1
|
Sanchez-Guzman X, Alvarez-Domínguez L, Ramírez-Torres MF, Montes-Alvarado JB, Garcia-Ibañez P, Moreno DA, Domínguez F, Maycotte P. Cruciferous Plant Extracts, Their Isothyocianate or Indol Derivatives, and Their Effect on Cellular Viability of Breast Cancer Cell Lines. J Med Food 2024. [PMID: 39382485 DOI: 10.1089/jmf.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Brassicaceaes are rich in glucosinolates (GSL), whose derivatives, the isothyocianates sulforaphane (SFN), iberine (IB), or indole derivatives as indole-3-carbinol (I3C), have anticancer activities. We evaluated the effects of a broccoli sprout (Brassica oleracea var italica) and red cabbage (B. oleracea L. var capitata f. rubra) extracts and their GSL derivatives on breast cancer cells. Broccoli sprout aqueous extract (BSE) and red cabbage aqueous (RCA) or ethanolic (RCE) extracts were high in SFN, IB, and/or I3C. BSE and RCA decreased proliferation at doses of 2.5-5 mg/mL but induced proliferation at lower doses. RCE decreased proliferation starting at 10 µg/mL with selectivity toward cancer cells. SFN, IB, or I3C alone or in combination did not decrease proliferation similarly, suggesting synergistic effects with other phytochemicals in the extract. RCE showed selectivity toward breast cancer cells, but the effect of the individual metabolites or their combination did not reduce proliferation to the same extent. It will be important to determine the combination responsible for this effect to characterize their use for breast cancer treatment.
Collapse
|
2
|
Ruiz-Alcaraz AJ, Baquero L, Pérez-Munar PM, Oliva-Bolarín A, Sánchez-Martínez MA, Ramos-Molina B, Núñez-Sánchez MA, Moreno DA. In Vitro Study of the Differential Anti-Inflammatory Activity of Dietary Phytochemicals upon Human Macrophage-like Cells as a Previous Step for Dietary Intervention. Int J Mol Sci 2024; 25:10728. [PMID: 39409057 PMCID: PMC11477078 DOI: 10.3390/ijms251910728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic inflammatory diseases pose a substantial health challenge globally, significantly contributing to morbidity and mortality. Addressing this issue requires the use of effective anti-inflammatory strategies with fewer side effects than those provoked by currently used drugs. In this study, a range of phytochemicals (phenolic di-caffeoylquinic acid (Di-CQA), flavonoid cyanidin-3,5-diglucoside (Cy3,5DiG), aromatic isothiocyanate sinalbin (SNB) and aliphatic isothiocyanate sulforaphane (SFN)) sourced from vegetables and fruits underwent assessment for their potential anti-inflammatory activity. An in vitro model of human macrophage-like cells treated with a low dose of LPS to obtain a low degree of inflammation that emulates a chronic inflammation scenario revealed promising results. Cell viability and production of the key pro-inflammatory cytokines were assessed in the presence of various phytochemicals. The compounds Di-CQA and Cy-3,5-DiG, within low physiologically relevant doses, demonstrated notable anti-inflammatory effects by significantly reducing the production of key pro-inflammatory cytokines TNF-α and IL-6 without affecting cell viability. These findings underscore the potential of plant-derived bioactive compounds as valuable contributors to the prevention or treatment of chronic inflammatory diseases. These results suggest that these compounds, whether used individually or as part of natural mixtures, hold promise for their inclusion in nutritional interventions designed to mitigate inflammation in associated pathologies.
Collapse
|
3
|
Bafumo RF, Alloggia FP, Ramirez DA, Maza MA, Fontana A, Moreno DA, Camargo AB. Optimal Brassicaceae family microgreens from a phytochemical and sensory perspective. Food Res Int 2024; 193:114812. [PMID: 39160037 DOI: 10.1016/j.foodres.2024.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.
Collapse
|
4
|
Jalali M, Abedi M, Tabarsa M, Moreno DA. Morphological and biochemical characteristics of wild red-fleshed apples (Malus sieversii f. niedzwetzkyana) in the North and Northeast of Iran. BMC PLANT BIOLOGY 2024; 24:899. [PMID: 39349996 PMCID: PMC11441265 DOI: 10.1186/s12870-024-05608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Red-flesh apples (Malus sieversii f. niedzwetzkyana) have attracted attention from consumers and researchers due to their pleasant appearance and taste. These exotic apples are rich sources of nutrients and health-promoting polyphenols and phenolics. This study aimed to investigate morphological (40 quantitative and 13 qualitative traits) and biochemical (5 traits) characteristics of four socioeconomically important red-fleshed apple populations in North and Northeast region of Iran, which are understudied and under serious extinction risk. RESULTS The examined characters exhibited wide and statistically significant variations, especially in leaf color (68.86%) and the number of seeds per fruit (61.61%), and more dramatically in the total flavonoids (146.64%) and total phenolics contents (105.81%). There were also strong variations in fresh fruit weight and fruit length, diameter, and flesh thickness. Red, with 34 accessions, was the dominant ripe fruit skin color. All biochemical traits also showed high variations, particularly in total flavonoid content. Red-fleshed Gavramak and Kalateh Khij apples contained the highest biochemical and morphological values, respectively. Principal component analysis (PCA) revealed that the first five principal components together accounted for more than 60.83% variation of the total observed variations. Moreover, the cluster dendrogram analysis based on Ward's method indicated three different clusters based on the characters measured, indicating high variation among the accessions. CONCLUSION red-flesh apples can be considered suitable sources of natural antioxidants with great potential as healthy foods and nutraceutical applications. Based on the commercial characters, Red-fleshed Gavramak and Kalateh Khij apples showed the highest fruit quality with proper size and thus can be suggested as superior for cultivation or use in breeding programs due to having higher quality fruits.
Collapse
|
5
|
Mattera MG, Gonzalez-Polo M, Peri PL, Moreno DA. Intraspecific variation in leaf (poly)phenolic content of a southern hemisphere beech (Nothofagus antarctica) growing under different environmental conditions. Sci Rep 2024; 14:20050. [PMID: 39209929 PMCID: PMC11362339 DOI: 10.1038/s41598-024-69939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Nothofagus antarctica (G.Forst.) Oerst. (Ñire) leaves are a valuable source of (poly)phenolic compounds and represent a high-value non-timber product from Patagonian forests. However, information on the variability of their chemical profile is limited or non-existent. The aim of this study was to evaluate the (poly)phenolic variability in Ñire leaf infusions. To this end, different tree populations growing under different temperature regimes and soil characteristics were considered. Interestingly, a cup of Ñire leaf infusion could be considered as a rich source of quercetin. Significant differences in the (poly)phenolic content, especially in flavonoid conjugates and cinnamic acids, were found among the populations studied. These results suggest metabolic variability among the forests studied, which could be related to the species response to its growing conditions, and also provide some clues about the performance of N. antarctica under future climate scenarios. The N. antarctica forests growing in environments with lower frequency of cold and heat stress and high soil fertility showed better infusion quality. This study showed how a South American beech interacts with its local environment at the level of secondary metabolism. In addition, the information obtained is useful for defining forest management strategies in the Patagonian region.
Collapse
|
6
|
Acosta-Vega L, Moreno DA, Cuéllar Álvarez LN. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024; 13:2310. [PMID: 39123500 PMCID: PMC11311875 DOI: 10.3390/foods13152310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arazá is a fruit native to the Amazonian region with characteristic properties such as aroma, texture, color, and marked acidity. Additionally, the fruit is rich in bioactive compounds in its three fractions (seed, pulp, and peel), such as ascorbic acid, phenolic compounds (and their derivatives), and carotenoids, which have been extensively investigated in the literature for their beneficial properties for human health. However, it is a little-known fruit, and the role it can play in health-promoting activities related to the treatment and prevention of non-communicable diseases (NCDs) when incorporated into the diet is also unknown. Therefore, it is necessary to know the profile of bioactive compounds and the biological properties Arazá possesses, which is the aim of this review.
Collapse
|
7
|
Cerdá-Bernad D, D’costa AS, Moreno DA, Bordenave N, Frutos MJ. Functional Model Beverages of Saffron Floral By-Products: Polyphenolic Composition, Inhibition of Digestive Enzymes, and Rheological Characterization. Foods 2024; 13:1440. [PMID: 38790740 PMCID: PMC11120039 DOI: 10.3390/foods13101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid and dynamic evolution of research into dietary polyphenols, there is still a knowledge gap regarding their bioaccessibility since it could be influenced by the chemical and nutritional compositions of the food matrix. This study aimed to describe the impact of food thickeners (xanthan gum, guar gum, β-glucan, pectin) on the bioactivity of flavonoids from saffron floral by-products in model beverages before and after thermal processing. The different beverage formulas were characterized in terms of polyphenolic composition using HPLC-DAD-ESI-MSn and rheological properties. The impact of food thickeners and thermal processing on the inhibition of digestive enzymes was also determined. The model beverages mainly presented glycosylated flavonols (of kaempferol, quercetin, and isorhamnetin), with a reduced content in some heat-treated samples. The inhibitory effect on α-amylase was only detected in heat-treated beverages, showing the formulation without any thickener to have the greatest inhibitory effect. Finally, the presence of saffron floral by-products in the beverages showed a tendency to decrease the flow consistency index (K) and an increase in the flow behavior index (n), most probably driven by the aggregation of phenolics with thickeners. Therefore, this research provides new insights into the development of flavonoid-rich beverages in order to ensure that they exert the expected beneficial effects after their ingestion.
Collapse
|
8
|
Hernández-Sánchez LY, González-Trujano ME, Moreno DA, Martínez-Vargas D, Vibrans H, Hernandez-Leon A, Dorazco-González A, Pellicer F, Soto-Hernández M. Antinociceptive effects of Raphanus sativus sprouts involve the opioid and 5-HT 1A serotonin receptors, cAMP/cGMP pathways, and the central activity of sulforaphane. Food Funct 2024; 15:4773-4784. [PMID: 38469873 DOI: 10.1039/d3fo05229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Raphanus sativus L. cv. Sango, commonly known as red radish, is widely consumed around the world as a vegetable, but its benefit in pain relief is not sufficiently investigated. This study aimed to evaluate the antinociceptive effects of R. sativus and a possible mechanism of action. An aqueous extract of R. sativus sprouts (AERSS) was investigated by parenteral (10, 30, and 100 mg kg-1, i.p.) and enteral (500 mg kg-1, p.o.) administration in the neurogenic and inflammatory phases of the formalin test, where gastric damage was also evaluated as a possible adverse effect. Ketorolac (5 mg kg-1, i.p.) was used as the reference drug. Endogenous opioid and 5-HT1A serotonin receptors, as well as the cAMP/NO-cGMP pathways, were explored in the study of a possible mechanism of action by using their corresponding antagonists: naloxone, 1 mg kg-1, i.p., WAY100635, 1 mg kg-1, i.p., and enzymatic activators or inhibitors, respectively. Sulforaphane (SFN), a known bioactive metabolite, was analyzed using electroencephalography (EEG) to evidence its central involvement. A significant and dose-dependent antinociceptive activity was observed with the AERSS resembling the antinociceptive effect of the reference drug, with an equivalent significant response with a dose of 500 mg kg-1, p.o. without causing gastric damage. The participation of the endogenous opioid and 5-HT1A serotonin receptors at central and peripheral levels was also observed, with a differential participation of cAMP/NO-cGMP. SFN as one metabolite produced significant changes in the EEG analysis, reinforcing its effects on the CNS. Our preclinical evidence supports the benefits of consuming Raphanus sativus cv. Sango sprouts for pain relief.
Collapse
|
9
|
Martins MS, Rodrigues M, Flores-Félix JD, Garcia-Viguera C, Moreno DA, Alves G, Silva LR, Gonçalves AC. The Effect of Phenolic-Rich Extracts of Rubus fruticosus, R. ulmifolius and Morus nigra on Oxidative Stress and Caco-2 Inhibition Growth. Nutrients 2024; 16:1361. [PMID: 38732606 PMCID: PMC11085810 DOI: 10.3390/nu16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs.
Collapse
|
10
|
Nájera C, Ros M, Moreno DA, Hernández-Lara A, Pascual JA. Combined effect of an agro-industrial compost and light spectra composition on yield and phytochemical profile in mizuna and pak choi microgreens. Heliyon 2024; 10:e26390. [PMID: 38420396 PMCID: PMC10901005 DOI: 10.1016/j.heliyon.2024.e26390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
This work aimed to evaluate the growth of two species of microgreens (mizuna and pak choi), using agro-industrial compost as growing media in two different mixes versus one hundred percent peat, under two different LED illumination spectra (LED 1 and LED 2) in a 14 h photoperiod. The experiment was carried-out for two times. Biomass yield, glucosinolates, and phenolic compounds, and nitrate (NO3-) content were analysed in leaf tissues. In both species, the highest fresh and dry biomass production was in compost:peat (50:50%) and LED 2 (Blue/Red/Far Red). In general, compost had a greater influence on nitrate content than light, but in the microgreen pak choi, the anthocyanin content was inhibited by the compost treatment. In the other hand both LED illumination had a positive effect on mizuna for glucosinolates and anthocyanins, and LED 2 also showed a positive effect on pak choi for anthocyanin. Therefore, the use of agri-food compost: peat (50:50%) with LED 2 (blue/red) lighting treatment to obtain microgreens in indoor crops is a plausible technology that provides nutritionally and phytochemically rich crops.
Collapse
|
11
|
Flores-Félix JD, Gonçalves AC, Meirinho S, Nunes AR, Alves G, Garcia-Viguera C, Moreno DA, Silva LR. Differential response of blueberry to the application of bacterial inoculants to improve yield, organoleptic qualities and concentration of bioactive compounds. Microbiol Res 2024; 278:127544. [PMID: 37988818 DOI: 10.1016/j.micres.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
The application of bacterial biofortifiers is an increasingly common technique. In recent years, some strains have been shown to improve the nutraceutical qualities of crops. This work analyses the impact of biofortification with 3 bacterial strains of the genera Rhizobium, Paenibacillus and Lactiplantibacillus on the nutritional characteristics and organic composition of blueberry in Portugal. Paenibacillus sp. VMFR46 treatment showed increase of 71.36 % and 79.88 % in total production. Biofortified treatments were able to increase Brix degree, maturity index (up to 48.05 % for cv. Legacy and up to 26.04 % for cv. Duke) and CIEL*a*b* index respect to uninoculated control. In this way, (poly)phenolic compounds concentration increased in biofortified treatment, and their (poly)phenolic profile was modified, some compounds such as myricetin aglycone or myricetin derivative are exclusive of the fruits from biofortified plants, with increases in (poly)phenolic concentrations related with R. laguerreae PEPV16 or Paenibacillus sp. VMFR46 inoculation in cv. Legacy. These modifications resulted in the improvement of the nutraceutical characteristics of the fruits obtained.
Collapse
|
12
|
Garcia-Ibañez P, Silvan JM, Moreno DA, Carvajal M, Martinez-Rodriguez AJ. Influence of Source Materials, Concentration, Gastric Digestion, and Encapsulation on the Bioactive Response of Brassicaceae-Derived Samples against Helicobacter pylori. Microorganisms 2023; 12:77. [PMID: 38257906 PMCID: PMC10820487 DOI: 10.3390/microorganisms12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Isothiocyanates may have antibacterial activity against Helicobacter pylori, but there are different variables related to Brassicaceae-derived samples that could affect their efficacy. This work studied the influence of source variety, concentration, gastric digestion, and encapsulation of samples on their bioactive response against Helicobacter pylori. The antibacterial activity of raw sprouts (red cabbage and red radish) showed the highest antibacterial effect, which was consistent with a higher amount of isothiocyanates. It decreased with gastric digestion, regardless of sample encapsulation. By contrast, adult red radish leaves became antibacterial after gastric digestion. Antioxidant activity on H. pylori-infected gastric cells was similar in all samples and followed an equivalent pattern with the changes in isothiocyanates. Raw samples decreased intracellular reactive oxygen species production, but they lost this capacity after gastric digestion, regardless whether the compounds were free or encapsulated. Red cabbage sprouts, red radish sprouts, and red radish roots produced a decrease in nitric oxide production. It was consistent with a modulation of the inflammatory response and was associated to isothiocyanates concentration. Encapsulated sprout samples retained part of their anti-inflammatory activity after gastric digestion. Adult raw red radish leaves were not active, but after digestion, they became anti-inflammatory. The results obtained in this study have shown that several variables could have a significant impact on the bioactive properties of Brassicaceae-derived samples against H. pylori, providing a starting point for the design and standardization of samples with specific bioactivities (antibacterial, antioxidant, and anti-inflammatory) potentially useful for the treatment of H. pylori infection.
Collapse
|
13
|
Castillo-García EL, Cossio-Ramírez AL, Córdoba-Méndez ÓA, Loza-Mejía MA, Salazar JR, Chávez-Gutiérrez E, Bautista-Poblet G, Castillo-Mendieta NT, Moreno DA, García-Viguera C, Pinto-Almazán R, Almanza-Pérez JC, Gallardo JM, Guerra-Araiza C. In Silico and In Vivo Evaluation of the Maqui Berry ( Aristotelia chilensis (Mol.) Stuntz) on Biochemical Parameters and Oxidative Stress Markers in a Metabolic Syndrome Model. Metabolites 2023; 13:1189. [PMID: 38132871 PMCID: PMC10744843 DOI: 10.3390/metabo13121189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic syndrome (MetS) is a complex disease that includes metabolic and physiological alterations in various organs such as the heart, pancreas, liver, and brain. Reports indicate that blackberry consumption, such as maqui berry, has a beneficial effect on chronic diseases such as cardiovascular disease, obesity, and diabetes. In the present study, in vivo and in silico studies have been performed to evaluate the molecular mechanisms implied to improve the metabolic parameters of MetS. Fourteen-day administration of maqui berry reduces weight gain, blood fasting glucose, total blood cholesterol, triacylglycerides, insulin resistance, and blood pressure impairment in the diet-induced MetS model in male and female rats. In addition, in the serum of male and female rats, the administration of maqui berry (MB) improved the concentration of MDA, the activity of SOD, and the formation of carbonyls in the group subjected to the diet-induced MetS model. In silico studies revealed that delphinidin and its glycosylated derivatives could be ligands of some metabolic targets such as α-glucosidase, PPAR-α, and PPAR-γ, which are related to MetS parameters. The experimental results obtained in the study suggest that even at low systemic concentrations, anthocyanin glycosides and aglycones could simultaneously act on different targets related to MetS. Therefore, these molecules could be used as coadjuvants in pharmacological interventions or as templates for designing new multitarget molecules to manage patients with MetS.
Collapse
|
14
|
López de Las Hazas MC, Tomé-Carneiro J, Del Pozo-Acebo L, Del Saz-Lara A, Chapado LA, Balaguer L, Rojo E, Espín JC, Crespo C, Moreno DA, García-Viguera C, Ordovás JM, Visioli F, Dávalos A. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol Res 2023; 198:106999. [PMID: 37984504 DOI: 10.1016/j.phrs.2023.106999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.
Collapse
|
15
|
Baenas N, Vega-García A, Manjarrez-Marmolejo J, Moreno DA, Feria-Romero IA. The preventive effects of broccoli bioactives against cancer: Evidence from a validated rat glioma model. Biomed Pharmacother 2023; 168:115720. [PMID: 37839110 DOI: 10.1016/j.biopha.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.
Collapse
|
16
|
Guadarrama-Enríquez O, Moreno-Pérez GF, González-Trujano ME, Ángeles-López GE, Ventura-Martínez R, Díaz-Reval I, Cano-Martínez A, Pellicer F, Baenas N, Moreno DA, García-Viguera C. Antinociceptive and antiedema effects produced in rats by Brassica oleracea var. italica sprouts involving sulforaphane. Inflammopharmacology 2023; 31:3217-3226. [PMID: 37728726 PMCID: PMC10692002 DOI: 10.1007/s10787-023-01326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
Natural products are recognized as potential analgesics since many of them are part of modern medicine to relieve pain without serious adverse effects. The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of an aqueous extract of Brassica oleracea var. italica sprouts (AEBS) and one of its main reported bioactive metabolites sulforaphane (SFN). Antinociceptive activity of the AEBS (30, 100, and 300 mg/kg, i.p. or 1000 and 2000 mg/kg, p.o.) and SFN (0.1 mg/kg, i.p.) was evaluated in the plantar test in rats to reinforce its analgesic-like activity at central level using the reference drug tramadol (TR, 50 mg/kg, i.p.). The anti-inflammatory-like response was determined in the carrageenan-induced oedema at the same dosages for comparison with ketorolac (KET, 20 mg/kg, i.p.) or indomethacin (INDO, 20 mg/kg, p.o.). A histological analysis of the swollen paw was included to complement the anti-inflammatory response. Additionally, acute toxicity observed in clinical analgesics as the most common adverse effects, such as sedation and/or gastric damage, was also explored. As a result, central and peripheral action of the AEBS was confirmed using enteral and parenteral administration, in which significant reduction of the nociceptive and inflammatory responses resembled the effects of TR, KET, or INDO, respectively, involving the presence of SFN. No adverse or toxic effects were observed in the presence of the AEBS or SFN. In conclusion, this study supports that Brassica oleracea var. italica sprouts are a potential source of antinociceptive natural products such as SFN for therapy of pain alone and associated to an inflammation condition.
Collapse
|
17
|
Hernández-Sánchez LY, González-Trujano ME, Moreno DA, Vibrans H, Castillo-Juárez I, Dorazco-González A, Soto-Hernández M. Pharmacological evaluation of the anxiolytic-like effects of an aqueous extract of the Raphanus sativus L. sprouts in mice. Biomed Pharmacother 2023; 162:114579. [PMID: 36989714 DOI: 10.1016/j.biopha.2023.114579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Raphanus sativus L. (Brassicaceae), commonly known as radish, is consumed worldwide as a vegetable. However, its benefits on mental health are unknown. The aim of this study was to evaluate its anxiolytic-like effects and safety using different experimental models. An aqueous extract of R. sativus sprouts (AERSS) was pharmacologically evaluated by intraperitoneal route (i.p.) at 10, 30, and 100 mg/kg and orally (p.o.) at 500 mg/kg on behavior by using open-field and plus-maze tests. In addition, its acute toxicity (LD50) was determined by the Lorke's method. Diazepam (1 mg/kg, i.p.) and buspirone (4 mg/kg, i.p.) were the reference drugs. A significant and anxiolytic-like dosage of AERSS (30 mg/kg, i.p.) resembling the effects of reference drugs was chosen to explore the involvement of GABAA/BDZs site (flumazenil, 5 mg/kg, i.p.) and serotonin 5-HT1A receptors (WAY100635, 1 mg/kg, i.p.) as a possible mechanism of action. A 500 mg/kg, p.o. dosage of AERSS produced an anxiolytic-like response equivalent to 100 mg/kg, i.p. No acute toxicity was observed since a LD50 > 2000 mg/kg, i.p. The phytochemical analysis allowed the identification and quantification of major presence of sulforaphene (2500 µM), sulforaphane (15 µM), iberin (0.75 µM), and indol-3-carbinol (0.75 µM), as major constituents. Both the GABAA/BDZs site and serotonin 5-HT1A receptors were involved in the anxiolytic-like activity of AERSS, depending on the pharmacological parameter or the experimental assay tested. Our results demonstrate that the anxiolytic activity of R. sativus sprouts involves GABAA/BDZs site and serotonin 5-HT1A receptors supporting its health benefits in the treatment of anxiety beyond the satisfaction of basic nutritional needs.
Collapse
|
18
|
Núñez A, García AM, Ranninger C, Moreno DA. Microbiologically influenced corrosion on naval carbon steel inside the hull of tugboats: a case study of prevention and control. BIOFOULING 2023:1-14. [PMID: 37165796 DOI: 10.1080/08927014.2023.2209013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microbiologically influenced corrosion (MIC) has a significant cost to many industries, including naval engineering. In this case-of-study, three tugboats developed pitting corrosion in the carbon steel of the inner hulls. Grade A naval steel was used for the hull sheets but the inner side (corroded) showed only two protective layers of paint. The maintenance employed seawater, which ended up in the bilge and made MIC possible. Bilge's waters were submitted to physicochemical, biological and molecular tests. DNA analyses confirmed the presence of Pseudomonas spp. and Desulfovibrio spp. in water samples and, consequently, a MIC mechanism was proposed to explain the corrosion process. In addition, a biocide treatment was evaluated and a new maintenance protocol was recommended. This work highlights the importance of the engineering design to prevent MIC in marine transports and provides some guidelines to treat it.
Collapse
|
19
|
Zantut-Wittmann DE, Laus AC, Moreno DA, Barreto IS, Moma CA, Maia F, Etchebehere E, Assumpção L, Reis RM. Extremely aggressive course in a poorly differentiated thyroid carcinoma presenting a double mutation of the TERT promoter. Am J Med Sci 2023; 365:532-537. [PMID: 36972734 DOI: 10.1016/j.amjms.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/24/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
BRAF and TERT oncogenes hotspot mutations are associated with a more aggressive outcome in thyroid carcinomas (TC). TERT promoter (pTERT) mutations (C228T and C250T) are related to cancer growth and reduced overall- and disease-free survivals in TC. We report a patient followed up for 8 years with a poorly differentiated thyroid carcinoma (PDTC) presenting an extremely aggressive course, who developed a large volume of metastases in a short period. Molecular analysis of the primary tumor revealed two pTERT mutations (C228T and C250T), and no BRAF V600E mutation. pTERT mutations C228T and C250T have been described as mutually exclusive, indicating that one mutation is enough for telomerase activation and exerts its action in thyroid tumorigenesis. This report describes both pTERT hotspot mutations in the same PDTC patient presenting a very aggressive course, even for PDTC, suggesting a relationship between the two events. However, more studies are needed to prove this causality.
Collapse
|
20
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
|
21
|
Garcia-Ibañez P, Núñez-Sánchez MA, Oliva-Bolarín A, Martínez-Sánchez MA, Ramos-Molina B, Ruiz-Alcaraz AJ, Moreno DA. Anti-inflammatory potential of digested Brassica sprout extracts in human macrophage-like HL-60 cells. Food Funct 2023; 14:112-121. [PMID: 36484295 DOI: 10.1039/d2fo02914f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cruciferous vegetables have been reported to be a great source of anti-inflammatory compounds. Specifically, sprouts from the Brassicaceae family stand out for their high content of glucosinolates (and their bioactive derivatives, isothiocyanates), phenolic acids, and anthocyanins. Despite the evident anti-inflammatory activity of certain Brassica phytochemicals such as sulforaphane or phenolic acids, the effect of digested Brassica vegetables on inflammation remains understudied. In this work, we aimed to evaluate the anti-inflammatory potential of the bioaccessible forms of cruciferous bioactives (from red cabbage sprouts (RCS) and red radish sprouts (RRS)) obtained upon in vitro gastrointestinal digestion in the HL-60 macrophage-like differentiated human cell line. The study was performed under basal conditions or stimulated with a low dose of LPS for 24 hours as a validated in vitro model of chronic inflammation. The cell viability was determined by MTT assay. The gene expression and production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β were determined by RT-qPCR and ELISA respectively. Our results revealed no cytotoxicity with any of the treatments in LPS-stimulated macrophage-like HL60 cells. Regarding cytokine production, digestates significantly decreased the production of the three pro-inflammatory cytokines at concentrations of 50 and 100 μg mL-1 except for IL-1β treated with RCS digestates. Furthermore, the RT-qPCR analysis showed a decrease in the relative expression of pro-inflammatory cytokines in LPS-stimulated cells treated with RRS digestates at 100 μg mL-1 but not with red cabbage digestates. In conclusion, RRS bioaccessible compounds in the extracts could be used as dietary coadjuvants given their potential anti-inflammatory effect on this in vitro model of chronic inflammation.
Collapse
|
22
|
Bokić J, Škrobot D, Tomić J, Šeregelj V, Abellán-Victorio Á, Moreno DA, Ilić N. Broccoli sprouts as a novel food ingredient: Nutritional, functional and sensory aspects of sprouts enriched pasta. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Guijarro-Real C, Hernández-Cánovas L, Abellán-Victorio Á, Ben-Romdhane O, Moreno DA. The Combination of Monochromatic LEDs and Elicitation with Stressors Enhances the Accumulation of Glucosinolates in Mustard Sprouts with Species-Dependency. PLANTS (BASEL, SWITZERLAND) 2022; 11:2961. [PMID: 36365416 PMCID: PMC9657432 DOI: 10.3390/plants11212961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This work studies the enhancement of glucosinolates (GSLs) in mustard sprouts as health promoters. Sprouts of Sinapis alba, Brassica nigra, and B. carinata were grown under broad-spectrum, monochromatic blue or red light-emitting diode (LED) lamps, irrigated with 0-100 mM sodium chloride (NaCl), and sprayed with 0-250 µM methyl jasmonate (MeJA) as elicitor. The use of LEDs did not result in increased sprout biomass in any case. The effect of the applied treatments on the GSLs depended on the species and were restricted to Brassica spp. The red LEDs produced an overall increase in GSLs over 500% in B. carinata (from 12 to 81 mg 100 g-1 F.W.), compared to the white broad-spectrum lights, although the highest increase in content was obtained in treated sprouts with 250 µM MeJA (104 an 105 mg 101 g-1 F.W., under the red and blue LEDs, respectively). The combination of blue LEDs, 100 mM NaCl, and 250 µM MeJA enhanced the levels of GLSs in B. nigra to the maximum (81 mg 100 g-1 F.W.). Overall, these results indicate that by modifying the growing conditions for a given sprout, enhancement in the accumulation of GSLs as health promoters is possible. The use of these treatments is a sustainable alternative to genetic modification when looking for bioactive-enriched foods, delivering natural plant foods rich in bioactive ingredients (e.g., glucosinolates). Nevertheless, the response to the treatments varies among species, indicating that treatments will require adjustment across sprouts. Further research continues with producing cruciferous sprouts to obtain GSL-enriched formulas for further studying the effects of their bioavailability and bioactivity on health-promotion.
Collapse
|
24
|
Núñez-Gómez V, González-Barrio R, Baenas N, Moreno DA, Periago MJ. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. Int J Mol Sci 2022; 23:ijms232113309. [PMID: 36362095 PMCID: PMC9656928 DOI: 10.3390/ijms232113309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The Brassica oleracea industry generates large amounts of by-products to which value could be added because of the characteristics of their composition. The aim was to extract different fibre fractions from broccoli stalks to obtain potential new added-value ingredients. Using an ethanol and water extraction procedure, two fibre-rich fractions (total fibre fraction, TFB, and insoluble fibre fraction, IFB) were obtained. These fractions were analysed to determine the nutritional, (poly)phenols and glucosinolates composition and physicochemical properties, comparing the results with those of freeze-dried broccoli stalks (DBS). Although TFB showed a higher content of total dietary fibre, IFB had the same content of insoluble dietary fibre as TFB (54%), better hydration properties, higher content of glucosinolates (100 mg/100 g d.w.) and (poly)phenols (74.7 mg/100 g d.w.). The prebiotic effect was evaluated in IFB and compared with DBS by in vitro fermentation with human faecal slurries. After 48 h, the short-chain fatty acid (SCFA) production was higher with IFB than with DBS because of the greater presence of both uronic acids, the main component of pectin, and (poly)phenols. These results reveal that novel fibre-rich ingredients—with antioxidant, technological and physiological effects—could be obtained from broccoli stalks by using green extraction methods.
Collapse
|
25
|
Ramírez-Pavez T, García-Peñaranda A, Garcia-Ibañez P, Yepes-Molina L, Carvajal M, Ruiz-Alcaraz AJ, Moreno DA, García-Peñarrubia P, Martínez-Esparza M. Potential of Sulforaphane and Broccoli Membrane Vesicles as Regulators of M1/M2 Human Macrophage Activity. Int J Mol Sci 2022; 23:ijms231911141. [PMID: 36232440 PMCID: PMC9570499 DOI: 10.3390/ijms231911141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages have emerged as important therapeutic targets in many human diseases. The aim of this study was to analyze the effect of broccoli membrane vesicles and sulphoraphane (SFN), either free or encapsulated, on the activity of human monocyte-derived M1 and M2 macrophage primary culture. Our results show that exposure for 24 h to SFN 25 µM, free and encapsulated, induced a potent reduction on the activity of human M1 and M2 macrophages, downregulating proinflammatory and anti-inflammatory cytokines and phagocytic capability on C. albicans. The broccoli membrane vesicles do not represent inert nanocarriers, as they have low amounts of bioactive compounds, being able to modulate the cytokine production, depending on the inflammatory state of the cells. They could induce opposite effects to that of higher doses of SFN, reflecting its hormetic effect. These data reinforce the potential use of broccoli compounds as therapeutic agents not only for inflammatory diseases, but they also open new clinical possibilities for applications in other diseases related to immunodeficiency, autoimmunity, or in cancer therapy. Considering the variability of their biological effects in different scenarios, a proper therapeutic strategy with Brassica bioactive compounds should be designed for each pathology.
Collapse
|