1
|
Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:159-164. [PMID: 24316659 PMCID: PMC3915265 DOI: 10.1289/ehp.1307047] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/05/2013] [Indexed: 05/25/2023] [Imported: 05/23/2025]
Abstract
BACKGROUND Maternal obesity has adverse effects on oocyte quality, embryo development, and the health of the offspring. OBJECTIVES To understand the underlying mechanisms responsible for the negative effects of maternal obesity, we investigated the DNA methylation status of several imprinted genes and metabolism-related genes. METHODS Using a high-fat-diet (HFD)-induced mouse model of obesity, we analyzed the DNA methylation of several imprinted genes and metabolism-related genes in oocytes from control and obese dams and in oocytes and liver from their offspring. Analysis was performed using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing. RESULTS DNA methylation of imprinted genes in oocytes was not altered in either obese dams or their offspring; however, DNA methylation of metabolism-related genes was changed. In oocytes of obese mice, the DNA methylation level of the leptin (Lep) promoter was significantly increased and that of the Ppar-α promoter was reduced. Increased methylation of Lep and decreased methylation of Ppar-α was also observed in the liver of female offspring from dams fed the high-fat diet (OHFD). mRNA expression of Lep and Ppar-α was also significantly altered in the liver of these OHFD. In OHFD oocytes, the DNA methylation level of Ppar-α promoter was increased. CONCLUSIONS Our results indicate that DNA methylation patterns of several metabolism-related genes are changed not only in oocytes of obese mice but also in oocytes and liver of their offspring. These data may contribute to the understanding of adverse effects of maternal obesity on reproduction and health of the offspring.
Collapse
|
research-article |
11 |
122 |
2
|
Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction 2015; 149:R103-R114. [PMID: 25391845 PMCID: PMC4397590 DOI: 10.1530/rep-14-0242] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] [Imported: 05/22/2025]
Abstract
It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.
Collapse
|
Review |
10 |
120 |
3
|
Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci U S A 2013; 110:13038-43. [PMID: 23878233 DOI: 10.1073/pnas.1303231110] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 06/04/2025] Open
Abstract
In animals, mtDNA is always transmitted through the female and this is termed "maternal inheritance." Recently, autophagy was reported to be involved in maternal inheritance by elimination of paternal mitochondria and mtDNA in Caenorhabditis elegans; moreover, by immunofluorescence, P62 and LC3 proteins were also found to colocalize to sperm mitochondria after fertilization in mice. Thus, it has been speculated that autophagy may be an evolutionary conserved mechanism for paternal mitochondrial elimination. However, by using two transgenic mouse strains, one bearing GFP-labeled autophagosomes and the other bearing red fluorescent protein-labeled mitochondria, we demonstrated that autophagy did not participate in the postfertilization elimination of sperm mitochondria in mice. Although P62 and LC3 proteins congregated to sperm mitochondria immediately after fertilization, sperm mitochondria were not engulfed and ultimately degraded in lysosomes until P62 and LC3 proteins disengaged from sperm mitochondria. Instead, sperm mitochondria unevenly distributed in blastomeres during cleavage and persisted in several cells until the morula stages. Furthermore, by using single sperm mtDNA PCR, we observed that most motile sperm that had reached the oviduct for fertilization had eliminated their mtDNA, leaving only vacuolar mitochondria. However, if sperm with remaining mtDNA entered the zygote, mtDNA was not eliminated and could be detected in newborn mice. Based on these results, we conclude that, in mice, maternal inheritance of mtDNA is not an active process of sperm mitochondrial and mtDNA elimination achieved through autophagy in early embryos, but may be a passive process as a result of prefertilization sperm mtDNA elimination and uneven mitochondrial distribution in embryos.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
116 |
4
|
Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 2013; 342:1518-1521. [PMID: 24357321 DOI: 10.1126/science.1244587] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 05/22/2025]
Abstract
The duration of a woman's reproductive period is determined by the size and persistence of a dormant oocyte pool. Specific oocyte genes are essential for follicle maintenance and female fertility. The mechanisms that regulate the expression of these genes are poorly understood. We found that a cullin-ring finger ligase-4 (CRL4) complex was crucial in this process. Oocyte-specific deletion of the CRL4 linker protein DDB1 or its substrate adaptor VPRBP (also known as DCAF1) caused rapid oocyte loss, premature ovarian insufficiency, and silencing of fertility maintaining genes. CRL4(VPRBP) activates the TET methylcytosine dioxygenases, which are involved in female germ cell development and zygote genome reprogramming. Hence, CRL4(VPRBP) ubiquitin ligase is a guardian of female reproductive life in germ cells and a maternal reprogramming factor after fertilization.
Collapse
|
|
12 |
97 |
5
|
Wei Y, Multi S, Yang CR, Ma J, Zhang QH, Wang ZB, Li M, Wei L, Ge ZJ, Zhang CH, Ouyang YC, Hou Y, Schatten H, Sun QY. Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS One 2011; 6:e21557. [PMID: 21720555 PMCID: PMC3123354 DOI: 10.1371/journal.pone.0021557] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/01/2011] [Indexed: 12/21/2022] [Imported: 05/22/2025] Open
Abstract
Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos.
Collapse
|
research-article |
14 |
51 |
6
|
Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, Zhang CL. Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 2014; 12:29. [PMID: 24721882 PMCID: PMC3984639 DOI: 10.1186/1477-7827-12-29] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] [Imported: 05/22/2025] Open
Abstract
BACKGROUND The adverse effects on offspring of diabetic and/or obese mothers can be passed to the next generation. However, the mechanisms behind this are still unclear. Epigenetics may play a key role during this process. METHODS To confirm the hypothesis, we investigated the DNA methylation of several imprinted genes in spermatozoa of offspring from diabetic and/or obese mothers utilizing streptozotocin (STZ)- and high-fat-diet (HFD)-induced mouse models. RESULTS We found that the DNA methylation of Peg3 was significantly increased in spermatozoa of offspring of obese mothers compared to that in spermatozoa of offspring of normal mothers. The DNA methylation of H19 was significantly higher in spermatozoa of offspring of diabetic mothers than that in spermatozoa of offspring of non-diabetic mothers. CONCLUSIONS These results indicate that pre-gestational diabetes and/or obesity can alter DNA methylation in offspring spermatozoa.
Collapse
|
research-article |
11 |
50 |
7
|
Ge ZJ, Liang XW, Guo L, Liang QX, Luo SM, Wang YP, Wei YC, Han ZM, Schatten H, Sun QY. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol Reprod 2013; 88:117. [PMID: 23515675 DOI: 10.1095/biolreprod.112.105981] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] [Imported: 05/22/2025] Open
Abstract
Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.
Collapse
|
|
12 |
49 |
8
|
Qi ST, Wang ZB, Ouyang YC, Zhang QH, Hu MW, Huang X, Ge Z, Guo L, Wang YP, Hou Y, Schatten H, Sun QY. Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes. J Cell Sci 2013; 126:1595-1603. [PMID: 23444375 DOI: 10.1242/jcs.116541] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] [Imported: 05/22/2025] Open
Abstract
Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the phosphorylation of rec8, a member of the cohesin complex, at the centromeres and thus prevent cleavage of rec8 and so maintain the cohesion of chromatids. SETβ is a protein that physically interacts with shugoshin and inhibits PP2A activity. We thus hypothesized that SETβ might regulate cohesion protection and chromosome segregation during oocyte meiotic maturation. Here we report for the first time the expression, subcellular localization and functions of SETβ during mouse oocyte meiosis. Immunoblotting analysis showed that the expression level of SETβ was stable from the germinal vesicle stage to the MII stage of oocyte meiosis. Immunofluorescence analysis showed SETβ accumulation in the nucleus at the germinal vesicle stage, whereas it was targeted mainly to the inner centromere area and faintly localized to the interchromatid axes from germinal vesicle breakdown to MI stages. At the MII stage, SETβ still localized to the inner centromere area, but could relocalize to kinetochores in a process perhaps dependent on the tension on the centromeres. SETβ partly colocalized with PP2A at the inner centromere area. Overexpression of SETβ in mouse oocytes caused precocious separation of sister chromatids, but depletion of SETβ by RNAi showed little effects on the meiotic maturation process. Taken together, our results suggest that SETβ, even though it localizes to centromeres, might not be essential for chromosome separation during mouse oocyte meiotic maturation, although its forced overexpression causes premature chromatid separation.
Collapse
|
|
12 |
33 |
9
|
Ge ZJ, Zhang CL, Schatten H, Sun QY. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biol Reprod 2014; 90:139. [PMID: 24829025 DOI: 10.1095/biolreprod.114.118141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] [Imported: 05/22/2025] Open
Abstract
Offspring of diabetic mothers are susceptible to the onset of metabolic syndromes, such as type 2 diabetes and obesity at adulthood, and this trend can be inherited between generations. Genetics cannot fully explain how the noncommunicable disease in offspring of diabetic mothers is caused and inherited by the next generations. Many studies have confirmed that epigenetics may be crucial for the detrimental effects on offspring exposed to the hyperglycemic environment. Although the adverse effects on epigenetics in offspring of diabetic mothers may be the result of the poor intrauterine environment, epigenetic modifications in oocytes of diabetic mothers are also affected. Therefore, the present review is focused on the epigenetic alterations in oocytes and embryos of diabetic mothers. Furthermore, we also discuss initial mechanistic insight on maternal diabetes mellitus causing alterations of epigenetic modifications.
Collapse
|
Review |
11 |
31 |
10
|
Zhang CH, Qian WP, Qi ST, Ge ZJ, Min LJ, Zhu XL, Huang X, Liu JP, Ouyang YC, Hou Y, Schatten H, Sun QY. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reprod Biol Endocrinol 2013; 11:31. [PMID: 23597066 PMCID: PMC3637269 DOI: 10.1186/1477-7827-11-31] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/15/2013] [Indexed: 01/10/2023] [Imported: 05/22/2025] Open
Abstract
BACKGROUND The adverse effects of maternal diabetes on oocyte maturation and embryo development have been reported. METHODS In this study, we used time-lapse live cell imaging confocal microscopy to investigate the dynamic changes of ER and the effects of diabetes on the ER's structural dynamics during oocyte maturation, fertilization and early embryo development. RESULTS We report that the ER first became remodeled into a dense ring around the developing MI spindle, and then surrounded the spindle during migration to the cortex. ER reorganization during mouse early embryo development was characterized by striking localization around the pronuclei in the equatorial section, in addition to larger areas of fluorescence deeper within the cytoplasm. In contrast, in diabetic mice, the ER displayed a significantly higher percentage of homogeneous distribution patterns throughout the entire ooplasm during oocyte maturation and early embryo development. In addition, a higher frequency of large ER aggregations was detected in GV oocytes and two cell embryos from diabetic mice. CONCLUSIONS These results suggest that the diabetic condition adversely affects the ER distribution pattern during mouse oocyte maturation and early embryo development.
Collapse
|
research-article |
12 |
30 |
11
|
Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, Luo SM, Shen W, Zhang CL, Ge ZJ. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod 2018; 33:474-481. [PMID: 29377995 DOI: 10.1093/humrep/dey006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] [Imported: 05/22/2025] Open
Abstract
STUDY QUESTION What are the effects of high-glucose concentrations on DNA methylation of human oocytes? SUMMARY ANSWER High-glucose concentrations altered DNA methylation levels of Peg3 and Adiponectin in human in vitro maturation oocytes. WHAT IS KNOWN ALREADY Maternal diabetes has a detrimental influence on oocyte quality including epigenetic modifications, as shown in non-human mammalian species. STUDY DESIGN, SIZE, DURATION Immature metaphase I (MI) stage oocytes of good quality were retrieved from patients who had normal ovarian potential and who underwent ICSI in the Reproductive Medicine Center of People's Hospital of Zhengzhou University. MI oocytes were cultured in medium with different glucose concentrations (control, 10 mM and 15 mM) in vitro and 48 h later, oocytes with first polar body extrusion were collected to check the DNA methylation levels. PARTICIPANTS/MATERIALS, SETTING, METHODS MI oocytes underwent in vitro maturation (IVM) at 37°C with 5% mixed gas for 48 h. Then the mature oocytes were treated with bisulfite buffer. Target sequences were amplified using nested or half-nested PCR and the DNA methylation status was tested using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing (BS). MAIN RESULTS AND THE ROLE OF CHANCE High-glucose concentrations significantly decreased the first polar body extrusion rate. Compared to controls, the DNA methylation levels of Peg3 in human IVM oocytes were significantly higher in 10 mM (P < 0.001) and 15 mM (P < 0.001) concentrations of glucose. But the DNA methylation level of H19 was not affected by high-glucose concentrations in human IVM oocytes. We also found that there was a decrease in DNA methylation levels in the promoter of adiponectin in human IVM oocytes between controls and oocytes exposed to 10 mM glucose (P = 0.028). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION It is not clear whether the alterations are beneficial or not for the embryo development and offspring health. The effects of high-glucose concentrations on the whole process of oocyte maturation are still not elucidated. Another issue is that the number of oocytes used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that the effects of high-glucose concentration on DNA methylation of human oocytes have been elucidated. Our result indicates that in humans, the high risk of chronic diseases in offspring from diabetic mothers may originate from abnormal DNA modifications in oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the fund of National Natural Science Foundation of China (81401198) and Doctor Foundation of Qingdao Agricultural University (1116008).The authors declare that there are no potential conflicts of interest relevant to this article.
Collapse
|
|
7 |
28 |
12
|
Liang XW, Ge ZJ, Guo L, Luo SM, Han ZM, Schatten H, Sun QY. Effect of postovulatory oocyte aging on DNA methylation imprinting acquisition in offspring oocytes. Fertil Steril 2011; 96:1479-1484. [PMID: 21982284 DOI: 10.1016/j.fertnstert.2011.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 01/20/2023] [Imported: 05/22/2025]
Abstract
OBJECTIVE To investigate whether postovulatory aging of oocytes in the mother affects DNA methylation acquisition of imprinted genes in oocytes from the offspring. DESIGN Randomized research experimental study. SETTING Academic basic research laboratory. ANIMAL(S) Mice. INTERVENTION(S) Fresh oocytes and aged oocytes from mothers were artificially inseminated, and oocytes were collected from the resultant offspring. MAIN OUTCOME MEASURE(S) Methylation status was evaluated at differentially methylated regions (DMRs) in oocytes of maternally imprinted genes Peg3, Snrpn, and Peg1 and paternally imprinted gene H19. RESULT(S) Our results showed that methylation patterns at DMRs of Peg3, Snrpn, Peg1, and H19 in oocytes from aged-oocyte offspring were mainly normal, with only a small number of oocytes showing aberrant methylation in the DMR of Peg3. CONCLUSION(S) Postovulatory oocyte aging causes a decline in reproductive outcomes but does not evidently lead to defects in DNA methylation imprinting acquisition in the oocytes from viable offspring.
Collapse
|
|
14 |
23 |
13
|
Wei Y, Yang CR, Wei YP, Ge ZJ, Zhao ZA, Zhang B, Hou Y, Schatten H, Sun QY. Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring. J Biol Chem 2015; 290:4604-4619. [PMID: 25555918 DOI: 10.1074/jbc.m114.605642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] [Imported: 06/04/2025] Open
Abstract
The global prevalence of weight loss is increasing, especially in young women. However, the extent and mechanisms by which maternal weight loss affects the offspring is still poorly understood. Here, using an enriched environment (EE)-induced weight loss model, we show that maternal weight loss improves general health and reprograms metabolic gene expression in mouse offspring, and the epigenetic alterations can be inherited for at least two generations. EE in mothers induced weight loss and its associated physiological and metabolic changes such as decreased adiposity and improved glucose tolerance and insulin sensitivity. Relative to controls, their offspring exhibited improved general health such as reduced fat accumulation, decreased plasma and hepatic lipid levels, and improved glucose tolerance and insulin sensitivity. Maternal weight loss altered gene expression patterns in the liver of offspring with coherent down-regulation of genes involved in lipid and cholesterol biosynthesis. Epigenomic profiling of offspring livers revealed numerous changes in cytosine methylation depending on maternal weight loss, including reproducible changes in promoter methylation over several key lipid biosynthesis genes, correlated with their expression patterns. Embryo transfer studies indicated that oocyte alteration in response to maternal metabolic conditions is a strong factor in determining metabolic and epigenetic changes in offspring. Several important lipid metabolism-related genes have been identified to partially inherit methylated alleles from oocytes. Our study reveals a molecular and mechanistic basis of how maternal lifestyle modification affects metabolic changes in the offspring.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
14
|
He Q, Liang L, Zhang C, Li H, Ge Z, Wang L, Cui S. Effects of different doses of letrozole on the incidence of early-onset ovarian hyperstimulation syndrome after oocyte retrieval. Syst Biol Reprod Med 2014; 60:355-360. [PMID: 25192259 DOI: 10.3109/19396368.2014.957879] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 05/22/2025]
Abstract
We explored the effects of different doses of letrozole on the incidence of ovarian hyperstimulation syndrome (OHSS) after oocyte retrieval during in vitro fertilization (IVF) in patients with high-risk OHSS. A total of 88 patients were randomly divided into a control group, and groups treated with 2.5 mg, 5 mg, or 7.5 mg of letrozole. We found that from the fifth day after human chorionic gonadotrophin (hCG) treatment, the E2 level decreased and there were statistical differences between the four groups (p < 0.05). From the eighth day after hCG treatment, the luteinizing hormone (LH) level increased, but the progesterone (P) level decreased. There were statistical differences between groups (p < 0.05). From the fifth day after hCG treatment, the level of vascular endothelial growth factor (VEGF) increased in the control, but decreased in the letrozole groups in a dose-dependent manner. There were statistically significant differences between groups (p < 0.001). The incidence of moderate and severe OHSS was lower in the 7.5 mg group than in the control group (p < 0.05). In the patients with high-risk OHSS undergoing whole embryo frozen transfer, treatment with 7.5 mg letrozole may be useful to limit OHSS.
Collapse
|
Comparative Study |
11 |
20 |
15
|
Chen YH, Xu XH, Wang Q, Zhang SD, Jiang LL, Zhang CL, Ge ZJ. Optimum oocyte retrieved and transfer strategy in young women with normal ovarian reserve undergoing a long treatment protocol: a retrospective cohort study. J Assist Reprod Genet 2015; 32:1459-67. [PMID: 26384107 PMCID: PMC4615925 DOI: 10.1007/s10815-015-0571-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022] [Imported: 06/04/2025] Open
Abstract
PURPOSE This study aimed to investigate the relationship between the number of oocytes retrieved and clinical outcomes in young women with normal ovarian reserve who were undergoing their first in vitro fertilization and embryo transfer (IVF-ET) cycle. The transfer strategy based on yielded oocytes was also discussed in this article. METHODS A total of 1567 patients who underwent first long protocol of IVF treatment in our reproductive medical center between January 2010 and June 2014 were categorized into five groups based on the retrieved oocyte number, namely, 4∼6, 7∼9, 10∼12, 13∼15, and ≥16. Baseline parameters were similar among the groups. Primary outcome was defined as the cumulative live birth rate (CLBR), and secondary outcomes included the rate of patients with high risks for ovarian hyperstimulation syndrome (OHSS). RESULTS It was found that the CLBR increased with the number of oocytes, as well as the rate for high risks of OHSS. In fresh cycles, 10∼12 oocyte group demonstrated the highest implantation rate (53.32 %), clinical pregnancy rate (CPR) (73.13 %), and live birth rate (LBR) (61.14 %), with no significant differences. Moreover, both cumulative CPR (CCPR) and CLBR became significantly higher in the 10∼12 oocyte group, compared with 4∼6 and 7∼9 groups. However, when the retrieved oocytes increased to 13∼15 or ≥16, the cumulative results did not have a significant increase. Also, the high risk rate of OHSS was much lower in the 10∼12 group (11.53 %) than that in the 13∼15 group (29.97 %) and ≥16 group (77.30 %). Unconditional multivariate logistic regression analysis showed that when ≥10 oocytes were retrieved, the CLBR increased significantly (P < 0.01). When oocyte number exceeded 16, the CPR of frozen embryo transfer cycle was much higher than that of fresh cycle (P < 0.05). CONCLUSIONS For young women with normal ovarian reserve, retrieving 10∼12 oocytes might result in optimized pregnancy outcomes in a fresh cycle with low OHSS risk and would not compromise cumulative outcomes. When ≥16 oocytes were retrieved, a "freeze-all" embryo strategy might be preferable.
Collapse
|
research-article |
10 |
20 |
16
|
Fan XY, Guo L, Chen LN, Yin S, Wen J, Li S, Ma JY, Jing T, Jiang MX, Sun XH, Chen M, Wang F, Wang ZB, Zhang CF, Wang XH, Ge ZJ, Hu C, Zeng L, Shen W, Sun QY, Ou XH, Luo SM. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng 2022; 6:339-350. [PMID: 35437313 DOI: 10.1038/s41551-022-00881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2022] [Indexed: 11/08/2022] [Imported: 05/22/2025]
Abstract
Mitochondrial replacement therapy (MRT) has been used to prevent maternal transmission of disease-causing mutations in mitochondrial DNA (mtDNA). However, because MRT requires nuclear transfer, it carries the risk of mtDNA carryover and hence of the reversion of mtDNA to pathogenic levels owing to selective replication and genetic drift. Here we show in HeLa cells, mouse embryos and human embryos that mtDNA heteroplasmy can be reduced by pre-labelling the mitochondrial outer membrane of a donor zygote via microinjection with an mRNA coding for a transmembrane peptide fused to an autophagy receptor, to induce the degradation of the labelled mitochondria via forced mitophagy. Forced mitophagy reduced mtDNA carryover in newly reconstructed embryos after MRT, and had negligible effects on the growth curve, reproduction, exercise capacity and other behavioural characteristics of the offspring mice. The induction of forced mitophagy to degrade undesired donor mtDNA may increase the clinical feasibility of MRT and could be extended to other nuclear transfer techniques.
Collapse
|
|
3 |
18 |
17
|
Liang XW, Ge ZJ, Wei L, Guo L, Han ZM, Schatten H, Sun QY. The effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at mid-term gestation. Mol Hum Reprod 2011; 17:562-567. [PMID: 21427161 DOI: 10.1093/molehr/gar018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] [Imported: 05/22/2025] Open
Abstract
Previous studies by others and ourselves have suggested that the methylation pattern of imprinted genes in oocytes is altered during postovulatory aging. The purpose of the current study was to evaluate the effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at the mid-gestation development stages. Proestrous females were artificially inseminated at 13 h (fresh-oocyte group) or 22 h (aged-oocyte group) post-hCG. Estrous females were mated with males as a control group. On dpc (day post coitus) 10.5 of development, embryos and placentas were collected and DNA and RNA were extracted, respectively. Methylation and total expression of Igf2r and H19 was investigated by quantitative analysis of methylation by PCR and quantitative real-time RT-PCR, respectively. Our results showed no significant changes of methylation in the differentially methylated region (DMR) and total expression of Igf2r in embryos and placentas, and no significant changes in methylation of H19 in embryos at dpc 10.5 of development compared with the control group regardless of artificial insemination of fresh or aged oocytes. In contrast, placentas of the aged-oocyte group exhibited significantly lower methylation levels in the H19 DMR. Furthermore, we observed that the increased expression of H19 in placentas of the aged-oocyte group was associated with significant hypomethylation of H19 DMR. These results suggest that postovulatory aging of mouse oocytes has adversed effects on methylation and expression of H19 in placentas at the mid-gestation development stage.
Collapse
|
|
14 |
16 |
18
|
Yang LL, Zhao Y, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S. Toxic effects and possible mechanisms of hydrogen sulfide and/or ammonia on porcine oocyte maturation in vitro. Toxicol Lett 2018; 285:20-26. [PMID: 29292088 DOI: 10.1016/j.toxlet.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/07/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023] [Imported: 05/22/2025]
Abstract
Previous studies suggest that hydrogen sulfide (H2S) and ammonia (NH3) are two major air pollutants which can cause damage to porcine health. However, the mechanisms underlying toxic effects of these compounds on porcine oocyte maturation are not clear. To clarify the mechanism, we evaluated the oocyte quality by detecting some events during oocytes maturation. In our study, porcine oocytes were cultured with different concentrations of Na2S and/or NH4Cl in vitro and the rate of the first polar body extrusion decreased significantly. Also, actin filament was seriously disrupted to damage the cytoskeleton which resulted in reduced rate of oocyte maturation. We explored the reactive oxygen species (ROS) generation and found that the ROS level was increased significantly after Na2S treatment but not after NH4Cl treatment. Moreover, early stage apoptosis rate was significantly increased and autophagy protein LC3 B expression level was higher in oocytes treated with Na2S and/or NH4Cl, which might be caused by ROS elevation. Additionally, exposure to Na2S and/or NH4Cl also caused ROS generation and early apoptosis in cumulus cells, which might further affect oocyte maturation in vitro. In summary, our data suggested that exposure to H2S and/or NH3 decreased porcine oocyte maturation in vitro, which might be caused by actin disruption, ROS generation, early apoptosis and autophagy.
Collapse
|
|
7 |
15 |
19
|
Ge ZJ, Liang QX, Luo SM, Wei YC, Han ZM, Schatten H, Sun QY, Zhang CL. Diabetic uterus environment may play a key role in alterations of DNA methylation of several imprinted genes at mid-gestation in mice. Reprod Biol Endocrinol 2013; 11:119. [PMID: 24378208 PMCID: PMC3896855 DOI: 10.1186/1477-7827-11-119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] [Imported: 05/22/2025] Open
Abstract
BACKGROUND Maternal diabetes mellitus not only has severe deleterious effects on fetal development, but also it affects transmission to the next generation. However, the underlying mechanisms for these effects are still not clear. METHODS We investigated the methylation patterns and expressions of the imprinted genes Peg3, Snrpn, and H19 in mid-gestational placental tissues and on the whole fetus utilizing the streptozotocin (STZ)-induced hyperglycemic mouse model for quantitative analysis of methylation by PCR and quantitative real-time PCR. The protein expression of Peg3 was evaluated by Western blot. RESULTS We found that the expression of H19 was significantly increased, while the expression of Peg3 was significantly decreased in dpc10.5 placentas of diabetic mice. We further found that the methylation level of Peg3 was increased and that of H19 was reduced in dpc10.5 placentas of diabetic mice. When pronuclear embryos of normal females were transferred to normal/diabetic (NN/ND) pseudopregnant females, the methylation and expression of Peg3 in placentas was also clearly altered in the ND group compared to the NN group. However, when the pronuclear embryos of diabetic female were transferred to normal pesudopregnant female mice (DN), the methylation and expression of Peg3 and H19 in dpc10.5 placentas was similar between the two groups. CONCLUSIONS We suggest that the effects of maternal diabetes on imprinted genes may primarily be caused by the adverse uterus environment.
Collapse
|
research-article |
12 |
15 |
20
|
Wang Q, Zhao SX, He JN, Zhao H, Gu BX, Xie JK, Zhao YJ, Zhang CL, Ge ZJ. Repeated Superovulation Accelerates Primordial Follicle Activation and Atresia. Cells 2022; 12:92. [PMID: 36611886 PMCID: PMC9818786 DOI: 10.3390/cells12010092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] [Imported: 05/23/2025] Open
Abstract
For humans, ARTs (assisted reproductive technologies) have become the most effective method to treat subfertility/infertility in clinic. To obtain enough oocytes during ART, ovarian stimulation is performed by exogenous hormones, and some patients undergo several ovarian stimulation cycles. Although some adverse effects of ARTs on women and offspring are reported, few studies are focused on the effects of multiple superovulation on ovarian reserve. In the present study, we found that repeated superovulation significantly reduced primordial follicle number and the serum AMH. Compared to the decreased antral follicle number, the expression of genes related to primordial follicle activation, such as Foxo3, Akt, and Rptor, and the atretic follicle number in ovaries were increased by superovulation times. We further found that repeated superovulation reduced the plasma level of FSH, LH, and estradiol, and increased the expression of genes related to apoptosis (Bax, Casp3 (caspase-3), Casp8, and Casp9) in granulosa cells, providing evidence that repeated superovulation disrupted the balance between survival and death in granulosa cells. In summary, our results suggest that repeated superovulation has adverse effects on folliculogenesis.
Collapse
|
research-article |
3 |
14 |
21
|
Ma JY, Li M, Ge ZJ, Luo Y, Ou XH, Song S, Tian D, Yang J, Zhang B, Ou-Yang YC, Hou Y, Liu Z, Schatten H, Sun QY. Whole transcriptome analysis of the effects of type I diabetes on mouse oocytes. PLoS One 2012; 7:e41981. [PMID: 22911868 PMCID: PMC3404043 DOI: 10.1371/journal.pone.0041981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/27/2012] [Indexed: 11/24/2022] [Imported: 05/22/2025] Open
Abstract
In mouse ovarian follicles, granulosa cells but not oocytes take up glucose to provide the oocyte with nourishments for energy metabolism. Diabetes-induced hyperglycemia or glucose absorption inefficiency consistently causes granulosa cell apoptosis and further exerts a series of negative impacts on oocytes including reduced meiosis resumption rate, low oocyte quality and preimplantation embryo degeneration. Here we compared the transcriptome of mouse oocytes from genetically derived NOD diabetic mice or chemically induced STZ diabetic mice with that of corresponding normal mice. Differentially expressed genes were extracted from the two diabetic models. Gene set enrichment analysis showed that genes associated with metabolic and developmental processes were differentially expressed in oocytes from both models of diabetes. In addition, NOD diabetes also affected the expression of genes associated with ovulation, cell cycle progression, and preimplantation embryo development. Notably, Dnmt1 expression was significantly down-regulated, but Mbd3 expression was up-regulated in diabetic mouse oocytes. Our data not only revealed the mechanisms by which diabetes affects oocyte quality and preimplantation embryo development, but also linked epigenetic hereditary factors with metabolic disorders in germ cells.
Collapse
|
research-article |
13 |
14 |
22
|
Tang SB, Yang LL, Zhang TT, Wang Q, Yin S, Luo SM, Shen W, Ge ZJ, Sun QY. Multiple superovulations alter histone modifications in mouse early embryos. Reproduction 2019; 157:511-523. [PMID: 30884466 PMCID: PMC6454231 DOI: 10.1530/rep-18-0495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] [Imported: 05/22/2025]
Abstract
It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.
Collapse
|
research-article |
6 |
13 |
23
|
Xie JK, Wang Q, Zhang TT, Yin S, Zhang CL, Ge ZJ. Repeated superovulation may affect mitochondrial functions of cumulus cells in mice. Sci Rep 2016; 6:31368. [PMID: 27698360 PMCID: PMC5048428 DOI: 10.1038/srep31368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/18/2016] [Indexed: 11/09/2022] [Imported: 05/22/2025] Open
Abstract
Controlled ovarian stimulation by exogenous gonadotrophins is a key procedure during the in vitro fertilization cycle to obtain a sufficient number of oocytes in humans. Previous studies demonstrated that repeated superovulation had deleterious effects on the ovaries. However, whether repeated superovulation adversely affects the mitochondrial functions of cumulus cells remains unclear. In this study, mice were divided into three groups: superovulation once (R1); superovulation three times (R3), and superovulation five times (R5). We evaluated the effects of repeated superovulation on mitochondrial DNA copies (mtDNA) and observed decreased mtDNA copies per cell with increasing number of superovulation cycles. Further, we investigated the DNA methylation status in exon 2 and the mRNA expression level of nuclear-encoded DNA polymerase gamma A (PolgA). The results showed that the DNA methylation levels of PolgA in R1 and R5 were slightly lower than in R3. Additionally, the altered DNA methylation in PolgA coincided with the changes in PolgA expression in cumulus cells. We also found that the mRNA expression of COX1, CYTB, ND2, and ND4 was altered by repeated superovulation in cumulus cells. Thus, repeated superovulation had adverse effects on mitochondrial function.
Collapse
|
research-article |
9 |
12 |
24
|
Lu J, Zhao SX, Zhang MY, Ji PY, Chao S, Li LJ, Yin S, Zhao L, Zhao H, Sun QY, Ge ZJ. Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food Funct 2022; 13:5396-5405. [PMID: 35471225 DOI: 10.1039/d1fo03770f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] [Imported: 05/22/2025]
Abstract
Maternal diabetes mellitus reduces oocyte quality, such as abnormalities of spindle assembly and chromosome segregation, mitochondrial dysfunction, decrease of fertilization rate, increase of ROS, and so on. So, it is important to research how to restore the decreased oocyte quality induced by maternal diabetes mellitus. Polyphenols are the most abundant bioactive components of green tea. It is reported that tea polyphenols have many health functions, for instance anti-oxidation, anti-inflammation, anti-obesity, and anti-diabetes. Thus, we hypothesize that tea polyphenols may play a crucial role in alleviating adverse effects of diabetes on oocyte quality. In the present study, we researched the effects of tea polyphenols on diabetic oocyte maturation in vitro. Compared with the control, oocytes from diabetic mice displayed a lower maturation rate and a higher frequency of spindle defects and chromosome misalignment. However, tea polyphenols significantly increased the oocyte maturation rate, and reduced the incidence of abnormal spindle assembly and chromosome segregation. Tea polyphenols also obviously decreased the reactive oxygen species (ROS) levels in diabetic oocytes, and increased the expression of antioxidant genes (Sod1 and Sod2). Abnormal mitochondrial membrane potential was also alleviated in diabetic oocytes, and the expression of genes regulating mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1) was significantly increased while tea polyphenols were added. Meanwhile, tea polyphenols reduced DNA damage in diabetic oocytes which may be mediated by the increased expression of Rad51, related to DNA damage repair. Our results suggest that tea polyphenols would, at least partially, restore the adverse effects of diabetes mellitus on oocyte quality.
Collapse
|
|
3 |
10 |
25
|
Gai Y, Zhang MY, Ji PY, You RJ, Ge ZJ, Shen W, Sun QY, Yin S. Melatonin improves meiosis maturation against diazinon exposure in mouse oocytes. Life Sci 2022; 301:120611. [PMID: 35526594 DOI: 10.1016/j.lfs.2022.120611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022] [Imported: 05/22/2025]
Abstract
AIMS Organophosphorus pesticide diazinon (DZN) has adverse effects on animals and humans by direct contact or the spread of food chain. The antioxidant melatonin has protective effects on female reproduction. This study aimed to explore the effects of DZN on meiosis maturation in mouse cumulus oocyte complexes (COCs) and the effects of melatonin. MAIN METHODS Different concentrations of DZN and melatonin were added during the in vitro maturation of COCs. Then we detected the extrusion rate of the first polar body, the number of sperms binding to oocyte, mitochondrial membrane potential, reactive oxygen species (ROS), early apoptosis. Subsequently, the expression of Juno, CX37, CX43 and ERK1/2 were detected by immunofluorescence staining and Western blotting. KEY FINDINGS DZN exposure results in the failure of nuclear and cytoplasmic maturation of oocyte meiosis. Destruction of repositioning and function of mitochondria increases the levels of ROS and early apoptosis. The DZN-exposed oocytes express less Juno resulting to bind less sperms than normal. The loss of gap junctions and failure to activate ERK1/2 also contribute to the failure of cytoplasmic maturation. All these ultimately lead to the poor oocyte quality and low fertility. Appropriate melatonin can effectively restore all these defects. SIGNIFICANCE Under DZN exposure, melatonin can significantly improve the quality of oocytes, and melatonin promotes oocyte maturation by protecting gap junction and restoring ERK1/2 pathway, which is a new breakthrough for improving female fertility.
Collapse
|
|
3 |
9 |