Q, Sun L, Sun B. Deciphering a profiling based on multiple post-translational modifications functionally associated regulatory patterns and therapeutic opportunities in human hepatocellular carcinoma. Mol Cancer 2024; 23:283. [PMID: 39732660 PMCID: PMC11681642 DOI: 10.1186/s12943-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized. METHODS Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment. RESULTS We detected robust preferences in locations of intrinsically disordered protein regions (IDRs) with phosphorylated sites and other site biases to locate in folded regions. Integrative analyses revealed that phosphorylated and multiple acylated-modified sites are enriched in proteins containing RRM1 domain, and RNA splicing is the key feature of this subset of proteins, as indicated by phosphorylation and acylation of splicing factor NCL at multiple residues. We confirmed that NCL-S67, K398, and K646 cooperate to regulate RNA processing. CONCLUSION Together, this proteome profiling represents a comprehensive study detailing regulatory patterns based on multiple PTMs of HCC.
Collapse
|
research-article |
1 |
|
21
|
Zhu Y, Fang Z, Bai J, Wang L, Chen J, Zhang Z, Wang Q, Sheng W, Pan X, Gao Z, Xu D, Wu P, Sun B. Orally Administered Functional Polyphenol-Nanozyme-Armored Probiotics for Enhanced Amelioration of Intestinal Inflammation and Microbiota Dysbiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411939. [PMID: 40067175 PMCID: PMC12061243 DOI: 10.1002/advs.202411939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Indexed: 05/04/2025] [Imported: 05/04/2025]
Abstract
Maintaining microbiota balance and enhancing the antioxidant performance of nanozyme-based probiotic systems are crucial for effective inflammatory bowel disease (IBD) therapy. Despite significant advancements, developing a green and safe coating technology that functionalizes probiotics with nanozymes while preserving the activity of both components remains a challenge. To address this, chitosan-modified epigallocatechin gallate (EGCG-CS, EC)is synthesized, leveraging the intrinsic adhesive and coordination properties of polyphenols to capture gold nanozymes (AuNPs), forming ECA complexes that enhance nanozyme activity. When coated onto Escherichia coli Nissle 1917 (EcN), the resulting ECA@EcN system effectively scavenged reactive oxygen species (ROS), improving probiotic viability and promoting colon accumulation. Mechanistically, ECA protected EcN by suppressing the activation of the Flagellar Assembly and Branched-Chain Amino Acid Synthesis pathways, ultimately alleviating inflammation and modulating intestinal microbial communities to relieve IBD symptoms. Given the biocompatibility of its components and the environmentally friendly assembly approach, this polyphenol-nanozyme-armored probiotic system represents a promising platform for IBD treatment.
Collapse
|
research-article |
1 |
|
22
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024] [Imported: 01/12/2025]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
|
Review |
1 |
|
23
|
Hong H, Han H, Wang L, Cao W, Hu M, Li J, Wang J, Yang Y, Xu X, Li G, Zhang Z, Zhang C, Xu M, Wang H, Wang Q, Yuan Y. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway. Cell Death Differ 2025; 32:613-631. [PMID: 39753865 PMCID: PMC11982231 DOI: 10.1038/s41418-024-01436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] [Imported: 01/12/2025] Open
Abstract
Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
research-article |
1 |
|
24
|
Han H, Yuan Y, Li C, Liu L, Yu H, Han G, Wang Q, Lin M, Huang J. RNA-binding motif protein 28 enhances angiogenesis by improving STAT3 translation in hepatocellular carcinoma. Cancer Lett 2024; 604:217191. [PMID: 39181434 DOI: 10.1016/j.canlet.2024.217191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] [Imported: 08/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor characterized by extensive angiogenesis. However, the underlying mechanisms of HCC pathogenesis remain unclear. Previous studies have shown that RNA-binding proteins (RBPs) are implicated in HCC pathogenesis. In this study, we observed that increased RBM28 expression in HCC tissues was positively correlated with tumor microvascular density and negatively correlated with patient prognosis. Overexpression of RBM28 in HCC cells promoted tubule formation in human umbilical vein endothelial cells, whereas inhibition of RBM28 had the opposite effect, furthermore, the role of RBM28 in the progression of HCC was assessed using transgenic mouse models and chemically induced HCC models. We used various molecular assays and high-throughput detection methods to evaluate the role of RBM28 in promoting angiogenesis in HCC. Increased RBM28 expression in HCC directly binds to STAT3 mRNA, recruiting EIF4E to increase STAT3 expression and enhancing the secretion and expression of vascular endothelial growth factor A; consequently, promoting neovascularization in HCC. The potential of RBM28 as a viable diagnostic and therapeutic target for HCC was assessed using multi-cohort clinical samples and animal models. In summary, our results provide insights into the pathogenesis, clinical diagnosis, and treatment of HCC.
Collapse
|
|
1 |
|
25
|
Xu Z, Zhu M, Geng L, Zhang J, Xia J, Wang Q, An H, Xia A, Yu Y, Liu S, Tong J, Zhu WG, Jiang Y, Sun B. Targeting NAT10 attenuates homologous recombination via destabilizing DNA:RNA hybrids and overcomes PARP inhibitor resistance in cancers. Drug Resist Updat 2025; 81:101241. [PMID: 40132530 DOI: 10.1016/j.drup.2025.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] [Imported: 05/04/2025]
Abstract
AIMS RNA metabolism has been extensively studied in DNA double-strand break (DSB) repair. The RNA acetyltransferase N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification in DSB repair remains largely elusive. In this study, we aim to decipher the role for ac4C modification by NAT10 in DSB repair in hepatocellular carcinoma (HCC). METHODS Laser micro-irradiation and chromatin immunoprecipitation (ChIP) were used to assess the accumulation of ac4C modification and NAT10 at DSB sites. Cryo-electron microscopy (cryo-EM) was used to determine the structures of NAT10 in complex with its inhibitor, remodelin. Hepatocyte-specific deletion of NAT10 mouse models were adopted to detect the effects of NAT10 on HCC progression. Subcutaneous xenograft, human HCC organoid and patient-derived xenograft (PDX) model were exploited to determine the therapy efficiency of the combination of a poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi) and remodelin. RESULTS NAT10 promptly accumulates at DSB sites, where it executes ac4C modification on RNAs at DNA:RNA hybrids dependent on PARP1. This in turn enhances the stability of DNA:RNA hybrids and promotes homologous recombination (HR) repair. The ablation of NAT10 curtails HCC progression. Furthermore, the cryo-EM yields a remarkable 2.9 angstroms resolution structure of NAT10-remodelin, showcasing a C2 symmetric architecture. Remodelin treatment significantly enhanced the sensitivity of HCC cells to a PARPi and targeting NAT10 also restored sensitivity to a PARPi in ovarian and breast cancer cells that had developed resistance. CONCLUSION Our study elucidated the mechanism of NAT10-mediated ac4C modification in DSB repair, revealing that targeting NAT10 confers synthetic lethality to PARP inhibition in HCC. Our findings suggest that co-inhibition of NAT10 and PARP1 is an effective novel therapeutic strategy for patients with HCC and have the potential to overcome PARPi resistance.
Collapse
|
|
1 |
|