1
|
Barrington H, McCabe TJD, Donnachie K, Fyfe C, McFall A, Gladkikh M, McGuire J, Yan C, Reid M. Parallel and High Throughput Reaction Monitoring with Computer Vision. Angew Chem Int Ed Engl 2024:e202413395. [PMID: 39166494 DOI: 10.1002/anie.202413395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
We report the development and applications of a computer vision based reaction monitoring method for parallel and high throughput experimentation (HTE). Whereas previous efforts reported methods to extract bulk kinetics of one reaction from one video, this new approach enables one video to capture bulk kinetics of multiple reactions running in parallel. Case studies, in and beyond well-plate high throughput settings, are described. Analysis of parallel dye-quenching hydroxylations, DMAP-catalysed esterification, solid-liquid sedimentation dynamics, metal catalyst degradation, and biologically-relevant sugar-mediated nitro reduction reactions have each provided insight into the scope and limitations of camera-enabled high throughput kinetics as a means of widening known analytical bottlenecks in HTE for reaction discovery, mechanistic understanding, and optimisation. It is envisaged that the nature of the multi-reaction time-resolved datasets made available by this analytical approach will later serve a broad range of downstream efforts in machine learning approaches to exploring chemical space.
Collapse
|
2
|
Feng JY, Bai SX, Zhang XW, Yan C, Cheng P, Zhuang YT. [A case of oral chloropicrin poisoning]. ZHONGHUA LAO DONG WEI SHENG ZHI YE BING ZA ZHI = ZHONGHUA LAODONG WEISHENG ZHIYEBING ZAZHI = CHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES 2024; 42:627-629. [PMID: 39223054 DOI: 10.3760/cma.j.cn121094-20231003-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chloropicrin is a commonly used pesticide in agricultural production. The clinical manifestations of oral poisoning patients are complex, and the lesions involve multiple organs. At present, the specific pathogenic mechanism of such poisoning is not clear, and the treatment experience is insufficient, so there are certain difficulties in clinical diagnosis, treatment and treatment. In this paper, the data of a patient with oral chloropicrin poisoning treated in Yidu Central Hospital of Weifang City in April 2023 were summarized. The patient was admitted to our hospital for treatment in time, and his condition improved after Hemopurification, methylene blue reduction, organ support, infection prevention as well as other symptomatic support. Oral chlorophenol can cause lung damage, skin and mucous membrane damage, and may have certain effects on the nervous system and kidney. Early intervention, especially blood purification, is effective.
Collapse
|
3
|
Li L, Li Y, Yan C, Zhang J, Jiang Y. Nickel-Catalyzed Multicomponent Assembly of Alkynes toward α-CF 3-Alkenes. Org Lett 2024; 26:5566-5570. [PMID: 38904403 DOI: 10.1021/acs.orglett.4c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We disclose an efficient nickel catalytic system for expediting the coupling of alkynes with fluoroalkyl hydrazones and boronic acids, thus facilitating the synthesis of stereospecific α-fluoroalkyl-alkene derivatives. 3H-Pyrazoles might be involved as key intermediates through a nitrogen-releasing process, enabling subsequent coupling with boronic acids to afford 1,2-difunctional alkenes in a highly efficient and step-economical fashion. This tandem platform demonstrates broad functional group tolerance, including complex natural products and drug-like molecules.
Collapse
|
4
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
|
5
|
Yan C, Yu C, Ti X, Bao K, Wan J. Preparation of Mn-doped sludge biochar and its catalytic activity to persulfate for phenol removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18737-18749. [PMID: 38347365 DOI: 10.1007/s11356-024-32232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
In recent years, the increasing prevalence of phenolic pollutants emitted into the environment has posed severe hazards to ecosystems and living organisms. Consequently, there is an urgent need for a green and efficient method to address environmental pollution. This study utilized waste sludge as a precursor and employed a hydrothermal-calcination co-pyrolysis method to prepare manganese (Mn)-doped biochar composite material (Mn@SBC-HP). The material was used to activate peroxydisulfate (PDS) for the removal of phenol. The study investigated various factors (such as the type and amount of doping metal, pyrolysis temperature, catalyst dosage, PDS dosage, pH value, initial phenol concentration, inorganic anions, and salinity) affecting phenol removal and the mechanisms within the Mn@SBC-HP/PDS system. Results indicated that under optimal conditions, the Mn@SBC-HP/PDS system achieved 100% removal of 100 mg/L phenol within 180 min, with a TOC removal efficiency of 82.7%. Additionally, the phenol removal efficiency of the Mn@SBC-HP/PDS system remained above 90% over a wide pH range (3-9). Free radical quenching experiments and electron spin resonance (ESR) results suggested that hydroxyl radicals (·OH) and sulfate radicals (SO4-) yed a role in the removal of phenol through radical pathways, with singlet oxygen (1O2) being the dominant non-radical pathway. The phenol removal efficiency remained above 90%, demonstrating the excellent adaptability of the Mn@SBC-HP/PDS system under the interference of coexisting inorganic anions or increased salinity. This study proposes an innovative method for the resource utilization of waste, creating metal-biochar composite catalysts for the remediation of water environments. It provides a new approach for the efficiency of organic pollutants in water environments.
Collapse
|
6
|
Yan C, Zhou L, Li J, Zhang G, Yang C, Gu J, Lu X, Zhang L, Zeng M. Improved small vessel visibility in diabetic foot arteriography using dual-energy CT. Clin Radiol 2024; 79:e424-e431. [PMID: 38101997 DOI: 10.1016/j.crad.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
AIM To test the feasibility and performance of dual-energy computed tomography (DECT) in foot arteriography of diabetic patients, where contrast medium is largely reduced within the small vessels. MATERIALS AND METHODS A total of 50 diabetic patients were enrolled prospectively, where DECT was acquired immediately after the CT angiography (CTA, group A) of the lower extremity. Two images were derived from the DECT data, one optimal virtual monochromatic image (VMI, group B) and one fusion image (group C), both of which were compared against the CTA image for visualising the foot arteries. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were evaluated. The arterial course and contrast were graded each using a five-point scale. The clarity of small vessel depiction was quantified by comparing the number of plantar metatarsal arteries found in the maximum intensity projection image. RESULTS The median CNRs and SNRs obtained in group B were approximately 45% and 20% higher than those in groups A and C, respectively (p<0.05). Group B also received higher subjective scores on the posterior tibial artery and the foot arteries (all >3) than groups A and C. The number of visible branches of the plantar metatarsal arteries was found to be substantially higher (p<0.05) in group B (median=6) than in groups A (median=2) and C (median=4). CONCLUSION DECT was found to be superior to conventional CTA in foot arteriography, and beyond the lower extremity, it might be a general favourable solution for imaging regions with small vessels and reduced contrast medium.
Collapse
|
7
|
Yao HW, Zhang P, Yan C, Li ZY, Zhang ZT. [Promote the high-quality development of gastrointestinal surgery with technological concept innovation]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2023; 62:10-15. [PMID: 38044601 DOI: 10.3760/cma.j.cn112139-20231113-00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the past 30 years, gastrointestinal surgery in China has made significant progress, which is reflected in the gradual standardization of clinical diagnosis and treatment, significant improvement in surgical quality, improvement in short-term and long-term postoperative outcomes, and continuous development of high-quality clinical research. At present, the spectrum of disease in gastrointestinal surgery has changed from traditional benign diseases to malignant diseases represented by gastric cancer and colorectal cancer, metabolic diseases represented by obesity and diabetes, and immune diseases represented by inflammatory bowel disease. It is necessary to carry out full-cycle management for patients. In the new era full of opportunities and challenges, surgeons must be driven by innovation in surgical technology, guided by high-quality clinical research and guaranteed by standardized diagnosis and treatment of diseases, to continue to promote the high-quality development of gastrointestinal surgery in China.
Collapse
|
8
|
Yan C, Guo B, Keller LM, Suh JH, Xia P. Dosimetric Quality of Artificial Intelligence Based Organ at Risk Segmentation. Int J Radiat Oncol Biol Phys 2023; 117:e493. [PMID: 37785555 DOI: 10.1016/j.ijrobp.2023.06.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) to compare dosimetric parameters between Artificial intelligence (AI) generated organ at risks (OAR) and Radiation Oncologist approved OARs and evaluation of appropriateness unedited AI- OARs in routine clinical plan optimization and evaluation. MATERIALS/METHODS The OARs (lung, spinal cord and heart) for twenty SBRT (stereotactic body radiotherapy) lung CT simulation datasets were derived by AI based segmentation algorithms. These AI- OARs were edited by a staff Radiation Oncologist and then subjected to our SBRT peer-review process at our institution. A SBRT plan based on the approved contours was created. Dosimetric parameters for the unedited AI-OARs and edited physician-approved OARs were then compared. RESULTS Lung V20 differences between AI- OAR and physician- OAR varied from 0.01% - 0.7% with a mean value of 0.1% difference (p-value 0.004). Spinal cord D0.03cc varied from 0.02 Gy - 0.9 Gy with a mean value of 0.3 Gy difference (p-value 0.002). Heart D0.03cc varied from 0.01 Gy - 4.3 Gy with mean value 0.9 Gy difference (p-value 0.02). CONCLUSION Dosimetric parameters for AI-based lung, spinal cord and heart OARs vs physician approved OARs were different, overall, the differences were generally small. These differences are likely on par with inter-observer differences seen between individual radiation oncologists. Unedited OARs have the promise for routine use in plan optimization and evaluation to further improve efficiency.
Collapse
|
9
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers GD, Liu Q, Liu X, Boothby M, Weiss VL, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 2023; 22:92. [PMID: 37270599 PMCID: PMC10239119 DOI: 10.1186/s12943-023-01789-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
10
|
Rogers W, Keek SA, Beuque M, Lavrova E, Primakov S, Wu G, Yan C, Sanduleanu S, Gietema HA, Casale R, Occhipinti M, Woodruff HC, Jochems A, Lambin P. Towards texture accurate slice interpolation of medical images using PixelMiner. Comput Biol Med 2023; 161:106701. [PMID: 37244145 DOI: 10.1016/j.compbiomed.2023.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/06/2022] [Accepted: 11/23/2022] [Indexed: 05/29/2023]
Abstract
Quantitative image analysis models are used for medical imaging tasks such as registration, classification, object detection, and segmentation. For these models to be capable of making accurate predictions, they need valid and precise information. We propose PixelMiner, a convolution-based deep-learning model for interpolating computed tomography (CT) imaging slices. PixelMiner was designed to produce texture-accurate slice interpolations by trading off pixel accuracy for texture accuracy. PixelMiner was trained on a dataset of 7829 CT scans and validated using an external dataset. We demonstrated the model's effectiveness by using the structural similarity index (SSIM), peak signal to noise ratio (PSNR), and the root mean squared error (RMSE) of extracted texture features. Additionally, we developed and used a new metric, the mean squared mapped feature error (MSMFE). The performance of PixelMiner was compared to four other interpolation methods: (tri-)linear, (tri-)cubic, windowed sinc (WS), and nearest neighbor (NN). PixelMiner produced texture with a significantly lowest average texture error compared to all other methods with a normalized root mean squared error (NRMSE) of 0.11 (p < .01), and the significantly highest reproducibility with a concordance correlation coefficient (CCC) ≥ 0.85 (p < .01). PixelMiner was not only shown to better preserve features but was also validated using an ablation study by removing auto-regression from the model and was shown to improve segmentations on interpolated slices.
Collapse
|
11
|
Yan C, Shan F, Li ZY. [Prevalence of colorectal cancer in 2020: a comparative analysis between China and the world]. ZHONGHUA ZHONG LIU ZA ZHI [CHINESE JOURNAL OF ONCOLOGY] 2023; 45:221-229. [PMID: 36944543 DOI: 10.3760/cma.j.cn112152-20221008-00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Objective: To demonstrate the disease burden and epidemiological characteristics of colorectal cancer in different regions by analyzing the incidence and mortality data in China and worldwide in 2020. Methods: Estimation of the incidence and mortality data of colorectal cancer were obtained from the GLOBOCAN 2020 database. The incidence, death, age standardized incidence rate (ASIR) and age standardized mortality rate (ASMR) of colorectal cancer in China and 20 regions in the world were compared. The correlation between the Human Development Index (HDI) and ASIR/ASMR was analyzed. Results: In 2020, the number of new cases of colorectal cancer in the world reached 1 931 600, and the number of deaths reached 935 200. The incidence and mortality in all regions of the world continued to rise in the age group above 50 years old. The morbidity and mortality in male were higher than those in female. East Asia ranked the highest number of incidence cases and deaths in the world, which were 740 000 and 360 100 respectively. There were significant differences in incidence and mortality among regions in the world. The highest ASIR and ASMR were observed in Northern Europe (33.61/100 000) and Eastern Europe (14.53/100 000), whereas the lowest ASIR and ASMR were both observed in South-Central Asia (5.46/100 000 and 3.16/100 000). HDI had significant exponential relationship with ASIR (r(2)=0.59, P<0.001) and ASMR (r(2)=0.38, P<0.001). There were 555 500 new cases and 286 200 death cases of colorectal cancer in China, accounting for about 30% of the world and more than 75% of East Asia. The ASIR of China was 24.07/100 000, ranking at the medium level, while the ASMR was 12.07/100 000, ranking at the high level of world. Conclusion: The incidence and mortality of colorectal cancer are highly correlated with HDI. China is one of the countries with the heaviest disease burden of colorectal cancer in the world.
Collapse
|
12
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers D, Liu Q, Liu X, Boothby M, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529548. [PMID: 36865260 PMCID: PMC9980137 DOI: 10.1101/2023.02.22.529548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. Methods To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven Braf V600E /Pten -/- /Cxcr2 -/- and NRas Q61R /INK4a -/- /Cxcr2 -/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in Braf V600E /Pten -/- and NRas Q61R /INK4a -/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). Results Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1 , a key tumor suppressive transcription factor, was the only gene significantly induced with a log 2 fold-change greater than 2 in these three different melanoma models. Conclusions Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
13
|
Yan C, Zhang N, Xu C, Jin Q, Qi Y, Cai Y. Effects on stone cell development and lignin deposition in pears by different pollinators. FRONTIERS IN PLANT SCIENCE 2023; 14:1093661. [PMID: 36844042 PMCID: PMC9944722 DOI: 10.3389/fpls.2023.1093661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The pear pulp is formed by the development of the ovary wall, which is the somatic cell of the female parent, and its genetic traits are identical to those of the female parent, so that its phenotypic traits should also be identical to those of the female parent. However, the pulp quality of most pears, especially the stone cell clusters (SCCs) number and degree of polymerization (DP), were significantly affected by the paternal type. Stone cells are formed by the deposition of lignin in parenchymal cell (PC) walls. Studies on the effect of pollination on lignin deposition and stone cell formation in pear fruit have not been reported. Methods: In this study, 'Dangshan Su' (P. bretschneideri Rehd.) was selected as the mother tree, while 'Yali' (P. bretschneideri Rehd.) and 'Wonhwang' (P. pyrifolia Nakai.) were used as the father trees to perform cross-pollination. We investigated the effects of different parents on SCCs number and DP, and lignin deposition by microscopic and ultramicroscopic observation. RESULTS AND DISCUSSION The results showed that the formation of SCCs proceeds was consistent in DY and DW, but the SCC number and DP in DY were higher than that in DW. Ultramicroscopy revealed that the lignification process of DY and DW were all from corner to rest regions of the compound middle lamella and the secondary wall, with lignin particles deposited along the cellulose microfibrils. They were alternatively arranged until they filled up the whole cell cavity to culminate in the formation of stone cells. However, the compactness of the wall layer of cell wall was significantly higher in DY than in DW. We also found that the pit of stone cell was predominantly single pit pair, they transported degraded material from the PCs that were beginning to lignify out of the cells. Stone cell formation and lignin deposition in pollinated pear fruit from different parents were consistent, but the DP of SCCs and the compactness of the wall layer were higher in DY than that in DW. Therefore, DY SCC had a higher ability to resist the expansion pressure of PC.
Collapse
|
14
|
Wang Q, Yan C, Fu Y, Wang Y, Jiang P, Ding Y, Liao H. Genome-Wide Identification of 14-3-3 gene family reveals their diverse responses to abiotic stress by interacting with StABI5 in Potato ( Solanum tuberosum L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1090571. [PMID: 36699847 PMCID: PMC9868832 DOI: 10.3389/fpls.2022.1090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The 14-3-3 genes are widely present in plants and participate in a wide range of cellular and physiological processes. In the current study, twelve 14-3-3s were identified from potato genome. According to phylogenetic evolutionary analysis, potato 14-3-3s were divided into ϵ and non-ϵ groups. Conserved motif and gene structure analysis displayed a distinct class-specific divergence between the ϵ group and non-ϵ group. Multiple sequence alignments and three-dimensional structure analysis of 14-3-3 proteins indicated all the members contained nine conservative antiparallel α-helices. The majority of 14-3-3s had transcript accumulation in each detected potato tissue, implying their regulatory roles across all stages of potato growth and development. Numerous cis-acting elements related to plant hormones and abiotic stress response were identified in the promoter region of potato 14-3-3s, and the transcription levels of these genes fluctuated to different degrees under exogenous ABA, salt and drought stress, indicating that potato 14-3-3s may be involved in different hormone signaling pathways and abiotic stress responses. In addition, eight potato 14-3-3s were shown to interact with StABI5, which further demonstrated that potato 14-3-3s were involved in the ABA-dependent signaling pathway. This study provides a reference for the identification of the 14-3-3 gene family in other plants, and provides important clues for cloning potential candidates in response to abiotic stresses in potato.
Collapse
|
15
|
Yan C, Hui Z, Wang Q, Xiao S, Pu Y, Wang Q, Wang T, You J, Ren X. OA09.03 Single Cell Analyses Reveal Effects of Immunosenescence Cells in Neoadjuvant Immunotherapy of Lung Squamous cell Carcinoma Patients. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Yan C, Zhao L, Geng S, Guo K. LB1000 Potential role of cold atmospheric plasma in improving drug resistance of BRAFi/MEKi and immune checkpoint blockade agents in melanoma cells. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2022.05.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Zhao L, Yan C, Zhang X, Jia T, Geng S, Guo K. LB1001 Effectiveness and differentially expressed genes analysis of melanoma cells treated with cold atmospheric plasma. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2022.05.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
|
19
|
Hakala S, Vakkari V, Bianchi F, Dada L, Deng C, Dällenbach KR, Fu Y, Jiang J, Kangasluoma J, Kujansuu J, Liu Y, Petäjä T, Wang L, Yan C, Kulmala M, Paasonen P. Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:146-164. [PMID: 35419523 PMCID: PMC8929417 DOI: 10.1039/d1ea00089f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.
Collapse
|
20
|
Li C, Yan C, Sun Q, Wang J, Yuan C, Mou Y, Shan S, Zhao X. Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:75-84. [PMID: 34694687 DOI: 10.1111/plb.13351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Drought is the main factor restricting peanut growth, but the molecular mechanism underlying peanut drought tolerance remains unclear. Herein, the seedling stage of drought-resistant peanut cultivar J11 was subjected to drought stress, and its proteomic profile was systematically analysed by isobaric tags for relative and absolute quantification (iTRAQ), the results of which were further complemented with our previous transcriptome results. A total of 4,018 proteins were identified by proteomic analysis, which revealed that the expression levels of 69 proteins were altered under drought stress. Among the differentially expressed proteins (DEPs), 50 were upregulated, and 19 were downregulated. The most enriched metabolic pathways for these DEPs were those involving phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction. The proteomic data and previous transcriptome results revealed 44 groups of genes/proteins with the same expression trend, including a LEA (Late embryogenesis abundant) gene, AhLEA2. Our present study showed that overexpression of the AhLEA2 gene enhanced the drought resistance of transgenic Arabidopsis plants, and the activities of related antioxidant enzymes in the transgenic plants significantly changed. The AhLEA2 gene was found to be located in the cytoplasm and cell membrane by subcellular localization experiments. This work systematically analysed the differentially expressed proteins in peanut in response to drought stress, providing important candidates for further functional analysis of the stress response of peanut. Our results also indicated that AhLEA2 plays an important role in the peanut response to drought stress.
Collapse
|
21
|
Yan C, Gajdos S, Ramalingam A, Fromm M, Suh J, Xia P. Comparing Collapsed Cone Convolution Algorithm With Acuros and Its Implication on NRG Clinical Trials. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Qian Z, Yan C, Sijiu Y, Junfeng H, Yangyang P, Zhanchun B. Immunity cells in the small intestinal mucosa of newborn yaks. Folia Morphol (Warsz) 2021; 81:91-100. [PMID: 34642930 DOI: 10.5603/fm.a2021.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study aimed to characterize and evaluate the main markers of T lymphocytes, B lymphocytes, immunoglobulin (Ig) A and IgG plasmocytes, macrophages, and dendritic cells of the intestinal mucosa of newborn yaks. MATERIALS AND METHODS Ten newborn yaks (2-4 weeks old) were choosed. Immunohistochemistry and real-time quantitative polymerase chain reaction were used to analyze the immune cell distribution and specific markers at the mRNA expression level in the duodenum, jejunum, and ileum. RESULTS The results showed in the epithelium, CD3-positive T lymphocyte levels were higher than other immune cell levels (P<0.05). Additionally, in the lamina propria, the number of cells positive for CD3, CD68, and signal inhibitory regulatory protein alpha (SIRPα) were higher in the villi, while CD79α, IgA, and IgG cells were more common at the base of the crypt. Moreover, both in the epithelium and lamina propria, the number of CD3, CD68 and SIRPα were decreased from the duodenum to the ileum (P<0.05), additionally the number of CD79α, IgA and IgG positive cells were increased from the duodenum to the ileum of newborn yaks (P<0.05). Furthermore, the mRNA expression levels of CD3ε, CD68, and SIRPα increased from the duodenum to the ileum (P<0.05), while the mRNA expression levels of CD79α, IgA, and IgG decreased from the duodenum to the ileum. CONCLUSIONS Immunohistochemical characterization and expression levels of immune factors in the small intestinal mucosa of newborn yaks suggest that the intestinal mucosa is an important part of the natural barrier and provides useful references for immunity functions of newborn yak intestinal mucosa.
Collapse
|
23
|
Zhao M, Yang F, Sang C, Yan C, Wang Z. BGL3 inhibits papillary thyroid carcinoma progression via regulating PTEN stability. J Endocrinol Invest 2021; 44:2165-2174. [PMID: 33543443 DOI: 10.1007/s40618-021-01519-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE BGL3, a novel long non-coding RNA (lncRNA) that plays a crucial role in several human malignancies. However, the clinical significance and biological function of BGL3 in papillary thyroid carcinoma (PTC) have not been explored. Herein, we aimed to investigate the role of BGL3 in human PTC. METHODS A total of 85 pairs of PTC and normal tissues were collected for clinicopathological analysis. Expression of BGL3 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of BGL3 on PTC cells ware determined by CCK-8, colony formation, EdU and wound healing assays. The molecular mechanism underlying BGL3 was tested by ChIP, Co-IP, RNA pull-down and luciferase reporter assays. In vivo experiments were conducted using xenografts in nude mice. RESULTS BGL3 was significantly decreased in PTC tissues compared to adjacent normal thyroid tissues, and it was transcriptionally repressed by oncogene Myc. Low BGL3 is positively related to larger tumor size, lymph node metastasis, later TNM stage and poor prognosis. Overexpression of BGL3 inhibited PTC cell proliferation and migration in vitro, and reduced tumor size and lung metastasis nodules in vivo. BGL3 was mainly located in the cytoplasm, in which interacted with PTEN and recruited OTUD3, enhancing the de-ubiquitination effect of OTUD3 on PTEN, resulting in increasing PTEN protein stability and inactivating carcinogenic PI3K/AKT signaling. CONCLUSIONS Our data underscore the critical tumor-inhibiting role of BGL3 in PTC via post-translational regulation of PTEN protein stability, which may serve as a novel therapeutic target and prognostic biomarker in human PTC.
Collapse
|
24
|
Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, Xue B, Zhou L, Liao H. The Effect of Low Temperature Stress on the Leaves and MicroRNA Expression of Potato Seedlings. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, with the wanton destruction of the ecological environment by humans and the frequent occurrence of extreme bad weather, many places that should have been warm and blooming in spring have instead experienced the phenomenon of the “April blizzard,” which has seriously affected China's crops, especially spring potato production in most areas. Potato cultivars, especially potato seedlings, are sensitive to frost, and low temperature frost has become one of the most important abiotic stresses affecting potato production. Potato cold tolerance is regulated by a complex gene network. Although some low temperature resistant microRNAs have been identified, little is known about the role of miRNAs in response to low temperature stress in potato. Therefore, the objective of this study is to clarify the influence of low temperature stress on the miRNA expression of potato by comparing the expression differences of miRNA in potato which was treated with different low temperatures. For the study, 307 known miRNAs belonging to 73 small RNA families and 211 novel miRNAs were obtained. When the temperature decreased, the number of both known and novel miRNA decreased, and the minimum temperature was −2°C. Most of the miRNAs respond to low temperature, drought, and disease stress; some conserved miRNAs were first found to respond to low temperature stress in potato, such as stu-miR530, stu-miR156d, and stu-miR167b. The Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis of 442 different expression miRNAs target genes indicated that there existed diversified low temperature responsive pathways, but Abscisic Acid was found likely to play a central coordinating role in response to low temperature stress in many metabolism pathways. Quantitative real-time PCR assays indicated that the related targets were negatively regulated by the tested different expression miRNAs during low temperature stress. The results indicated that miRNAs may play an important coordination role in response to low temperature stress in many metabolic pathways by regulating abscisic acid and gibberellin, which provided insight into the roles of miRNAs during low temperature stress and would be helpful for alleviating low temperature stress and promoting low temperature resistant breeding in potatoes.
Collapse
|
25
|
Yan C, Wang M, Sun F, Cao L, Jia B, Xia Y. Macrophage M1/M2 ratio as a predictor of pleural thickening in patients with tuberculous pleurisy. Infect Dis Now 2021; 51:590-595. [PMID: 34581278 DOI: 10.1016/j.idnow.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
We evaluated the association between macrophage polarization and the development of pleural thickening in patients with tuberculous pleurisy. Patients with tuberculous pleurisy admitted to our hospital between October 2018 and March 2019 were prospectively recruited. Pleural fluid samples were obtained before treatment for detection of adenosine deaminase (ADA) and macrophage phenotype (M1: CD14+ CD86+; M2: CD14+ CD163+). Peripheral blood samples were subjected to interferon gamma release assay (IGRA). All subjects were administered standard anti-tuberculosis regimen (2HREZ/4HR); high-resolution CT was performed to determine pleural thickening (thickness>2mm) after completion of treatment. Pleural effusion in patients with thickened pleura had significantly more M1 but fewer M2 macrophages, and higher ADA level, as compared to those with normal pleura (P<0.05). No significant between-group difference was observed with respect to IGRA. In receiver operating characteristic (ROC) curve analysis, the optimal cut-off level of M1/M2 ratio for predicting pleural thickening was 1.149 (area under the curve: 0.842; sensitivity: 88.6%; specificity: 69.2%; positive predictive value: 86.3%; negative predictive value: 81.7%). M1/M2 ratio in the pleural fluid is a promising marker for predicting the development of pleural thickening in patients with tuberculous pleurisy. Macrophage-mediated immune response may play an important role in the pathogenesis of tuberculous pleurisy.
Collapse
|